Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
prophesier
GitHub Repository: prophesier/diff-svc
Path: blob/main/modules/diff/diffusion.py
694 views
1
from collections import deque
2
from functools import partial
3
4
import math
5
import numpy as np
6
import torch
7
from torch import nn
8
import torch.nn.functional as F
9
from torch.nn import Conv1d
10
from modules.commons.common_layers import Mish
11
from modules.encoder import SvcEncoder
12
from utils.hparams import hparams
13
14
15
def exists(x):
16
return x is not None
17
18
19
def extract(a, t):
20
return a[t].reshape((1, 1, 1, 1))
21
22
23
def linear_beta_schedule(timesteps, max_beta=hparams.get('max_beta', 0.01)):
24
betas = np.linspace(1e-4, max_beta, timesteps)
25
return betas
26
27
28
def cosine_beta_schedule(timesteps, s=0.008):
29
steps = timesteps + 1
30
x = np.linspace(0, steps, steps)
31
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
32
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
33
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
34
return np.clip(betas, a_min=0, a_max=0.999)
35
36
37
beta_schedule = {
38
"cosine": cosine_beta_schedule,
39
"linear": linear_beta_schedule,
40
}
41
42
43
def extract_1(a, t):
44
return a[t].reshape((1, 1, 1, 1))
45
46
47
def predict_stage0(noise_pred, noise_pred_prev):
48
return (noise_pred
49
+ noise_pred_prev) / 2
50
51
52
def predict_stage1(noise_pred, noise_list):
53
return (noise_pred * 3
54
- noise_list[-1]) / 2
55
56
57
def predict_stage2(noise_pred, noise_list):
58
return (noise_pred * 23
59
- noise_list[-1] * 16
60
+ noise_list[-2] * 5) / 12
61
62
63
def predict_stage3(noise_pred, noise_list):
64
return (noise_pred * 55
65
- noise_list[-1] * 59
66
+ noise_list[-2] * 37
67
- noise_list[-3] * 9) / 24
68
69
70
class SinusoidalPosEmb(nn.Module):
71
def __init__(self, dim):
72
super().__init__()
73
self.dim = dim
74
self.half_dim = dim // 2
75
self.emb = 9.21034037 / (self.half_dim - 1)
76
self.emb = torch.exp(torch.arange(self.half_dim) * torch.tensor(-self.emb)).unsqueeze(0)
77
self.emb = self.emb.cuda()
78
79
def forward(self, x):
80
emb = self.emb * x
81
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
82
return emb
83
84
85
class ResidualBlock(nn.Module):
86
def __init__(self, encoder_hidden, residual_channels, dilation):
87
super().__init__()
88
self.residual_channels = residual_channels
89
self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation)
90
self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
91
self.conditioner_projection = Conv1d(encoder_hidden, 2 * residual_channels, 1)
92
self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1)
93
94
def forward(self, x, conditioner, diffusion_step):
95
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
96
conditioner = self.conditioner_projection(conditioner)
97
y = x + diffusion_step
98
y = self.dilated_conv(y) + conditioner
99
100
gate, filter_1 = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
101
102
y = torch.sigmoid(gate) * torch.tanh(filter_1)
103
y = self.output_projection(y)
104
105
residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
106
107
return (x + residual) / 1.41421356, skip
108
109
110
class DiffNet(nn.Module):
111
def __init__(self, in_dims=80):
112
super().__init__()
113
self.encoder_hidden = hparams['hidden_size']
114
self.residual_layers = hparams['residual_layers']
115
self.residual_channels = hparams['residual_channels']
116
self.dilation_cycle_length = hparams['dilation_cycle_length']
117
self.input_projection = Conv1d(in_dims, self.residual_channels, 1)
118
self.diffusion_embedding = SinusoidalPosEmb(self.residual_channels)
119
dim = self.residual_channels
120
self.mlp = nn.Sequential(
121
nn.Linear(dim, dim * 4),
122
Mish(),
123
nn.Linear(dim * 4, dim)
124
)
125
self.residual_layers = nn.ModuleList([
126
ResidualBlock(self.encoder_hidden, self.residual_channels, 2 ** (i % self.dilation_cycle_length))
127
for i in range(self.residual_layers)
128
])
129
self.skip_projection = Conv1d(self.residual_channels, self.residual_channels, 1)
130
self.output_projection = Conv1d(self.residual_channels, in_dims, 1)
131
nn.init.zeros_(self.output_projection.weight)
132
133
def forward(self, spec, diffusion_step, cond):
134
x = spec.squeeze(0)
135
x = self.input_projection(x) # x [B, residual_channel, T]
136
x = F.relu(x)
137
# skip = torch.randn_like(x)
138
diffusion_step = diffusion_step.float()
139
diffusion_step = self.diffusion_embedding(diffusion_step)
140
diffusion_step = self.mlp(diffusion_step)
141
142
x, skip = self.residual_layers[0](x, cond, diffusion_step)
143
# noinspection PyTypeChecker
144
for layer in self.residual_layers[1:]:
145
x, skip_connection = layer.forward(x, cond, diffusion_step)
146
skip = skip + skip_connection
147
x = skip / math.sqrt(len(self.residual_layers))
148
x = self.skip_projection(x)
149
x = F.relu(x)
150
x = self.output_projection(x) # [B, 80, T]
151
return x.unsqueeze(1)
152
153
154
class GaussianDiffusion(nn.Module):
155
def __init__(self, phone_encoder, out_dims, denoise_fn,
156
timesteps=1000, K_step=1000, loss_type=hparams.get('diff_loss_type', 'l1'), betas=None, spec_min=None,
157
spec_max=None):
158
super().__init__()
159
self.denoise_fn = DiffNet(out_dims)
160
self.fs2 = SvcEncoder(phone_encoder, out_dims)
161
self.mel_bins = out_dims
162
163
if exists(betas):
164
betas = betas.detach().cpu().numpy() if isinstance(betas, torch.Tensor) else betas
165
else:
166
if 'schedule_type' in hparams.keys():
167
betas = beta_schedule[hparams['schedule_type']](timesteps)
168
else:
169
betas = cosine_beta_schedule(timesteps)
170
171
alphas = 1. - betas
172
alphas_cumprod = np.cumprod(alphas, axis=0)
173
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
174
175
timesteps, = betas.shape
176
self.num_timesteps = int(timesteps)
177
self.K_step = K_step
178
self.loss_type = loss_type
179
180
self.noise_list = deque(maxlen=4)
181
182
to_torch = partial(torch.tensor, dtype=torch.float32)
183
184
self.register_buffer('betas', to_torch(betas))
185
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
186
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
187
188
# calculations for diffusion q(x_t | x_{t-1}) and others
189
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
190
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
191
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
192
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
193
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
194
195
# calculations for posterior q(x_{t-1} | x_t, x_0)
196
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
197
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
198
self.register_buffer('posterior_variance', to_torch(posterior_variance))
199
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
200
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
201
self.register_buffer('posterior_mean_coef1', to_torch(
202
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
203
self.register_buffer('posterior_mean_coef2', to_torch(
204
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
205
206
self.register_buffer('spec_min', torch.FloatTensor(spec_min)[None, None, :hparams['keep_bins']])
207
self.register_buffer('spec_max', torch.FloatTensor(spec_max)[None, None, :hparams['keep_bins']])
208
self.mel_vmin = hparams['mel_vmin']
209
self.mel_vmax = hparams['mel_vmax']
210
211
def get_x_pred(self, x_1, noise_t, t_1, t_prev):
212
a_t = extract(self.alphas_cumprod, t_1)
213
a_prev = extract(self.alphas_cumprod, t_prev)
214
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
215
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
216
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
217
x_pred = x_1 + x_delta
218
return x_pred
219
220
def forward(self, hubert, mel2ph=None, spk_embed=None, f0=None, initial_noise=None, speedup=None):
221
decoder_inp, f0_denorm = self.fs2(hubert, mel2ph, spk_embed, f0)
222
cond = decoder_inp.transpose(1, 2)
223
x = initial_noise
224
pndms = speedup[0]
225
device = cond.device
226
n_frames = cond.shape[2]
227
step_range = torch.arange(0, self.K_step, pndms, dtype=torch.long, device=device).flip(0)
228
plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
229
noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
230
for t in step_range:
231
t_1 = torch.full((1,), t, device=device, dtype=torch.long)
232
noise_pred = self.denoise_fn(x, t_1, cond)
233
t_prev = t_1 - pndms
234
t_prev = t_prev * (t_prev > 0)
235
if plms_noise_stage == 0:
236
x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
237
noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
238
noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
239
elif plms_noise_stage == 1:
240
noise_pred_prime = predict_stage1(noise_pred, noise_list)
241
elif plms_noise_stage == 2:
242
noise_pred_prime = predict_stage2(noise_pred, noise_list)
243
else:
244
noise_pred_prime = predict_stage3(noise_pred, noise_list)
245
noise_pred = noise_pred.unsqueeze(0)
246
if plms_noise_stage < 3:
247
noise_list = torch.cat((noise_list, noise_pred), dim=0)
248
plms_noise_stage = plms_noise_stage + 1
249
else:
250
noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
251
x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
252
253
x = x.squeeze(1).permute(0, 2, 1)
254
d = (self.spec_max - self.spec_min) / 2
255
m = (self.spec_max + self.spec_min) / 2
256
mel_out = x * d + m
257
# mel_out[mel_out > self.mel_vmax] = self.mel_vmax
258
# mel_out[mel_out < self.mel_vmin] = self.mel_vmin
259
mel_out = mel_out * 2.30259
260
return mel_out.transpose(2, 1), f0_denorm
261
262