Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
prophesier
GitHub Repository: prophesier/diff-svc
Path: blob/main/modules/diff/diffusion_V2.py
694 views
1
from collections import deque
2
from functools import partial
3
4
import math
5
import numpy as np
6
import torch
7
from torch import nn
8
import torch.nn.functional as F
9
from torch.nn import Conv1d
10
from modules.commons.common_layers import Mish
11
from modules.encoder import SvcEncoder
12
from utils.hparams import hparams
13
14
15
def exists(x):
16
return x is not None
17
18
19
def extract(a, t):
20
return a[t].reshape((1, 1, 1, 1))
21
22
23
def linear_beta_schedule(timesteps, max_beta=hparams.get('max_beta', 0.01)):
24
betas = np.linspace(1e-4, max_beta, timesteps)
25
return betas
26
27
28
def cosine_beta_schedule(timesteps, s=0.008):
29
steps = timesteps + 1
30
x = np.linspace(0, steps, steps)
31
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
32
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
33
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
34
return np.clip(betas, a_min=0, a_max=0.999)
35
36
37
beta_schedule = {
38
"cosine": cosine_beta_schedule,
39
"linear": linear_beta_schedule,
40
}
41
42
43
def extract_1(a, t):
44
return a[t].reshape((1, 1, 1, 1))
45
46
47
def predict_stage0(noise_pred, noise_pred_prev):
48
return (noise_pred + noise_pred_prev) / 2
49
50
51
def predict_stage1(noise_pred, noise_list):
52
return (noise_pred * 3
53
- noise_list[-1]) / 2
54
55
56
def predict_stage2(noise_pred, noise_list):
57
return (noise_pred * 23
58
- noise_list[-1] * 16
59
+ noise_list[-2] * 5) / 12
60
61
62
def predict_stage3(noise_pred, noise_list):
63
return (noise_pred * 55
64
- noise_list[-1] * 59
65
+ noise_list[-2] * 37
66
- noise_list[-3] * 9) / 24
67
68
69
class SinusoidalPosEmb(nn.Module):
70
def __init__(self, dim):
71
super().__init__()
72
self.dim = dim
73
self.half_dim = dim // 2
74
self.emb = 9.21034037 / (self.half_dim - 1)
75
self.emb = torch.exp(torch.arange(self.half_dim) * torch.tensor(-self.emb)).unsqueeze(0)
76
self.emb = self.emb.cpu()
77
78
def forward(self, x):
79
emb = self.emb * x
80
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
81
return emb
82
83
84
class ResidualBlock(nn.Module):
85
def __init__(self, encoder_hidden, residual_channels, dilation):
86
super().__init__()
87
self.residual_channels = residual_channels
88
self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation)
89
self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
90
self.conditioner_projection = Conv1d(encoder_hidden, 2 * residual_channels, 1)
91
self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1)
92
93
def forward(self, x, conditioner, diffusion_step):
94
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
95
conditioner = self.conditioner_projection(conditioner)
96
y = x + diffusion_step
97
y = self.dilated_conv(y) + conditioner
98
99
gate, filter_1 = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
100
101
y = torch.sigmoid(gate) * torch.tanh(filter_1)
102
y = self.output_projection(y)
103
104
residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
105
106
return (x + residual) / 1.41421356, skip
107
108
109
class DiffNet(nn.Module):
110
def __init__(self, in_dims=80):
111
super().__init__()
112
self.encoder_hidden = hparams['hidden_size']
113
self.residual_layers = hparams['residual_layers']
114
self.residual_channels = hparams['residual_channels']
115
self.dilation_cycle_length = hparams['dilation_cycle_length']
116
self.input_projection = Conv1d(in_dims, self.residual_channels, 1)
117
self.diffusion_embedding = SinusoidalPosEmb(self.residual_channels)
118
dim = self.residual_channels
119
self.mlp = nn.Sequential(
120
nn.Linear(dim, dim * 4),
121
Mish(),
122
nn.Linear(dim * 4, dim)
123
)
124
self.residual_layers = nn.ModuleList([
125
ResidualBlock(self.encoder_hidden, self.residual_channels, 2 ** (i % self.dilation_cycle_length))
126
for i in range(self.residual_layers)
127
])
128
self.skip_projection = Conv1d(self.residual_channels, self.residual_channels, 1)
129
self.output_projection = Conv1d(self.residual_channels, in_dims, 1)
130
nn.init.zeros_(self.output_projection.weight)
131
132
def forward(self, spec, diffusion_step, cond):
133
x = spec.squeeze(0)
134
x = self.input_projection(x) # x [B, residual_channel, T]
135
x = F.relu(x)
136
# skip = torch.randn_like(x)
137
diffusion_step = diffusion_step.float()
138
diffusion_step = self.diffusion_embedding(diffusion_step)
139
diffusion_step = self.mlp(diffusion_step)
140
141
x, skip = self.residual_layers[0](x, cond, diffusion_step)
142
# noinspection PyTypeChecker
143
for layer in self.residual_layers[1:]:
144
x, skip_connection = layer.forward(x, cond, diffusion_step)
145
skip = skip + skip_connection
146
x = skip / math.sqrt(len(self.residual_layers))
147
x = self.skip_projection(x)
148
x = F.relu(x)
149
x = self.output_projection(x) # [B, 80, T]
150
return x.unsqueeze(1)
151
152
153
class AfterDiffusion(nn.Module):
154
def __init__(self, spec_max, spec_min):
155
super().__init__()
156
self.spec_max = spec_max
157
self.spec_min = spec_min
158
159
def forward(self, x):
160
x = x.squeeze(1).permute(0, 2, 1).cpu()
161
d = (self.spec_max - self.spec_min) / 2
162
m = (self.spec_max + self.spec_min) / 2
163
mel_out = x * d.cpu() + m.cpu()
164
mel_out = mel_out * 2.30259
165
return mel_out.transpose(2, 1)
166
167
168
class Pred(nn.Module):
169
def __init__(self, alphas_cumprod):
170
super().__init__()
171
self.alphas_cumprod = alphas_cumprod
172
173
def forward(self, x_1, noise_t, t_1, t_prev):
174
a_t = extract(self.alphas_cumprod, t_1).cpu()
175
a_prev = extract(self.alphas_cumprod, t_prev).cpu()
176
a_t_sq, a_prev_sq = a_t.sqrt().cpu(), a_prev.sqrt().cpu()
177
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
178
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
179
x_pred = x_1 + x_delta.cpu()
180
return x_pred
181
182
183
class GaussianDiffusionOnnx(nn.Module):
184
def __init__(self, phone_encoder, out_dims, denoise_fn,
185
timesteps=1000, K_step=1000, loss_type=hparams.get('diff_loss_type', 'l1'), betas=None, spec_min=None,
186
spec_max=None):
187
super().__init__()
188
self.denoise_fn = DiffNet(out_dims)
189
self.fs2 = SvcEncoder(phone_encoder, out_dims)
190
self.mel_bins = out_dims
191
192
if exists(betas):
193
betas = betas.detach().cpu().numpy() if isinstance(betas, torch.Tensor) else betas
194
else:
195
if 'schedule_type' in hparams.keys():
196
betas = beta_schedule[hparams['schedule_type']](timesteps)
197
else:
198
betas = cosine_beta_schedule(timesteps)
199
200
alphas = 1. - betas
201
alphas_cumprod = np.cumprod(alphas, axis=0)
202
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
203
204
timesteps, = betas.shape
205
self.num_timesteps = int(timesteps)
206
self.K_step = K_step
207
self.loss_type = loss_type
208
209
self.noise_list = deque(maxlen=4)
210
211
to_torch = partial(torch.tensor, dtype=torch.float32)
212
213
self.register_buffer('betas', to_torch(betas))
214
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
215
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
216
217
# calculations for diffusion q(x_t | x_{t-1}) and others
218
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
219
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
220
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
221
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
222
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
223
224
# calculations for posterior q(x_{t-1} | x_t, x_0)
225
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
226
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
227
self.register_buffer('posterior_variance', to_torch(posterior_variance))
228
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
229
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
230
self.register_buffer('posterior_mean_coef1', to_torch(
231
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
232
self.register_buffer('posterior_mean_coef2', to_torch(
233
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
234
235
self.register_buffer('spec_min', torch.FloatTensor(spec_min)[None, None, :hparams['keep_bins']])
236
self.register_buffer('spec_max', torch.FloatTensor(spec_max)[None, None, :hparams['keep_bins']])
237
self.mel_vmin = hparams['mel_vmin']
238
self.mel_vmax = hparams['mel_vmax']
239
240
self.ad = AfterDiffusion(self.spec_max, self.spec_min)
241
self.xp = Pred(self.alphas_cumprod)
242
243
def get_x_pred(self, x_1, noise_t, t_1, t_prev):
244
a_t = extract(self.alphas_cumprod, t_1)
245
a_prev = extract(self.alphas_cumprod, t_prev)
246
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
247
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
248
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
249
x_pred = x_1 + x_delta
250
return x_pred
251
252
def OnnxExport(self, project_name=None):
253
Onnx=True
254
255
hubert = torch.rand(1, 10, 256)
256
f0 = torch.rand(1, 10)
257
mel2ph = torch.LongTensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).unsqueeze(0)
258
spk_embed = torch.LongTensor([0])
259
260
torch.onnx.export(
261
self.fs2,
262
(hubert, mel2ph, spk_embed, f0),
263
f"{project_name}_encoder.onnx",
264
input_names=["hubert", "mel2ph", "spk_embed", "f0"],
265
output_names=["mel_pred", "f0_pred"],
266
dynamic_axes={
267
"hubert": [1],
268
"f0": [1],
269
"mel2ph": [1]
270
},
271
opset_version=16
272
)
273
274
cond = torch.randn([1, 256, 10]).cpu()
275
x = torch.randn((1, 1, self.mel_bins, cond.shape[2]), dtype=torch.float32).cpu()
276
pndms = 100
277
278
device = cond.device
279
n_frames = cond.shape[2]
280
step_range = torch.arange(0, self.K_step, pndms, dtype=torch.long, device=device).flip(0)
281
plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
282
noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
283
284
ot = step_range[0]
285
ot_1 = torch.full((1,), ot, device=device, dtype=torch.long)
286
torch.onnx.export(
287
self.denoise_fn,
288
(x.cpu(), ot_1.cpu(), cond.cpu()),
289
f"{project_name}_denoise.onnx",
290
input_names=["noise", "time", "condition"],
291
output_names=["noise_pred"],
292
dynamic_axes={
293
"noise": [3],
294
"condition": [2]
295
},
296
opset_version=16
297
)
298
299
for t in step_range:
300
t_1 = torch.full((1,), t, device=device, dtype=torch.long)
301
noise_pred = self.denoise_fn(x, t_1, cond)
302
t_prev = t_1 - pndms
303
t_prev = t_prev * (t_prev > 0)
304
if plms_noise_stage == 0:
305
torch.onnx.export(
306
self.xp,
307
(x.cpu(), noise_pred.cpu(), t_1.cpu(), t_prev.cpu()),
308
f"{project_name}_pred.onnx",
309
input_names=["noise", "noise_pred", "time", "time_prev"],
310
output_names=["noise_pred_o"],
311
dynamic_axes={
312
"noise": [3],
313
"noise_pred": [3]
314
},
315
opset_version=16
316
)
317
318
x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
319
noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
320
noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
321
322
elif plms_noise_stage == 1:
323
noise_pred_prime = predict_stage1(noise_pred, noise_list)
324
325
elif plms_noise_stage == 2:
326
noise_pred_prime = predict_stage2(noise_pred, noise_list)
327
328
else:
329
noise_pred_prime = predict_stage3(noise_pred, noise_list)
330
331
noise_pred = noise_pred.unsqueeze(0)
332
333
if plms_noise_stage < 3:
334
noise_list = torch.cat((noise_list, noise_pred), dim=0)
335
plms_noise_stage = plms_noise_stage + 1
336
337
else:
338
noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
339
340
x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
341
342
torch.onnx.export(
343
self.ad,
344
x.cpu(),
345
f"{project_name}_after.onnx",
346
input_names=["x"],
347
output_names=["mel_out"],
348
dynamic_axes={
349
"x": [3]
350
},
351
opset_version=16
352
)
353
354