import torch
from modules.commons.common_layers import *
from modules.commons.common_layers import Embedding
from modules.commons.common_layers import SinusoidalPositionalEmbedding
from utils.hparams import hparams
import numpy as np
import math
class LayerNorm(torch.nn.LayerNorm):
"""Layer normalization module.
:param int nout: output dim size
:param int dim: dimension to be normalized
"""
def __init__(self, nout, dim=-1):
"""Construct an LayerNorm object."""
super(LayerNorm, self).__init__(nout, eps=1e-12)
self.dim = dim
def forward(self, x):
"""Apply layer normalization.
:param torch.Tensor x: input tensor
:return: layer normalized tensor
:rtype torch.Tensor
"""
if self.dim == -1:
return super(LayerNorm, self).forward(x)
return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1)
class PitchPredictor(torch.nn.Module):
def __init__(self, idim, n_layers=5, n_chans=384, odim=2, kernel_size=5,
dropout_rate=0.1, padding='SAME'):
super(PitchPredictor, self).__init__()
self.conv = torch.nn.ModuleList()
self.kernel_size = kernel_size
self.padding = padding
for idx in range(n_layers):
in_chans = idim if idx == 0 else n_chans
self.conv += [torch.nn.Sequential(
torch.nn.ConstantPad1d(((kernel_size - 1) // 2, (kernel_size - 1) // 2)
if padding == 'SAME'
else (kernel_size - 1, 0), 0),
torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=0),
torch.nn.ReLU(),
LayerNorm(n_chans, dim=1),
torch.nn.Dropout(dropout_rate)
)]
self.linear = torch.nn.Linear(n_chans, odim)
self.embed_positions = SinusoidalPositionalEmbedding(idim, 0, init_size=4096)
self.pos_embed_alpha = nn.Parameter(torch.Tensor([1]))
def forward(self, xs):
positions = self.pos_embed_alpha * self.embed_positions(xs[..., 0])
xs = xs + positions
xs = xs.transpose(1, -1)
for f in self.conv:
xs = f(xs)
xs = self.linear(xs.transpose(1, -1))
return xs
class SvcEncoder(nn.Module):
def __init__(self, dictionary, out_dims=None):
super().__init__()
self.padding_idx = 0
self.hidden_size = hparams['hidden_size']
self.out_dims = out_dims
if out_dims is None:
self.out_dims = hparams['audio_num_mel_bins']
self.mel_out = Linear(self.hidden_size, self.out_dims, bias=True)
predictor_hidden = hparams['predictor_hidden'] if hparams['predictor_hidden'] > 0 else self.hidden_size
if hparams['use_pitch_embed']:
self.pitch_embed = Embedding(300, self.hidden_size, self.padding_idx)
self.pitch_predictor = PitchPredictor(
self.hidden_size,
n_chans=predictor_hidden,
n_layers=hparams['predictor_layers'],
dropout_rate=hparams['predictor_dropout'],
odim=2 if hparams['pitch_type'] == 'frame' else 1,
padding=hparams['ffn_padding'], kernel_size=hparams['predictor_kernel'])
if hparams['use_energy_embed']:
self.energy_embed = Embedding(256, self.hidden_size, self.padding_idx)
if hparams['use_spk_id']:
self.spk_embed_proj = Embedding(hparams['num_spk'], self.hidden_size)
if hparams['use_split_spk_id']:
self.spk_embed_f0 = Embedding(hparams['num_spk'], self.hidden_size)
self.spk_embed_dur = Embedding(hparams['num_spk'], self.hidden_size)
elif hparams['use_spk_embed']:
self.spk_embed_proj = Linear(256, self.hidden_size, bias=True)
if hparams['pitch_norm'] == 'standard':
self.pitch_norm = True
else:
self.pitch_norm = False
self.f0_bin = hparams['f0_bin']
self.f0_max = hparams['f0_max']
self.f0_min = hparams['f0_min']
def forward(self, hubert, mel2ph=None, spk_embed=None, f0=None):
encoder_out = hubert
decoder_inp = F.pad(encoder_out, [0, 0, 1, 0])
mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, encoder_out.shape[-1]])
decoder_inp = torch.gather(decoder_inp, 1, mel2ph_)
tgt_nonpadding = (mel2ph > 0).float()[:, :, None]
rdecoder_inp, f0_denorm, pitch_pred = self.add_pitch(f0, mel2ph)
decoder_inp = decoder_inp + rdecoder_inp.cpu()
decoder_inp = (decoder_inp + spk_embed) * tgt_nonpadding
return decoder_inp.transpose(1, 2), f0_denorm
def add_pitch(self, f0, mel2ph):
pitch_padding = (mel2ph == 0)
f0_denorm = self.denorm_f0(f0, pitch_padding=pitch_padding)
f0[pitch_padding] = 0
pitch = self.f0_to_coarse(f0_denorm)
pitch_pred = pitch.unsqueeze(-1)
pitch_embedding = self.pitch_embed(pitch).cuda()
return pitch_embedding, f0_denorm, pitch_pred
def denorm_f0(self, f0, pitch_padding=None):
f0 = 2 ** f0
f0[pitch_padding] = 0
return f0
def f0_to_coarse(self, f0):
f0_mel_min = 1127 * math.log(1 + self.f0_min / 700)
f0_mel_max = 1127 * math.log(1 + self.f0_max / 700)
f0_mel = 1127 * (1 + f0 / 700).log()
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (self.f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1
f0_coarse = (f0_mel + 0.5).long()
return f0_coarse