Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
prophesier
GitHub Repository: prophesier/diff-svc
Path: blob/main/modules/parallel_wavegan/optimizers/radam.py
694 views
1
# -*- coding: utf-8 -*-
2
3
"""RAdam optimizer.
4
5
This code is drived from https://github.com/LiyuanLucasLiu/RAdam.
6
"""
7
8
import math
9
import torch
10
11
from torch.optim.optimizer import Optimizer
12
13
14
class RAdam(Optimizer):
15
"""Rectified Adam optimizer."""
16
17
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
18
"""Initilize RAdam optimizer."""
19
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
20
self.buffer = [[None, None, None] for ind in range(10)]
21
super(RAdam, self).__init__(params, defaults)
22
23
def __setstate__(self, state):
24
"""Set state."""
25
super(RAdam, self).__setstate__(state)
26
27
def step(self, closure=None):
28
"""Run one step."""
29
loss = None
30
if closure is not None:
31
loss = closure()
32
33
for group in self.param_groups:
34
35
for p in group['params']:
36
if p.grad is None:
37
continue
38
grad = p.grad.data.float()
39
if grad.is_sparse:
40
raise RuntimeError('RAdam does not support sparse gradients')
41
42
p_data_fp32 = p.data.float()
43
44
state = self.state[p]
45
46
if len(state) == 0:
47
state['step'] = 0
48
state['exp_avg'] = torch.zeros_like(p_data_fp32)
49
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
50
else:
51
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
52
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
53
54
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
55
beta1, beta2 = group['betas']
56
57
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
58
exp_avg.mul_(beta1).add_(1 - beta1, grad)
59
60
state['step'] += 1
61
buffered = self.buffer[int(state['step'] % 10)]
62
if state['step'] == buffered[0]:
63
N_sma, step_size = buffered[1], buffered[2]
64
else:
65
buffered[0] = state['step']
66
beta2_t = beta2 ** state['step']
67
N_sma_max = 2 / (1 - beta2) - 1
68
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
69
buffered[1] = N_sma
70
71
# more conservative since it's an approximated value
72
if N_sma >= 5:
73
step_size = math.sqrt(
74
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step']) # NOQA
75
else:
76
step_size = 1.0 / (1 - beta1 ** state['step'])
77
buffered[2] = step_size
78
79
if group['weight_decay'] != 0:
80
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
81
82
# more conservative since it's an approximated value
83
if N_sma >= 5:
84
denom = exp_avg_sq.sqrt().add_(group['eps'])
85
p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom)
86
else:
87
p_data_fp32.add_(-step_size * group['lr'], exp_avg)
88
89
p.data.copy_(p_data_fp32)
90
91
return loss
92
93