Path: blob/main/modules/parallel_wavegan/optimizers/radam.py
694 views
# -*- coding: utf-8 -*-12"""RAdam optimizer.34This code is drived from https://github.com/LiyuanLucasLiu/RAdam.5"""67import math8import torch910from torch.optim.optimizer import Optimizer111213class RAdam(Optimizer):14"""Rectified Adam optimizer."""1516def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):17"""Initilize RAdam optimizer."""18defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)19self.buffer = [[None, None, None] for ind in range(10)]20super(RAdam, self).__init__(params, defaults)2122def __setstate__(self, state):23"""Set state."""24super(RAdam, self).__setstate__(state)2526def step(self, closure=None):27"""Run one step."""28loss = None29if closure is not None:30loss = closure()3132for group in self.param_groups:3334for p in group['params']:35if p.grad is None:36continue37grad = p.grad.data.float()38if grad.is_sparse:39raise RuntimeError('RAdam does not support sparse gradients')4041p_data_fp32 = p.data.float()4243state = self.state[p]4445if len(state) == 0:46state['step'] = 047state['exp_avg'] = torch.zeros_like(p_data_fp32)48state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)49else:50state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)51state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)5253exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']54beta1, beta2 = group['betas']5556exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)57exp_avg.mul_(beta1).add_(1 - beta1, grad)5859state['step'] += 160buffered = self.buffer[int(state['step'] % 10)]61if state['step'] == buffered[0]:62N_sma, step_size = buffered[1], buffered[2]63else:64buffered[0] = state['step']65beta2_t = beta2 ** state['step']66N_sma_max = 2 / (1 - beta2) - 167N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)68buffered[1] = N_sma6970# more conservative since it's an approximated value71if N_sma >= 5:72step_size = math.sqrt(73(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step']) # NOQA74else:75step_size = 1.0 / (1 - beta1 ** state['step'])76buffered[2] = step_size7778if group['weight_decay'] != 0:79p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)8081# more conservative since it's an approximated value82if N_sma >= 5:83denom = exp_avg_sq.sqrt().add_(group['eps'])84p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom)85else:86p_data_fp32.add_(-step_size * group['lr'], exp_avg)8788p.data.copy_(p_data_fp32)8990return loss919293