Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
prophesier
GitHub Repository: prophesier/diff-svc
Path: blob/main/network/hubert/vec_model.py
694 views
1
from pathlib import Path
2
3
import librosa
4
import numpy as np
5
import torch
6
7
8
9
def load_model(vec_path):
10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
print("load model(s) from {}".format(vec_path))
12
from fairseq import checkpoint_utils
13
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
14
[vec_path],
15
suffix="",
16
)
17
model = models[0]
18
model = model.to(device)
19
model.eval()
20
return model
21
22
23
def get_vec_units(con_model, audio_path, dev):
24
audio, sampling_rate = librosa.load(audio_path)
25
if len(audio.shape) > 1:
26
audio = librosa.to_mono(audio.transpose(1, 0))
27
if sampling_rate != 16000:
28
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
29
30
feats = torch.from_numpy(audio).float()
31
if feats.dim() == 2: # double channels
32
feats = feats.mean(-1)
33
assert feats.dim() == 1, feats.dim()
34
feats = feats.view(1, -1)
35
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
36
inputs = {
37
"source": feats.to(dev),
38
"padding_mask": padding_mask.to(dev),
39
"output_layer": 9, # layer 9
40
}
41
with torch.no_grad():
42
logits = con_model.extract_features(**inputs)
43
feats = con_model.final_proj(logits[0])
44
return feats
45
46
47
if __name__ == '__main__':
48
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
49
model_path = "../../checkpoints/checkpoint_best_legacy_500.pt" # checkpoint_best_legacy_500.pt
50
vec_model = load_model(model_path)
51
# 这个不用改,自动在根目录下所有wav的同文件夹生成其对应的npy
52
file_lists = list(Path("../../data/vecfox").rglob('*.wav'))
53
nums = len(file_lists)
54
count = 0
55
for wav_path in file_lists:
56
npy_path = wav_path.with_suffix(".npy")
57
npy_content = get_vec_units(vec_model, str(wav_path), device).cpu().numpy()[0]
58
np.save(str(npy_path), npy_content)
59
count += 1
60
print(f"hubert process:{round(count * 100 / nums, 2)}%")
61
62