Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
prophesier
GitHub Repository: prophesier/diff-svc
Path: blob/main/utils/pitch_utils.py
694 views
1
#########
2
# world
3
##########
4
import librosa
5
import numpy as np
6
import torch
7
8
# gamma = 0
9
# mcepInput = 3 # 0 for dB, 3 for magnitude
10
# alpha = 0.45
11
# en_floor = 10 ** (-80 / 20)
12
# FFT_SIZE = 2048
13
14
15
16
17
def f0_to_coarse(f0,hparams):
18
f0_bin = hparams['f0_bin']
19
f0_max = hparams['f0_max']
20
f0_min = hparams['f0_min']
21
is_torch = isinstance(f0, torch.Tensor)
22
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
23
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
24
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
25
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
26
27
f0_mel[f0_mel <= 1] = 1
28
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
29
f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(int)
30
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min())
31
return f0_coarse
32
33
34
def norm_f0(f0, uv, hparams):
35
is_torch = isinstance(f0, torch.Tensor)
36
if hparams['pitch_norm'] == 'standard':
37
f0 = (f0 - hparams['f0_mean']) / hparams['f0_std']
38
if hparams['pitch_norm'] == 'log':
39
f0 = torch.log2(f0) if is_torch else np.log2(f0)
40
if uv is not None and hparams['use_uv']:
41
f0[uv > 0] = 0
42
return f0
43
44
45
def norm_interp_f0(f0, hparams):
46
is_torch = isinstance(f0, torch.Tensor)
47
if is_torch:
48
device = f0.device
49
f0 = f0.data.cpu().numpy()
50
uv = f0 == 0
51
f0 = norm_f0(f0, uv, hparams)
52
if sum(uv) == len(f0):
53
f0[uv] = 0
54
elif sum(uv) > 0:
55
f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv])
56
uv = torch.FloatTensor(uv)
57
f0 = torch.FloatTensor(f0)
58
if is_torch:
59
f0 = f0.to(device)
60
return f0, uv
61
62
63
def denorm_f0(f0, uv, hparams, pitch_padding=None, min=None, max=None):
64
if hparams['pitch_norm'] == 'standard':
65
f0 = f0 * hparams['f0_std'] + hparams['f0_mean']
66
if hparams['pitch_norm'] == 'log':
67
f0 = 2 ** f0
68
if min is not None:
69
f0 = f0.clamp(min=min)
70
if max is not None:
71
f0 = f0.clamp(max=max)
72
if uv is not None and hparams['use_uv']:
73
f0[uv > 0] = 0
74
if pitch_padding is not None:
75
f0[pitch_padding] = 0
76
return f0
77
78