Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
pytorch
GitHub Repository: pytorch/tutorials
Path: blob/main/unstable_source/openvino_quantizer.rst
1686 views
PyTorch 2 Export Quantization for OpenVINO torch.compile Backend
===========================================================================

**Authors**: `Daniil Lyakhov <https://github.com/daniil-lyakhov>`_,  `Aamir Nazir <https://github.com/anzr299>`_,  `Alexander Suslov <https://github.com/alexsu52>`_, `Yamini Nimmagadda <https://github.com/ynimmaga>`_, `Alexander Kozlov <https://github.com/AlexKoff88>`_

Prerequisites
--------------
- `PyTorch 2 Export Post Training Quantization <https://pytorch.org/tutorials/prototype/pt2e_quant_ptq.html>`_
- `How to Write a Quantizer for PyTorch 2 Export Quantization <https://pytorch.org/tutorials/prototype/pt2e_quantizer.html>`_

Introduction
--------------

.. note::

    This is an experimental feature, the quantization API is subject to change.

This tutorial demonstrates how to use ``OpenVINOQuantizer`` from `Neural Network Compression Framework (NNCF) <https://github.com/openvinotoolkit/nncf/tree/develop>`_ in PyTorch 2 Export Quantization flow to generate a quantized model customized for the `OpenVINO torch.compile backend <https://docs.openvino.ai/2024/openvino-workflow/torch-compile.html>`_ and explains how to lower the quantized model into the `OpenVINO <https://docs.openvino.ai/2024/index.html>`_ representation.
``OpenVINOQuantizer`` unlocks the full potential of low-precision OpenVINO kernels due to the placement of quantizers designed specifically for the OpenVINO.

The PyTorch 2 export quantization flow uses ``torch.export`` to capture the model into a graph and performs quantization transformations on top of the ATen graph.
This approach is expected to have significantly higher model coverage, improved flexibility, and a simplified UX.
OpenVINO backend compiles the FX Graph generated by TorchDynamo into an optimized OpenVINO model.

The quantization flow mainly includes four steps:

- Step 1: Capture the FX Graph from the eager Model based on the `torch export mechanism <https://pytorch.org/docs/main/export.html>`_.
- Step 2: Apply the PyTorch 2 Export Quantization flow with OpenVINOQuantizer based on the captured FX Graph.
- Step 3: Lower the quantized model into OpenVINO representation with the `torch.compile <https://docs.openvino.ai/2024/openvino-workflow/torch-compile.html>`_ API.
- Optional step 4: : Improve quantized model metrics via `quantize_pt2e <https://openvinotoolkit.github.io/nncf/autoapi/nncf/experimental/torch/fx/index.html#nncf.experimental.torch.fx.quantize_pt2e>`_ method.

The high-level architecture of this flow could look like this:

::

    float_model(Python)                          Example Input
        \                                              /
         \                                            /
    —--------------------------------------------------------
    |                         export                       |
    —--------------------------------------------------------
                                |
                        FX Graph in ATen
                                |
                                |           OpenVINOQuantizer
                                |                 /
    —--------------------------------------------------------
    |                      prepare_pt2e                     |
    |                           |                           |
    |                       Calibrate
    |                           |                           |
    |                      convert_pt2e                     |
    —--------------------------------------------------------
                                |
                         Quantized Model
                                |
    —--------------------------------------------------------
    |                  Lower into Inductor                  |
    —--------------------------------------------------------
                                |
                          OpenVINO model

Post Training Quantization
----------------------------

Now, we will walk you through a step-by-step tutorial for how to use it with `torchvision resnet18 model <https://download.pytorch.org/models/resnet18-f37072fd.pth>`_
for post training quantization.

Prerequisite: OpenVINO and NNCF installation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
OpenVINO and NNCF could be easily installed via `pip distribution <https://docs.openvino.ai/2024/get-started/install-openvino.html>`_:

.. code-block:: bash

    pip install -U pip
    pip install openvino, nncf


1. Capture FX Graph
^^^^^^^^^^^^^^^^^^^^^

We will start by performing the necessary imports, capturing the FX Graph from the eager module.

.. code-block:: python

    import copy
    import openvino.torch
    import torch
    import torchvision.models as models
    from torch.ao.quantization.quantize_pt2e import convert_pt2e
    from torch.ao.quantization.quantize_pt2e import prepare_pt2e

    import nncf.torch

    # Create the Eager Model
    model_name = "resnet18"
    model = models.__dict__[model_name](pretrained=True)

    # Set the model to eval mode
    model = model.eval()

    # Create the data, using the dummy data here as an example
    traced_bs = 50
    x = torch.randn(traced_bs, 3, 224, 224)
    example_inputs = (x,)

    # Capture the FX Graph to be quantized
    with torch.no_grad(), nncf.torch.disable_patching():
        exported_model = torch.export.export(model, example_inputs).module()



2. Apply Quantization
^^^^^^^^^^^^^^^^^^^^^^^

After we capture the FX Module to be quantized, we will import the OpenVINOQuantizer.


.. code-block:: python

    from nncf.experimental.torch.fx import OpenVINOQuantizer

    quantizer = OpenVINOQuantizer()

``OpenVINOQuantizer`` has several optional parameters that allow tuning the quantization process to get a more accurate model.
Below is the list of essential parameters and their description:


* ``preset`` - defines quantization scheme for the model. Two types of presets are available:

    * ``PERFORMANCE`` (default) - defines symmetric quantization of weights and activations

    * ``MIXED`` - weights are quantized with symmetric quantization and the activations are quantized with asymmetric quantization. This preset is recommended for models with non-ReLU and asymmetric activation functions, e.g. ELU, PReLU, GELU, etc.

    .. code-block:: python

        OpenVINOQuantizer(preset=nncf.QuantizationPreset.MIXED)

* ``model_type`` - used to specify quantization scheme required for specific type of the model. Transformer is the only supported special quantization scheme to preserve accuracy after quantization of Transformer models (BERT, Llama, etc.). None is default, i.e. no specific scheme is defined.

    .. code-block:: python

        OpenVINOQuantizer(model_type=nncf.ModelType.Transformer)

* ``ignored_scope`` - this parameter can be used to exclude some layers from the quantization process to preserve the model accuracy.  For example, when you want to exclude the last layer of the model from quantization.  Below are some examples of how to use this parameter:

    .. code-block:: python

        #Exclude by layer name:
        names = ['layer_1', 'layer_2', 'layer_3']
        OpenVINOQuantizer(ignored_scope=nncf.IgnoredScope(names=names))

        #Exclude by layer type:
        types = ['Conv2d', 'Linear']
        OpenVINOQuantizer(ignored_scope=nncf.IgnoredScope(types=types))

        #Exclude by regular expression:
        regex = '.*layer_.*'
        OpenVINOQuantizer(ignored_scope=nncf.IgnoredScope(patterns=regex))

        #Exclude by subgraphs:
        # In this case, all nodes along all simple paths in the graph
        # from input to output nodes will be excluded from the quantization process.
        subgraph = nncf.Subgraph(inputs=['layer_1', 'layer_2'], outputs=['layer_3'])
        OpenVINOQuantizer(ignored_scope=nncf.IgnoredScope(subgraphs=[subgraph]))


* ``target_device`` - defines the target device, the specificity of which will be taken into account during optimization. The following values are supported: ``ANY`` (default), ``CPU``, ``CPU_SPR``, ``GPU``, and ``NPU``.

    .. code-block:: python

        OpenVINOQuantizer(target_device=nncf.TargetDevice.CPU)

For further details on `OpenVINOQuantizer` please see the `documentation <https://openvinotoolkit.github.io/nncf/autoapi/nncf/experimental/torch/fx/index.html#nncf.experimental.torch.fx.OpenVINOQuantizer>`_.

After we import the backend-specific Quantizer, we will prepare the model for post-training quantization.
``prepare_pt2e`` folds BatchNorm operators into preceding Conv2d operators, and inserts observers in appropriate places in the model.

.. code-block:: python

    prepared_model = prepare_pt2e(exported_model, quantizer)

Now, we will calibrate the ``prepared_model`` after the observers are inserted in the model.

.. code-block:: python

    # We use the dummy data as an example here
    prepared_model(*example_inputs)

Finally, we will convert the calibrated Model to a quantized Model. ``convert_pt2e`` takes a calibrated model and produces a quantized model.

.. code-block:: python

    quantized_model = convert_pt2e(prepared_model, fold_quantize=False)

After these steps, we finished running the quantization flow, and we will get the quantized model.


3. Lower into OpenVINO representation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

After that the FX Graph can utilize OpenVINO optimizations using `torch.compile(…, backend=”openvino”) <https://docs.openvino.ai/2024/openvino-workflow/torch-compile.html>`_ functionality.

.. code-block:: python

    with torch.no_grad(), nncf.torch.disable_patching():
        optimized_model = torch.compile(quantized_model, backend="openvino")

        # Running some benchmark
        optimized_model(*example_inputs)



The optimized model is using low-level kernels designed specifically for Intel CPU.
This should significantly speed up inference time in comparison with the eager model.

4. Optional: Improve quantized model metrics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

NNCF implements advanced quantization algorithms like `SmoothQuant <https://arxiv.org/abs/2211.10438>`_ and `BiasCorrection <https://arxiv.org/abs/1906.04721>`_, which help
to improve the quantized model metrics while minimizing the output discrepancies between the original and compressed models.
These advanced NNCF algorithms can be accessed via the NNCF `quantize_pt2e` API:

.. code-block:: python

    from nncf.experimental.torch.fx import quantize_pt2e

    calibration_loader = torch.utils.data.DataLoader(...)


    def transform_fn(data_item):
        images, _ = data_item
        return images


    calibration_dataset = nncf.Dataset(calibration_loader, transform_fn)
    quantized_model = quantize_pt2e(
        exported_model, quantizer, calibration_dataset, smooth_quant=True, fast_bias_correction=False
    )


For further details, please see the `documentation <https://openvinotoolkit.github.io/nncf/autoapi/nncf/experimental/torch/fx/index.html#nncf.experimental.torch.fx.quantize_pt2e>`_
and a complete `example on Resnet18 quantization <https://github.com/openvinotoolkit/nncf/blob/develop/examples/post_training_quantization/torch_fx/resnet18/README.md>`_.

Conclusion
------------

This tutorial introduces how to use torch.compile with the OpenVINO backend and the OpenVINO quantizer.
For more details on NNCF and the NNCF Quantization Flow for PyTorch models, refer to the `NNCF Quantization Guide <https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/quantizing-models-post-training/basic-quantization-flow.html.>`_.
For additional information, check out the `OpenVINO Deployment via torch.compile Documentation <https://docs.openvino.ai/2024/openvino-workflow/torch-compile.html>`_.