Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
quantum-kittens
GitHub Repository: quantum-kittens/platypus
Path: blob/main/notebooks/ch-quantum-hardware/cQED-JC-SW.ipynb
3855 views
Kernel: Python 3

Circuit Quantum Electrodynamics

1. Introduction

By analogy with Cavity Quantum Electrodynamics (CQED), circuit QED (cQED) exploits the fact that a simple model can be used to both describe the interaction of an atom with an optical cavity and a qubit with a microwave resonator. This model includes the number of photons in the cavity/resonator, the state of the atom/qubit, and the electric dipole interaction between the atom/qubit and cavity/resonator. As we saw in the last section, transmons are actually multi-level systems, but restricting ourselves to the ground 0=g|0\rangle = |g\rangle and first excited 1=e|1\rangle = |e\rangle states is possible because of the anharmonicity of the transmon. Therefore we can describe the transmon as a qubit described by the Pauli spin matrices σx=(0110)σy=(0ii0)σz=(1001) \sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma^y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad that generate rotations the respective axes around the Bloch sphere. In that case, the simplest model to describe this interaction is the Jaynes-Cummings Hamiltonian in the rotating wave approximation, HJC(RWA)/=ωraa+12ωqσz+g(aσ+aσ+). H_{\rm JC}^{\rm (RWA)}/\hbar = \omega_r a^\dagger a + \frac{1}{2} \omega_q \sigma_z + g(a^\dagger \sigma^- + a \sigma^+). where ωr\omega_r and ωq\omega_q are the frequencies of the resonator and "qubit", respectively, aa (aa^\dagger) is the resonator photon annihilation (creation) operator, and gg is the electric dipole coupling (half the vacuum Rabi splitting). Note that we are now omitting the hats from the operators. Here, the first term corresponds to the number of photons in the resonator, the second term corresponds to the state of the qubit, and the third is the electric dipole interaction, where σ±=(1/2)(σxiσy)\sigma^\pm = (1/2)(\sigma^x \mp i\sigma^y) is the qubit raising/lowering operator. (Note that the signs are inverted from those of spin raising/lowering operators, as discussed in the previous chapter).

This Hamiltonian can be solved exactly, and the solutions are hybrid qubit/resonator states where an excitation (either a photon in the resonator or excited state of the qubit) swaps between the two at a rate gg when they are on-resonance (ωr=ωq\omega_r = \omega_q). For example, the aσa^\dagger \sigma^- in the third term creates a photon in the resonator and lowers the qubit from 1|1\rangle to 0|0\rangle, while the aσ+a\sigma^+ term destroys a photon in the resonators and excites the qubit from 0|0\rangle to 1|1\rangle. While interesting, for our quantum computer we want to deal with qubits, and not these hybrid states. This means we want to move to a regimes where the resonator acts as a perturbation to the qubit (and vice-versa), so that their properties merely become "dressed" by the presence of the other. Using a type of perturbation theory, called the Schrieffer-Wolff (S-W) transformation, we can calculate the properties of the qubit and resonator in the regime we wish to operate. Here it should be noted that treating the transmon as a qubit is illustrative for pedagogical reasons, but the same techniques apply when you consider all the levels of the transmon. The higher levels of the transmon have profound effects and must be considered when designing and simulating them.

2. The Schrieffer-Wolff Transformation

Schrödinger's Equation (Click here to expand) Problems in quantum mechanics are often that of diagonalizing a Hamiltonian eigenvalue equation Hψm=Emψmfor1mn H\psi_m = E_m \psi_m \qquad {\rm for} \quad 1 \le m \le n where the ψm\psi_m are the eigenstates with eigenvalue EmE_m. This consists of finding a unitary matrix UU, such that H=UHUH' = U H U^\dagger is diagonal. Then the eigenvalue equation H^ψm=EmψmUHUUψm=EmUψmHψm=Emψm \hat{H} \psi_m = E_m \psi_m \Longrightarrow U H U^\dagger U \psi_m = E_m U \psi_m \Longrightarrow H' \psi_m' = E_m \psi_m' where ψm=Uψm\psi_m' = U\psi_m are the transformed eigenstates and H=(E1000E20000En) H' = \begin{pmatrix} E_1 & 0 & \cdots & 0 \\ 0 & E_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & E_n \end{pmatrix} is the diagonalized Hamiltonian.

With the S-W transformation, instead of diagonalizing the Hamiltonian, we seek to block-diagonalize it. Suppose we have a Hamiltonian that can be broken up into a diagonal part and perturbation H=()diagonal+(×××××××××××××××××××××××××)perturbation H \quad = \quad \underbrace{\begin{pmatrix} \Box & & & & & & \\ & \Box & & & & & \\ & & \Box & & & & \\ & & & \Box & & & \\ & & & & \Box & & \\ & & & & & \Box & \\ & & & & & & \Box \end{pmatrix}}_\text{diagonal} \quad + \quad \underbrace{\begin{pmatrix} \times & \times & \times & \times & \cdot & \cdot & \cdot \\ \times & \times & \times & \times & \cdot & \cdot & \cdot \\ \times & \times & \times & \times & \cdot & \cdot & \cdot \\ \times & \times & \times & \times & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \times & \times & \times \\ \cdot & \cdot & \cdot & \cdot & \times & \times & \times \\ \cdot & \cdot & \cdot & \cdot & \times & \times & \times \end{pmatrix}}_\text{perturbation} and then write the perturbation as H1+H2H_1 + H_2 so that H=H0+H1+H2H = H_0 + H_1 + H_2, with H0H_0 diagonal, H1H_1 block-diagonal, and H2H_2 non-block diagonal, and we have H=()diagonal+(×××××××××××××××××××××××××)block diagonal+()block off-diagonal H \quad = \quad \underbrace{\begin{pmatrix} \Box & & & & & & \\ & \Box & & & & & \\ & & \Box & & & & \\ & & & \Box & & & \\ & & & & \Box & & \\ & & & & & \Box & \\ & & & & & & \Box \end{pmatrix}}_\text{diagonal} \quad + \quad \underbrace{\begin{pmatrix} \times & \times & \times & \times & & & \\ \times & \times & \times & \times & & & \\ \times & \times & \times & \times & & & \\ \times & \times & \times & \times & & & \\ & & & & \times & \times & \times \\ & & & & \times & \times & \times \\ & & & & \times & \times & \times \end{pmatrix}}_\text{block diagonal} \quad + \quad \underbrace{\begin{pmatrix} & & & & \cdot & \cdot & \cdot \\ & & & & \cdot & \cdot & \cdot \\ & & & & \cdot & \cdot & \cdot \\ & & & & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & & & \\ \cdot & \cdot & \cdot & \cdot & & & \\ \cdot & \cdot & \cdot & \cdot & & & \end{pmatrix}}_\text{block off-diagonal}

Block-diagonalizing HH consists of finding an operator SS such that

Heff=eiSHeiS=m=01m![H,S](m)=m=0λmH(m),H_{\rm eff} = e^{iS} H e^{-iS} = \sum_{m=0}^\infty \frac{1}{m!} [H, S]^{(m)} = \sum_{m=0}^\infty \lambda^m H^{(m)},

where H(m)H^{(m)} are successive approximations to HH (with H(0)=H0H^{(0)} = H_0) and the generalized commutator is defined recursively as

[H,S](m)=[[H,S](m1),S]with[H,S](0)=H.[H,S]^{(m)} = [[H,S]^{(m-1)},S] \qquad {\rm with} \qquad [H,S]^{(0)} = H.

Here we treat SS as a Taylor series with

S=m=1λmS(m)S = \sum_{m=1}^\infty \lambda^m S^{(m)}

to keep track of the order λ\lambda. Then expanding the effective Hamiltonian as a perturbation of H1+H2H_1+H_2 to second order in λ\lambda,

Heff=H0+λ(H1+H2)+[H0+λ(H1+H2),λS(1)]+12[[H0+λ(H1+H2),λS(1)],λS(1)]+[H0+λ(H1+H2),λ2S(2)]+H0+λ(H1+H2+[H0,S(1)])+λ2([H1+H2,S(1)]+12[[H0,S(1)],S(1)]+[H0,S(2)])H_{\rm eff} = H_0 + \lambda (H_1+H_2) + \left[H_0 + \lambda(H_1+H_2), \lambda S^{(1)}\right] + \frac{1}{2} \left[ \left[ H_0 + \lambda(H_1+H_2), \lambda S^{(1)}\right], \lambda S^{(1)}\right] + \left[H_0 + \lambda(H_1+H_2), \lambda^2 S^{(2)}\right] + \ldots \\ \approx H_0 + \lambda \left( H_1 + H_2 + \left[H_0, S^{(1)}\right] \right) + \lambda^2 \left( \left[H_1+H_2, S^{(1)}\right] + \frac{1}{2} \left[ \left[H_0, S^{(1)}\right], S^{(1)}\right] + \left[H_0, S^{(2)}\right]\right)

Now we know SS must be block off-diagonal and anti-hermitian to force the block off-diagonal elements of HeffH_{\rm eff} to vanish, we must have that

Heffoffdiag=m=01(2m+1)![H0+H1block diag,S](2m+1)+m=01(2m)![H2block off-diag,S](2m)0,H_{\rm eff}^{\rm off-diag} = \sum_{m=0}^\infty \frac{1}{(2m+1)!} [\underbrace{H_0 + H_1}_\text{block diag}, S]^{(2m+1)} + \sum_{m=0}^\infty \frac{1}{(2m)!} [\underbrace{H_2}_\text{block off-diag}, S]^{(2m)} \equiv 0,

noting that all the terms in the first series are block off-diagonal and all of those in the second series are block diagonal. This is because the commutator of a block diagonal and block off-diagonal matrix is block off-diagonal and the commutator of two block off-diagonal matrices is block diagonal. Expanding this to the generalized commutator, we can see that [H0+H1,S](n)[H^0 + H^1, S]^{(n)} with odd nn must always be block off-diagonal as well as [H2,S](n)[H^2, S]^{(n)} with even nn. Now expanding the off-diagonal part of the Hamiltonian to second order yields

Heffoffdiag=[H0+λH1,λS(1)]+λH2+[H0+λH1,λ2S(2)]+13![H0+λH1,λS(1)](3)+12![λH2,λS(1)](2)=λ([H0,S(1)]+H2)+λ2([H1,S(1)]+[H0,S(2)])+.H_{\rm eff}^{\rm off-diag} = \left[ H_0 + \lambda H_1, \lambda S^{(1)} \right]+\lambda H_2 + \left[H_0 + \lambda H_1, \lambda^2 S^{(2)}\right] + \frac{1}{3!} \left[ H_0+\lambda H_1, \lambda S^{(1)}\right]^{(3)} + \frac{1}{2!} \left[ \lambda H_2, \lambda S^{(1)}\right]^{(2)} \\ = \lambda \left( \left[ H_0, S^{(1)} \right] + H_2 \right) + \lambda^2 \left( \left[H_1, S^{(1)} \right] + \left[H_0, S^{(2)}\right]\right) + \ldots.

Since each order of λ\lambda must be identically zero, the following equations determine S(m)S^{(m)}, [H0,S(1)]=H2[H0,S(2)]=[H1,S(1)][H0,S(3)]=[H1,S(2)]13[[H2,S(1)],S(1)], [H_0, S^{(1)}] = -H_2 \qquad [H_0, S^{(2)}] = -[H_1, S^{(1)}] \qquad [H_0, S^{(3)}] = -[H_1, S^{(2)}] - \frac{1}{3} [[H_2, S^{(1)}], S^{(1)}], where our ansatz that satisfied these equations is guaranteed unique by Winkler's work. Then our effective Hamiltonian becomes

Heff=H0+H1+[H2,S(1)]+12[[H0,S(1)],S(1)]+=H0+H1+12[H2,S(1)]+H_{\rm eff} = H_0+H_1+[H_2,S^{(1)}] + \frac{1}{2} [[H_0, S^{(1)}], S^{(1)}] + \ldots = H_0+H_1+\frac{1}{2}[H_2,S^{(1)}] + \ldots

where the effective Hamiltonian is calculated here to second order and we have taken λ1\lambda \to 1.

3. Block-diagonalization of the Jaynes-Cummings Hamiltonian

Using the S-W transformation consists of two problems: 1) finding the correct ansatz, and 2) performing the calculations. In most examples, an ansatz of similar form (i.e. anti-hermitian) to the off-diagonal parts is made and confirmed a postori. Recently, the manuscript A Systematic Method for Schrieffer-Wolff Transformation and Its Generalizations has appeared on the arXiv attesting to systematically providing the ansatz and applying it to numerous systems (including the Jaynes-Cumming Hamiltonian below).

As such, the generator η\eta is calculated as η=[H0,H2]\eta = [H_0, H_2]. In keeping the scalar coefficients of η\eta undetermined, then S(1)S^{(1)} can be calculated as the specific η\eta that satisfies [H0,η]=H2[H_0, \eta]=H_2. Note the hermiticity of H0H_0 and H2H_2 guarantee the anti-hermiticity of η\eta and thus S(1)S^{(1)}.

For ease of tedious calculations, we will use the Python package sympy for symbolic mathematics.

# import SymPy and define symbols import sympy as sp sp.init_printing(use_unicode=True) wr = sp.Symbol('\omega_r') # resonator frequency wq = sp.Symbol('\omega_q') # qubit frequency g = sp.Symbol('g', real=True) # vacuum Rabi coupling Delta = sp.Symbol('Delta', real=True) # wr - wq; defined later
# import operator relations and define them from sympy.physics.quantum.boson import BosonOp a = BosonOp('a') # resonator photon annihilation operator from sympy.physics.quantum import pauli, Dagger, Commutator from sympy.physics.quantum.operatorordering import normal_ordered_form # Pauli matrices sx = pauli.SigmaX() sy = pauli.SigmaY() sz = pauli.SigmaZ() # qubit raising and lowering operators, notice the spin and qubit ladder operators are inversed splus = pauli.SigmaMinus() sminus = pauli.SigmaPlus()
# define J-C Hamiltonian in terms of diagonal and non-block diagonal terms H0 = wr*Dagger(a)*a - (1/2)*wq*sz; H2 = g*(Dagger(a)*sminus + a*splus); HJC = H0 + H2; HJC # print

0.5ωqσz+ωraa+g(aσ++aσ)\displaystyle - 0.5 \omega_{q} {\sigma_z} + \omega_{r} {{a}^\dagger} {a} + g \left({{a}^\dagger} {\sigma_+} + {a} {\sigma_-}\right)

# using the above method for finding the ansatz eta = Commutator(H0, H2); eta

g[aσ++aσ,0.5ωqσz+ωraa]\displaystyle - g \left[{{a}^\dagger} {\sigma_+} + {a} {\sigma_-},- 0.5 \omega_{q} {\sigma_z} + \omega_{r} {{a}^\dagger} {a}\right]

As a note about sympy, we will need to used the methods doit(), expand, normal_ordered_form, and qsimplify_pauli to proceed with actually taking the commutator, expanding it into terms, normal ordering the bosonic modes (creation before annihilation), and simplify the Pauli algebra. Trying this with η\eta yields

pauli.qsimplify_pauli(normal_ordered_form(eta.doit().expand()))

1.0ωqgaσ++1.0ωqgaσ+ωrgaσ+ωrgaσ\displaystyle - 1.0 \omega_{q} g {{a}^\dagger} {\sigma_+} + 1.0 \omega_{q} g {a} {\sigma_-} + \omega_{r} g {{a}^\dagger} {\sigma_+} - \omega_{r} g {a} {\sigma_-}

Now take AA and BB as the coefficients of aσa^\dagger \sigma_- and aσ+a\sigma_+, respectively. Then the commutator

A = sp.Symbol('A') B = sp.Symbol('B') eta = A * Dagger(a) * sminus - B * a * splus; pauli.qsimplify_pauli(normal_ordered_form(Commutator(H0, eta).doit().expand()))

1.0Aωqaσ++Aωraσ+1.0Bωqaσ+Bωraσ\displaystyle - 1.0 A \omega_{q} {{a}^\dagger} {\sigma_+} + A \omega_{r} {{a}^\dagger} {\sigma_+} - 1.0 B \omega_{q} {a} {\sigma_-} + B \omega_{r} {a} {\sigma_-}

This expression should be equal to H2H_2

H2

g(aσ++aσ)\displaystyle g \left({{a}^\dagger} {\sigma_+} + {a} {\sigma_-}\right)

which implies A=B=g/ΔA = B = g/\Delta where Δ=ωrωq\Delta = \omega_r - \omega_q is the frequency detuning between the resonator and qubit. Therefore our S(1)S^{(1)} is determined to be

S1 = eta.subs(A, g/Delta) S1 = S1.subs(B, g/Delta); S1.factor()

g(aσ+aσ)Δ\displaystyle \frac{g \left({{a}^\dagger} {\sigma_+} - {a} {\sigma_-}\right)}{\Delta}

Then we can calculate the effective second order correction to H0H_0

Heff = H0 + 0.5*pauli.qsimplify_pauli(normal_ordered_form(Commutator(H2, S1).doit().expand())).simplify(); Heff

0.5ωqσz+ωraa+0.5g2(12aaσzσz)Δ\displaystyle - 0.5 \omega_{q} {\sigma_z} + \omega_{r} {{a}^\dagger} {a} + \frac{0.5 g^{2} \left(1 - 2 {{a}^\dagger} {a} {\sigma_z} - {\sigma_z}\right)}{\Delta}

This is typically written as Heff=g22Δ(ωr+g2Δσz)aa12(ωqg2Δ)σz H_{\rm eff} = \frac{g^2}{2\Delta} \left(\omega_r + \frac{g^2}{\Delta}\sigma_z\right)a^\dagger a - \frac{1}{2}\left(\omega_q -\frac{g^2}{\Delta}\right) \sigma_z which shows a state-dependent shift by χg2/Δ\chi \equiv g^2/\Delta of the resonator frequency called the ac Stark shift and a shift in qubit frequency due to quantum vacuum fluctuations called the Lamb shift.

4. Full Transmon

Because we are using transmons instead of qubits, we need to be careful to take the higher-order energy terms into effect when designing and simulating devices. The full transmon Hamiltonian coupled to the readout resonators is

Htr=ωraa+jωjjj+g(ac+ac),H^{\rm tr} = \omega_r a^\dagger a + \sum_j \omega_j |j\rangle\langle j| + g\left(a^\dagger c + ac^\dagger \right),

where now c=jj+1jj+1c = \sum_j \sqrt{j+1}|j\rangle\langle j+1| is the transmon lowering operator. Similarly, taking the weakly interacting subsets AA as the even-numbered transmon modes and BB as the odd-numbered transmon modes. Using the ansatz

S(1)=jαjaj+1jj+1αjaj+1j+1j,S^{(1)} = \sum_j \alpha_j a^\dagger \sqrt{j+1}|j\rangle\langle j+1| - \alpha_j^* a \sqrt{j+1}|j+1\rangle\langle j|,

one may proceed along a messier version of the Jaynes-Cummings Hamiltonian. With some effort one can show the second order effective Hamiltonian is

Hefftr=(ωr+jg2(ωrω+δ)(ωrωδj)(ωrωδ(j1))jj)aa+j[jω+δ2(j1)j+jg2ωωr+(j1)δ]jj.H^{\rm tr}_{\rm eff} = \left( \omega_r + \sum_j \frac{g^2(\omega_r-\omega+\delta)}{(\omega_r-\omega-\delta j)(\omega_r - \omega - \delta(j-1))} |j\rangle\langle j| \right) a^\dagger a + \sum_j \left[ j\omega + \frac{\delta}{2} (j-1)j + \frac{jg^2}{\omega-\omega_r+(j-1)\delta} \right]|j\rangle\langle j|.

5. Qubit Drive with cQED

Following that of Blais et al (2004), we model the drive Hamiltonian as Hd(t)=ξ(t)(aeiωdt+aeiωdt). H^d(t) = \xi(t)\left( a^\dagger e^{-i\omega_d t} + ae^{i\omega_d t}\right). Following the treatment in the Ph.D. dissertation of Lev Bishop, the drive acts on the qubit via the Glauber operator D(α)=eα(t)aα(t)a. D(\alpha) = e^{\alpha(t) a^\dagger - \alpha^*(t) a}. Moving to the Jaynes-Cumming Hamiltonian rotating at the drive frequency, H=Δraa12Δqσz+g(aσ+aσ+)+ξ(t)(a+a) H = \Delta_r a^\dagger a - \frac{1}{2} \Delta_q \sigma^z + g(a^\dagger \sigma^- + a\sigma^+) + \xi(t)(a^\dagger + a) with Δr=ωrωd\Delta_r = \omega_r - \omega_d and Δq=ωqωd\Delta_q = \omega_q - \omega_d. Applying Hadamard's Lemma to nested commutators, eABAA=B+[A,B]+12![A,[A,B]]+13![A,[A,[A,B]]]+ e^{A}BA^{-A} = B + [A,B] + \frac{1}{2!} [A,[A,B]] + \frac{1}{3!}[A,[A,[A,B]]] + \ldots we see that Da()D=exp{α(t)a+α(t)a}a()exp{α(t)aα(t)a}=a()+[α(t)a+α(t)a,a()]+12![α(t)a+α(t)a,[α(t)a+α(t)a,a()]]+=a()+α() D^\dagger a^{(\dagger)} D = \exp\{-\alpha(t) a^\dagger + \alpha^*(t) a\} a^{(\dagger)}\exp\{\alpha(t) a^\dagger - \alpha^*(t) a\} = a^{(\dagger)} + \left[-\alpha(t) a^\dagger + \alpha^*(t) a, a^{(\dagger)}\right] + \frac{1}{2!}\left[-\alpha(t) a^\dagger + \alpha^*(t) a, \left[-\alpha(t) a^\dagger + \alpha^*(t) a, a^{(\dagger)}\right]\right] + \ldots = a^{(\dagger)} + \alpha^{(*)} and

DaaD=aa+[α(t)a+α(t)a,aa]+12![α(t)a+α(t)a,[α(t)a+α(t)a,aa]]+=aa+α(t)a+α(t)a+α(t)2D^\dagger a^\dagger a D = a^\dagger a + \left[-\alpha(t) a^\dagger + \alpha^*(t) a, a^\dagger a\right] + \frac{1}{2!}\left[-\alpha(t) a^\dagger + \alpha^*(t) a, \left[-\alpha(t) a^\dagger + \alpha^*(t) a, a^\dagger a\right]\right] + \ldots = a^\dagger a + \alpha(t)a^\dagger + \alpha^*(t)a + |\alpha(t)|^2

So that we can transform the Hamiltonian

H~=DHDiDD˙=Δr(aa+α(t)a+α(t)a+α(t)2)12Δqσz+g((a+α(t))σ+(a+α(t))σ+)+ξ(t)(a+α(t)+a+α(t))i(α˙(t)aα˙(t)a)=Δraa12Δqσz+g((a+α(t))σ+(a+α(t))σ+)+ξ(t)(a+a)+Δr(α(t)a+α(t)a)i(α˙(t)aα˙(t)a)\tilde{H} = D^\dagger H D - iD^\dagger \dot{D} = \Delta_r\left(a^\dagger a + \alpha(t)a^\dagger + \alpha^*(t)a + |\alpha(t)|^2\right) - \frac{1}{2} \Delta_q \sigma^z \\ + g\left((a^\dagger + \alpha^*(t))\sigma^- + (a+\alpha(t))\sigma^+\right) + \xi(t)\left(a^\dagger + \alpha^*(t) + a + \alpha(t) \right) - i\left(\dot{\alpha}(t) a^\dagger - \dot{\alpha}^*(t) a\right) \\ = \Delta_r a^\dagger a - \frac{1}{2}\Delta_q \sigma^z + g\left((a^\dagger + \alpha^*(t))\sigma^- + (a+\alpha(t))\sigma^+\right) \\ +\xi(t)\left(a^\dagger + a \right) + \Delta_r\left(\alpha(t)a^\dagger + \alpha^*(t)a\right)- i\left(\dot{\alpha}(t) a^\dagger - \dot{\alpha}^*(t) a\right)

where the non-operator terms have been dropped. The last line can be set to zero if we choose

iα˙(t)+Δrα(t)+ξ(t)=0,-i\dot{\alpha}(t) + \Delta_r \alpha(t) + \xi(t) = 0,

and finally introducing the Rabi frequency Ω(t)=2gα(t)\Omega(t) = 2g\alpha(t), we arrive at

H~=Δraa12Δqσz+g(aσ+aσ+)+12(Ω(t)σ+Ω(t)σ+).\tilde{H} = \Delta_r a^\dagger a - \frac{1}{2}\Delta_q \sigma^z + g\left(a^\dagger\sigma^- + a\sigma^+\right) +\frac{1}{2} \left( \Omega^*(t)\sigma^- + \Omega(t) \sigma^+\right).

Since the drive part of the Hamiltonian is block off-diagonal, we can perform a Schrieffer-Wolff transformation on it (for a real drive Ω(t)=Ω(t)\Omega^*(t) = \Omega(t)) and add it to the effective Hamiltonian,

[H~d,S(1)]=Ω(t)2[(σ+σ+),gΔ(aσaσ+)]=gΩ(t)2Δ(a+a)σz[\tilde{H}^d, S^{(1)}] = -\frac{\Omega(t)}{2} \left[ (\sigma^- + \sigma^+),\frac{g}{\Delta}\left( a^\dagger \sigma^- - a\sigma^+\right)\right] = \frac{g\Omega(t)}{2\Delta}(a + a^\dagger)\sigma^z

so the effective Hamiltonian becomes

H~eff=(Δr+g2Δσz)aa12(Δqg2Δ)σz+Ω(t)2σx+gΩ(t)4Δ(a+a)σz.\tilde{H}_{\rm eff} = \left( \Delta_r + \frac{g^2}{\Delta}\sigma^z\right) a^\dagger a - \frac{1}{2}\left(\Delta_q - \frac{g^2}{\Delta}\right) \sigma^z + \frac{\Omega(t)}{2}\sigma^x + \frac{g\Omega(t)}{4\Delta}(a + a^\dagger)\sigma^z.

Note here that to eliminate the zz rotations, one should drive at the Lamb-shifted qubit frequency. The additional σz\sigma^z term is small because Δg\Delta \gg g in the dispersive regime.

For clarity one can recall that ω±=12(σxiσy)\omega^{\pm} = \frac{1}{2} (\sigma^x \mp i\sigma^y) is the definition of the qubit raising/lowering operator. If one chooses Ω\Omega to be real, then Ω=Ω\Omega^* = \Omega in the transformed Hamiltonian above, then we are left with only the σx\sigma^x term, because σx=σ++σ\sigma^x = \sigma^+ + \sigma^-. If instead, we chose Ω\Omega to be purely imaginary , then Ω=Ω\Omega^* = -\Omega, and we are left with only σy=σ+σ\sigma^y = \sigma^+ - \sigma^-. This is because the 90$^{\circ}rotationinthecomplexplane(takingreal rotation in the complex plane (taking real \Omegatoimaginary to imaginary \Omega)correspondstoa90) corresponds to a 90^{\circ}rotationofaxisinthe rotation of axis in the xyplane(takingthe plane (taking the \hat{x}axistothe-axis to the \hat{y}$-axis) of the Bloch sphere.

6. The Cross Resonance Entangling Gate

Driving qubit one at the frequency of qubit two can be written as

Hd(t)=Ω(t)2(σ1+eiω~2t+σ1eiω~2t).H^d(t) = \frac{\Omega(t)}{2} \left( \sigma_1^+ e^{-i\tilde{\omega}_2 t} + \sigma_1^- e^{i\tilde{\omega}_2 t}\right).

Now, we need to apply Schrieffer-Wolff to the drive term to get the effective Hamiltonian, and then do the RWA at frequency ω~2\tilde{\omega}_2.

[H~d,S(1)]=JΩ(t)2Δ12[σ1+eiω~2t+σ1eiω~2t,σ1+σ2σ2+σ1]=JΩ(t)2Δ12(σ1zσ2+eiω~2t+σ1zσ2eiω~2t)[\tilde{H}^d, S^{(1)}] = -\frac{J\Omega(t)}{2\Delta_{12}} \left[ \sigma_1^+ e^{-i\tilde{\omega}_2 t} + \sigma_1^- e^{i\tilde{\omega}_2 t}, \sigma_1^+ \sigma_2^- - \sigma_2^+ \sigma_1^-\right] =-\frac{J\Omega(t)}{2\Delta_{12}} \left(\sigma_1^z \sigma_2^+ e^{-i\tilde{\omega}_2 t} +\sigma_1^z \sigma_2^- e^{i\tilde{\omega}_2 t} \right)

Transforming back the rotating frame at ω2\omega_2, we get the effective qubit cross resonance Hamiltonian

H~effCR=ω~1ω~22σ1z+Ω(t)2(σ2xJ2Δ12σ1zσ2x).\tilde{H}_{\rm eff}^{\rm CR} = - \frac{\tilde{\omega}_1-\tilde{\omega}_2}{2}\sigma_1^z + \frac{\Omega(t)}{2} \left(\sigma_2^x - \frac{J}{2\Delta_{12}} \sigma_1^z \sigma_2^x \right).

The first two terms involve the ZIZI interaction due to a Stark shift on qubit 1 and an unconditional IXIX rotation on qubit 2, but the final term represents the ZXZX-interaction that produces entanglement. By putting qubit 1 into an equal superposition of 0|0\rangle and 1|1\rangle and applying the cross resonance gate for a duration corresponding to a π/2\pi/2 rotation around the xx-axis, a maximally entangled state is produced. Using Qiskit to characterize the two-qubit cross resonance Hamiltonian for transmons can be done with this tutorial. Further reading on the cross resonance gate is found here and here.