---
title: Crossref Test
---
## Simple Figure
{#fig-elephant}
See @fig-elephant for an illustration
## Simple Sub Figure
::: {#fig-elephants layout-ncol=2}
{#fig-surus}
{#fig-abbas}
Famous Elephants
:::
See @fig-elephants for examples. In particular, @fig-abbas.
## Simple Crossref Table
| Col1 | Col2 | Col3 |
| ---- | ---- | ---- |
| A | B | C |
| E | F | G |
| A | G | G |
: My Caption {#tbl-letters}
See @tbl-letters.
## Sub tables
::: {#tbl-panel layout-ncol=2}
| Col1 | Col2 | Col3 |
|------|------|------|
| A | B | C |
| E | F | G |
| A | G | G |
: First Table {#tbl-first}
| Col1 | Col2 | Col3 |
| ---- | ---- | ---- |
| A | B | C |
| E | F | G |
| A | G | G |
: Second Table {#tbl-second}
Main Caption
:::
See @tbl-panel for details, especially @tbl-second.
## Math
::: {#thm-line}
## Line
The equation of any straight line, called a linear equation, can be written as:
$$
y = mx + b
$$
:::
See @thm-line.
```{#lst-customers .sql lst-cap="Customers Query"}
SELECT * FROM Customers
```
Then we query the customers database (@lst-customers).
## A section to be referenced {#sec-section}
See @sec-section.
## Equations
Black-Scholes (@eq-black-scholes) is a mathematical model that seeks to explain the behavior of financial derivatives, most commonly options:
$$
\frac{\partial \mathrm C}{ \partial \mathrm t } + \frac{1}{2}\sigma^{2} \mathrm S^{2}
\frac{\partial^{2} \mathrm C}{\partial \mathrm C^2}
+ \mathrm r \mathrm S \frac{\partial \mathrm C}{\partial \mathrm S}\ =
\mathrm r \mathrm C
$$ {#eq-black-scholes}