--- title: Crossref Test --- ## Simple Figure {#fig-elephant} See @fig-elephant for an illustration ## Simple Sub Figure ::: {#fig-elephants layout-ncol=2} {#fig-surus} {#fig-abbas} Famous Elephants ::: See @fig-elephants for examples. In particular, @fig-abbas. ## Simple Crossref Table | Col1 | Col2 | Col3 | | ---- | ---- | ---- | | A | B | C | | E | F | G | | A | G | G | : My Caption {#tbl-letters} See @tbl-letters. ## Sub tables ::: {#tbl-panel layout-ncol=2} | Col1 | Col2 | Col3 | |------|------|------| | A | B | C | | E | F | G | | A | G | G | : First Table {#tbl-first} | Col1 | Col2 | Col3 | | ---- | ---- | ---- | | A | B | C | | E | F | G | | A | G | G | : Second Table {#tbl-second} Main Caption ::: See @tbl-panel for details, especially @tbl-second. ## Math ::: {#thm-line} ## Line The equation of any straight line, called a linear equation, can be written as: $$ y = mx + b $$ ::: See @thm-line. ```{#lst-customers .sql lst-cap="Customers Query"} SELECT * FROM Customers ``` Then we query the customers database (@lst-customers). ## A section to be referenced {#sec-section} See @sec-section. ## Equations Black-Scholes (@eq-black-scholes) is a mathematical model that seeks to explain the behavior of financial derivatives, most commonly options: $$ \frac{\partial \mathrm C}{ \partial \mathrm t } + \frac{1}{2}\sigma^{2} \mathrm S^{2} \frac{\partial^{2} \mathrm C}{\partial \mathrm C^2} + \mathrm r \mathrm S \frac{\partial \mathrm C}{\partial \mathrm S}\ = \mathrm r \mathrm C $$ {#eq-black-scholes}