import sys
from python_environment_check import check_packages
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
import numpy as np
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
from sklearn.model_selection import learning_curve
from sklearn.model_selection import validation_curve
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
from sklearn.model_selection import RandomizedSearchCV
from sklearn.experimental import enable_halving_search_cv
from sklearn.model_selection import HalvingRandomSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_score, recall_score, f1_score
from sklearn.metrics import matthews_corrcoef
from sklearn.metrics import make_scorer
from sklearn.metrics import roc_curve, auc
from numpy import interp
from sklearn.utils import resample
sys.path.insert(0, '..')
d = {
'numpy': '1.21.2',
'matplotlib': '3.4.3',
'sklearn': '1.0',
'pandas': '1.3.2'
}
check_packages(d)
df = pd.read_csv('https://archive.ics.uci.edu/ml/'
'machine-learning-databases'
'/breast-cancer-wisconsin/wdbc.data', header=None)
df.head()
df.shape
X = df.loc[:, 2:].values
y = df.loc[:, 1].values
le = LabelEncoder()
y = le.fit_transform(y)
le.classes_
le.transform(['M', 'B'])
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.20,
stratify=y,
random_state=1)
pipe_lr = make_pipeline(StandardScaler(),
PCA(n_components=2),
LogisticRegression())
pipe_lr.fit(X_train, y_train)
y_pred = pipe_lr.predict(X_test)
test_acc = pipe_lr.score(X_test, y_test)
print(f'Test accuracy: {test_acc:.3f}')
kfold = StratifiedKFold(n_splits=10).split(X_train, y_train)
scores = []
for k, (train, test) in enumerate(kfold):
pipe_lr.fit(X_train[train], y_train[train])
score = pipe_lr.score(X_train[test], y_train[test])
scores.append(score)
print(f'Fold: {k+1:02d}, '
f'Class distr.: {np.bincount(y_train[train])}, '
f'Acc.: {score:.3f}')
mean_acc = np.mean(scores)
std_acc = np.std(scores)
print(f'\nCV accuracy: {mean_acc:.3f} +/- {std_acc:.3f}')
scores = cross_val_score(estimator=pipe_lr,
X=X_train,
y=y_train,
cv=10,
n_jobs=1)
print(f'CV accuracy scores: {scores}')
print(f'CV accuracy: {np.mean(scores):.3f} '
f'+/- {np.std(scores):.3f}')
pipe_lr = make_pipeline(StandardScaler(),
LogisticRegression(penalty='l2', max_iter=10000))
train_sizes, train_scores, test_scores = learning_curve(estimator=pipe_lr,
X=X_train,
y=y_train,
train_sizes=np.linspace(0.1, 1.0, 10),
cv=10,
n_jobs=1)
train_mean = np.mean(train_scores, axis=1)
train_std = np.std(train_scores, axis=1)
test_mean = np.mean(test_scores, axis=1)
test_std = np.std(test_scores, axis=1)
plt.plot(train_sizes, train_mean,
color='blue', marker='o',
markersize=5, label='Training accuracy')
plt.fill_between(train_sizes,
train_mean + train_std,
train_mean - train_std,
alpha=0.15, color='blue')
plt.plot(train_sizes, test_mean,
color='green', linestyle='--',
marker='s', markersize=5,
label='Validation accuracy')
plt.fill_between(train_sizes,
test_mean + test_std,
test_mean - test_std,
alpha=0.15, color='green')
plt.grid()
plt.xlabel('Number of training examples')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.ylim([0.8, 1.03])
plt.tight_layout()
plt.show()
param_range = [0.001, 0.01, 0.1, 1.0, 10.0, 100.0]
train_scores, test_scores = validation_curve(
estimator=pipe_lr,
X=X_train,
y=y_train,
param_name='logisticregression__C',
param_range=param_range,
cv=10)
train_mean = np.mean(train_scores, axis=1)
train_std = np.std(train_scores, axis=1)
test_mean = np.mean(test_scores, axis=1)
test_std = np.std(test_scores, axis=1)
plt.plot(param_range, train_mean,
color='blue', marker='o',
markersize=5, label='Training accuracy')
plt.fill_between(param_range, train_mean + train_std,
train_mean - train_std, alpha=0.15,
color='blue')
plt.plot(param_range, test_mean,
color='green', linestyle='--',
marker='s', markersize=5,
label='Validation accuracy')
plt.fill_between(param_range,
test_mean + test_std,
test_mean - test_std,
alpha=0.15, color='green')
plt.grid()
plt.xscale('log')
plt.legend(loc='lower right')
plt.xlabel('Parameter C')
plt.ylabel('Accuracy')
plt.ylim([0.8, 1.0])
plt.tight_layout()
plt.show()
pipe_svc = make_pipeline(StandardScaler(),
SVC(random_state=1))
param_range = [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0]
param_grid = [{'svc__C': param_range,
'svc__kernel': ['linear']},
{'svc__C': param_range,
'svc__gamma': param_range,
'svc__kernel': ['rbf']}]
gs = GridSearchCV(estimator=pipe_svc,
param_grid=param_grid,
scoring='accuracy',
refit=True,
cv=10)
gs = gs.fit(X_train, y_train)
print(gs.best_score_)
print(gs.best_params_)
clf = gs.best_estimator_
print(f'Test accuracy: {clf.score(X_test, y_test):.3f}')
pipe_svc = make_pipeline(
StandardScaler(),
SVC(random_state=1))
param_grid = [{'svc__C': param_range,
'svc__kernel': ['linear']},
{'svc__C': param_range,
'svc__gamma': param_range,
'svc__kernel': ['rbg']}]
rs = RandomizedSearchCV(estimator=pipe_svc,
param_distributions=param_grid,
scoring='accuracy',
refit=True,
n_iter=20,
cv=10,
random_state=1,
n_jobs=-1)
rs = rs.fit(X_train, y_train)
print(rs.best_score_)
print(rs.best_params_)
param_range = [0.0001, 0.001, 0.01, 0.1,
1.0, 10.0, 100.0, 1000.0]
param_range = scipy.stats.loguniform(0.0001, 1000.0)
np.random.seed(1)
param_range.rvs(10)
hs = HalvingRandomSearchCV(
pipe_svc,
param_distributions=param_grid,
n_candidates='exhaust',
resource='n_samples',
factor=1.5,
random_state=1,
n_jobs=-1)
hs = hs.fit(X_train, y_train)
print(hs.best_score_)
print(hs.best_params_)
clf = hs.best_estimator_
print(f'Test accuracy: {hs.score(X_test, y_test):.3f}')
gs = GridSearchCV(estimator=pipe_svc,
param_grid=param_grid,
scoring='accuracy',
cv=2)
scores = cross_val_score(gs, X_train, y_train,
scoring='accuracy', cv=5)
print(f'CV accuracy: {np.mean(scores):.3f} '
f'+/- {np.std(scores):.3f}')
gs = GridSearchCV(estimator=DecisionTreeClassifier(random_state=0),
param_grid=[{'max_depth': [1, 2, 3, 4, 5, 6, 7, None]}],
scoring='accuracy',
cv=2)
scores = cross_val_score(gs, X_train, y_train,
scoring='accuracy', cv=5)
print(f'CV accuracy: {np.mean(scores):.3f} '
f'+/- {np.std(scores):.3f}')
pipe_svc.fit(X_train, y_train)
y_pred = pipe_svc.predict(X_test)
confmat = confusion_matrix(y_true=y_test, y_pred=y_pred)
print(confmat)
fig, ax = plt.subplots(figsize=(2.5, 2.5))
ax.matshow(confmat, cmap=plt.cm.Blues, alpha=0.3)
for i in range(confmat.shape[0]):
for j in range(confmat.shape[1]):
ax.text(x=j, y=i, s=confmat[i, j], va='center', ha='center')
ax.xaxis.set_ticks_position('bottom')
plt.xlabel('Predicted label')
plt.ylabel('True label')
plt.tight_layout()
plt.show()
le.transform(['M', 'B'])
confmat = confusion_matrix(y_true=y_test, y_pred=y_pred)
print(confmat)
confmat = confusion_matrix(y_true=y_test, y_pred=y_pred)
print(confmat)
confmat = confusion_matrix(y_true=y_test, y_pred=y_pred, labels=[1, 0])
print(confmat)
pre_val = precision_score(y_true=y_test, y_pred=y_pred)
print(f'Precision: {pre_val:.3f}')
rec_val = recall_score(y_true=y_test, y_pred=y_pred)
print(f'Recall: {rec_val:.3f}')
f1_val = f1_score(y_true=y_test, y_pred=y_pred)
print(f'F1: {f1_val:.3f}')
mcc_val = matthews_corrcoef(y_true=y_test, y_pred=y_pred)
print(f'MCC: {mcc_val:.3f}')
scorer = make_scorer(f1_score, pos_label=0)
c_gamma_range = [0.01, 0.1, 1.0, 10.0]
param_grid = [{'svc__C': c_gamma_range,
'svc__kernel': ['linear']},
{'svc__C': c_gamma_range,
'svc__gamma': c_gamma_range,
'svc__kernel': ['rbf']}]
gs = GridSearchCV(estimator=pipe_svc,
param_grid=param_grid,
scoring=scorer,
cv=10,
n_jobs=-1)
gs = gs.fit(X_train, y_train)
print(gs.best_score_)
print(gs.best_params_)
pipe_lr = make_pipeline(StandardScaler(),
PCA(n_components=2),
LogisticRegression(penalty='l2',
random_state=1,
solver='lbfgs',
C=100.0))
X_train2 = X_train[:, [4, 14]]
cv = list(StratifiedKFold(n_splits=3).split(X_train, y_train))
fig = plt.figure(figsize=(7, 5))
mean_tpr = 0.0
mean_fpr = np.linspace(0, 1, 100)
all_tpr = []
for i, (train, test) in enumerate(cv):
probas = pipe_lr.fit(X_train2[train],
y_train[train]).predict_proba(X_train2[test])
fpr, tpr, thresholds = roc_curve(y_train[test],
probas[:, 1],
pos_label=1)
mean_tpr += interp(mean_fpr, fpr, tpr)
mean_tpr[0] = 0.0
roc_auc = auc(fpr, tpr)
plt.plot(fpr,
tpr,
label=f'ROC fold {i+1} (area = {roc_auc:.2f})')
plt.plot([0, 1],
[0, 1],
linestyle='--',
color=(0.6, 0.6, 0.6),
label='Random guessing (area = 0.5)')
mean_tpr /= len(cv)
mean_tpr[-1] = 1.0
mean_auc = auc(mean_fpr, mean_tpr)
plt.plot(mean_fpr, mean_tpr, 'k--',
label=f'Mean ROC (area = {mean_auc:.2f})', lw=2)
plt.plot([0, 0, 1],
[0, 1, 1],
linestyle=':',
color='black',
label='Perfect performance (area = 1.0)')
plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.legend(loc='lower right')
plt.tight_layout()
plt.show()
pre_scorer = make_scorer(score_func=precision_score,
pos_label=1,
greater_is_better=True,
average='micro')
X_imb = np.vstack((X[y == 0], X[y == 1][:40]))
y_imb = np.hstack((y[y == 0], y[y == 1][:40]))
y_pred = np.zeros(y_imb.shape[0])
np.mean(y_pred == y_imb) * 100
print('Number of class 1 examples before:', X_imb[y_imb == 1].shape[0])
X_upsampled, y_upsampled = resample(X_imb[y_imb == 1],
y_imb[y_imb == 1],
replace=True,
n_samples=X_imb[y_imb == 0].shape[0],
random_state=123)
print('Number of class 1 examples after:', X_upsampled.shape[0])
X_bal = np.vstack((X[y == 0], X_upsampled))
y_bal = np.hstack((y[y == 0], y_upsampled))
y_pred = np.zeros(y_bal.shape[0])
np.mean(y_pred == y_bal) * 100