Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
restrepo
GitHub Repository: restrepo/ComputationalMethods
Path: blob/master/homework/homework_2018_1_09_1216730080.ipynb
934 views
Kernel: Python 3

Sea dydt=gt\frac{dy}{dt}=gt, con g=āˆ’9.8m/s2g=-9.8 m/s^{2}, usando ode int integrar la función en el intervalo [0,3]s[0,3]s si la altura inicial es y0=200my_{0}=200 m

from scipy import integrate import numpy as np import matplotlib.pyplot as plt
g=-9.8 y0=200 a=0 b=3 def f(y,t): return g*t
t=np.arange(a,b,0.01)
y = integrate.odeint(f, y0, t)
plt.plot(t,y) plt.show()
Image in a Jupyter notebook
def f2(y,t): return -np.e*(-t)*(10*np.sin(10*t)+np.cos(10*t))
y0=1 a=0 b=10 t=np.arange(a,b,0.01)
y1=integrate.odeint(fun,y0,t)
plt.plot(t,y1) plt.show()
Image in a Jupyter notebook