Path: blob/main/Lab10/script_coef_plot_py.ipynb
2714 views
Kernel: Python 3 (ipykernel)
In [1]:
In [2]:
In [3]:
In [4]:
Out[4]:
In [5]:
In [15]:
Out[15]:
Text(0.5, 0, '')
In [18]:
Out[18]:
Text(0.5, 0, '')
In [20]:
Out[20]:
Text(0.5, 0, '')
In [26]:
Out[26]:
OLS Regression Results
==============================================================================
Dep. Variable: lbwght R-squared: 0.021
Model: OLS Adj. R-squared: 0.020
Method: Least Squares F-statistic: 31.28
Date: Fri, 11 Nov 2022 Prob (F-statistic): 2.68e-08
Time: 21:17:36 Log-Likelihood: 346.06
No. Observations: 1388 AIC: -688.1
Df Residuals: 1386 BIC: -677.7
Df Model: 1
Covariance Type: HC1
==============================================================================
coef std err z P>|z| [0.025 0.975]
------------------------------------------------------------------------------
Intercept 4.7718 0.006 862.764 0.000 4.761 4.783
Dummy -0.0769 0.014 -5.593 0.000 -0.104 -0.050
==============================================================================
Omnibus: 611.550 Durbin-Watson: 1.928
Prob(Omnibus): 0.000 Jarque-Bera (JB): 5930.961
Skew: -1.791 Prob(JB): 0.00
Kurtosis: 12.472 Cond. No. 2.85
==============================================================================
Notes:
[1] Standard Errors are heteroscedasticity robust (HC1)
In [34]:
Out[34]:
In [35]:
In [36]:
In [37]:
Out[37]:
In [45]:
Out[45]:
Text(0.5, 1.0, 'Smoking Coefficient (95% CI)')