Path: blob/main/Trabajo_grupal/WG1/Grupo2_R.R
2714 views
#ejercicio 112sample(0:500,20,replace=F)34x<- sample(0:500,20,replace=F)56funcion_1 <- function(x, z1, z2, z3){7z1 <= x ^ 1/289ifelse(x<=100 | x ^ 1/2)1011z2 <= x - 51213ifelse(x<=300 | x - 5)1415z3<= 501617ifelse(x>=300 | print(50)) }181920#Ejercicio 2212223set.seed(123)2425#Creo mi vector con 100 observaciones aleatorias26v1 <- c(runif(100, min=0, max=20))2728#Creo mi matriz 100x50, igual que el vector anterior con numeros aleatorios29M1 <- matrix(runif(5000,min=0, max=10), nrow= 100, ncol= 50)30dim(M1) #con ello se comprueba que la matriz tiene 100 filas y 50 columnas31#Creo mi función3233calculator_scalar <- function( v, M, n){34if(! is.double(v)) stop("v must be a double")35if(! is.double(M)) stop("M must be a double")36#Defino los componentes de mi función:37y <- v[n]38z <- M[,n]39m3 <- min(z)40m4 <- max(z)4142result= y-m3/ m4-m34344return(result)45}4647#Pruebo mi función, con el índice 3, esto es el tercer componente de mi vector y la tercera columna de mi matriz48calculator_scalar(v1,M1,3)495051#ejercicio 35253set.seed(15)545556x1 <- runif(1000)57x2 <- runif(1000)58x3 <- runif(1000)59x4 <- runif(1000)60x5 <- runif(1000)61e <- rnorm(1000)626364# Poblacional regression (Data Generating Process GDP)6566Y <- 1 + 0.6*x1 + 1.1*x2 + 0.5*x3 + 1.2*x4 + e67head(Y)6869X <- cbind(matrix(1,1000),x1,x2,x3,x4)70head(X)7172beta <- solve(t(X) %*% X) %*% (t(X) %*% Y)73beta747576x11 <- sample(seq(x1),100)7778x11798081828384c <- c(10, 50, 80, 120, 200, 500, 1000, 5000)85c[2]8687x11 <- sample(seq(x1),c[1])88x22 <- sample(seq(x2),c[1])89x33 <- sample(seq(x3),c[1])90x44 <- sample(seq(x4),c[1])91x55 <- sample(seq(x5),c[1])92e <- rnorm(c[1])93949596Y <- 1 + 0.6*x11 + 1.1*x22 + 0.5*x33 + 1.2*x44 + e97head(Y)9899X <- cbind(matrix(1,c[1]),x11,x22,x33,x44)100head(X)101102beta10 <- solve(t(X) %*% X) %*% (t(X) %*% Y)103beta10104105106107c <- c(10, 50, 80, 120, 200, 500, 1000, 5000)108c[2]109110x11 <- sample(seq(x1),c[2])111x22 <- sample(seq(x2),c[2])112x33 <- sample(seq(x3),c[2])113x44 <- sample(seq(x4),c[2])114x55 <- sample(seq(x5),c[2])115e <- rnorm(c[2])116117118119Y <- 1 + 0.6*x11 + 1.1*x22 + 0.5*x33 + 1.2*x44 + e120head(Y)121122X <- cbind(matrix(1,c[2]),x11,x22,x33,x44)123head(X)124125beta50 <- solve(t(X) %*% X) %*% (t(X) %*% Y)126beta50127128c <- c(10, 50, 80, 120, 200, 500, 1000, 5000)129c[2]130131for (i in 1:7)132{133x11 <- sample(seq(x1),c[i])134x22 <- sample(seq(x2),c[i])135x33 <- sample(seq(x3),c[i])136x44 <- sample(seq(x4),c[i])137x55 <- sample(seq(x5),c[i])138e <- rnorm(c[i])139Y <- 1 + 0.6*x11 + 1.1*x22 + 0.5*x33 + 1.2*x44 + e140head(Y)141142X <- cbind(matrix(1,c[i]),x11,x22,x33,x44)143head(X)144145beta_all <- solve(t(X) %*% X) %*% (t(X) %*% Y)146beta_all147}148149150