Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
robertopucp
GitHub Repository: robertopucp/1eco35_2022_2
Path: blob/main/Trabajo_grupal/WG1/Grupo_7_py.ipynb
2714 views
Kernel: Python 3 (ipykernel)

Tarea 1

Pregunta 1

import math
for i in range (100): if i>0 and i<=100 : i = i ^ (1/2) elif i>100 and i<=300 : i = i-5 else : i = 50 print(i)
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) ~\AppData\Local\Temp\ipykernel_13976\3977639358.py in <module> 3 if i>0 and i<=100 : 4 ----> 5 i = i ^ (1/2) 6 7 elif i>100 and i<=300 : TypeError: unsupported operand type(s) for ^: 'int' and 'float'

Pregunta 2

import numpy as np import random import math
y = np.arrange(0,100) def calculator(y,h,z): h = max(y) z = min(y) if not isinstance( y , np.arange ) : raise TypeError( "x must be a n-arrange") result = (y - h) / (z - h) return result calculator(y, h, z) print( calculator( y, h, z ) M = np.array(-10, 0, 500) def calculator(M,k,l): if not isinstance( M , np.narray ) : raise TypeError( "x must be a n-array") k = max(M) l = max(M) result = (M - k) / (l - k) return result calculator(M, k, l) print( calculator( M, k, l )
File "C:\Users\Jose Pastor\AppData\Local\Temp\ipykernel_13976\1854637588.py", line 23 M = np.array(-10, 0, 500) ^ SyntaxError: invalid syntax

Pregunta 3

import numpy as np import random import pandas as pd pd.set_option('display.float_format', lambda x: '%.4f' % x) # seteando a 4 decimales np.random.seed(175) df = pd.DataFrame({'Tamaño de muestra': [0], 'Regresor': [0], 'Coeficiente': [0], 'Error estándar': [0]}) muestras = [10, 50, 80, 120, 200, 500, 800, 1000, 5000] for i in muestras: x1 = np.array(random.sample(range(10000), i)) # números aleatorios unicos en el rango [0, 10000] x2 = np.array(random.sample(range(10000), i)) x3 = np.array(random.sample(range(10000), i)) x4 = np.array(random.sample(range(10000), i)) x5 = np.array(random.sample(range(10000), i)) e = np.random.normal(0, 1, i) # normal distribution mean = 0 and sd = 1 # Poblacional regression (Data Generating Process GDP) Y = 1 + 0.2*x1 + 0.4*x2 + 0.6*x3 + 0.8*x4 + e X = np.column_stack((np.ones(i), x1, x2, x3, x4)) # añadiendo matriz de unos beta = np.linalg.inv(X.T @ X) @ ((X.T) @ Y ) beta lista_sd = 0, np.std(x1, ddof=1), np.std(x2, ddof=1), np.std(x3, ddof=1), np.std(x4, ddof=1) lista_sd lista_regresores = ['x1', 'x2', 'x3', 'x4', 'x5'] lista_muestra_10 = np.full((5, 1), i).tolist() lista_muestra_50 = np.full((5, 1), i).tolist() lista_muestra_80 = np.full((5, 1), i).tolist() lista_muestra_120 = np.full((5, 1), i).tolist() lista_muestra_200 = np.full((5, 1), i).tolist() lista_muestra_500 = np.full((5, 1), i).tolist() lista_muestra_800 = np.full((5, 1), i).tolist() lista_muestra_1000 = np.full((5, 1), i).tolist() lista_muestra_5000 = np.full((5, 1), i).tolist() df_muestra = pd.DataFrame({'Tamaño de muestra': lista_muestra_10, 'Regresor': lista_regresores, 'Coeficiente': beta, 'Error estándar': lista_sd}) df = pd.concat([df, df_muestra], axis=0).reset_index(drop=True) df = df.drop(df.index[:1]) # elimina la primera fila df # Comentario: # Se puede observar que a medida que el tamaño de muestra aumenta, los coeficientes estimados se acercan cada vez más a los coeficientes originales.

Pregunta 4

import random import numpy as np import pandas as pd from scipy.stats import t # t - student import matplotlib.pyplot as plt random.seed(175) x1=np.random.rand(800) x2=np.random.rand(800) x3=np.random.rand(800) x4=np.random.rand(800) x5=np.random.rand(800) x6=np.random.rand(800) x7=np.random.rand(800) c=1 X = np.array ([x1,x2,x3,x4,x5,x6,x7]) beta = np.array([c, 0.8, 1.2, 0.5, 1.5, 0.8, 1.2]) e = np.random.normal(0,1,800) print(np.size(e)) print ("hubh ", e) z = np.random.rand(800) Y = c + 0.8*x1 + 1.2*x2 + 0.5*x3 + 1.5*x4 + 0.8*x5 + 1.2*x6 + 1.5*x7 + e print ("valorY ", np.size(Y)) def ols(M,Y, standar = True, Pvalue = True , instrumento = None, index = None): if standar and Pvalue and (instrumento is None) and (index is None) : beta = np.linalg.inv(X.T @ X) @ ((X.T) @ Y ) y_est = X @ beta n = X.shape[0] k = X.shape[1] - 1 nk = n - k sigma = sum(list( map( lambda x: x**2 , Y - y_est) )) / nk Var = sigma*np.linalg.inv(X.T @ X) sd = np.sqrt( np.diag(Var) ) t_est = np.absolute(beta/sd) pvalue = (1 - t.cdf(t_est, df=nk) ) * 2 df = pd.DataFrame( {"OLS": beta , "standar_error" : sd , "Pvalue" : pvalue})
800 hubh [-1.83973801e-01 -1.44252232e+00 -1.03782170e+00 -1.43601463e+00 2.11213089e+00 2.14092105e+00 6.51799405e-01 1.30219348e+00 -3.88775823e-01 -6.60725405e-01 -5.16591583e-03 8.46640758e-01 4.58491545e-01 -3.62302423e-01 -1.37427244e-01 -1.97872085e+00 4.87311131e-01 1.09161862e+00 -2.67195383e-01 -1.12557595e-01 -5.19423982e-01 1.10241028e+00 -9.76362910e-01 -1.64957846e+00 -9.63415632e-01 -1.16190289e+00 -6.42047762e-01 6.70567592e-01 8.24292920e-02 -9.15872958e-01 3.16414687e-01 -1.00455176e+00 3.76444211e-01 -1.41974904e-01 1.70620010e-01 1.07521271e-01 1.41340272e-01 1.13401735e+00 -4.07704577e-01 -6.80333147e-01 3.08495497e-01 -4.67093223e-01 1.70049643e-01 1.19004228e+00 3.95997802e-01 -7.65988805e-01 4.41777984e-02 -2.27673705e-01 5.58848252e-01 1.55267944e-01 -1.26852141e+00 -6.04850728e-01 -3.14494013e-01 6.63687032e-01 -4.33487812e-01 -5.18114165e-01 -3.23050467e-01 1.43370233e+00 3.73420309e-01 -8.43971947e-01 -3.15615831e-01 -7.54900745e-01 -1.67659096e+00 5.68479480e-01 8.86976647e-01 2.34719816e+00 1.14039812e+00 -6.55374621e-02 -5.80627149e-01 -1.07682599e+00 7.45665522e-01 -3.46442618e-01 8.32466156e-01 6.94112193e-02 4.42072978e-01 1.88812354e+00 -1.46062552e+00 1.73328710e+00 -1.37035157e+00 3.62450423e-01 -1.39356891e+00 1.36135679e+00 -1.16011422e+00 -8.60207060e-01 -2.73610957e-01 2.90506527e-01 -2.69265588e-01 1.23245618e+00 -1.83241724e+00 -6.13663338e-01 1.52923866e-01 -1.08518412e+00 -8.01795636e-01 -1.44712305e+00 -1.51571181e+00 1.28387414e+00 -5.42165847e-01 -1.26203357e-01 -2.40443276e-01 5.22282026e-01 -9.06081141e-01 9.89029196e-01 -5.89454577e-01 1.68184230e+00 4.44894818e-01 -1.13584891e+00 -3.40950583e-01 1.36754246e+00 -2.76993333e+00 1.26357508e+00 -2.49464082e-01 1.25406547e+00 -1.42789986e+00 -4.78841106e-01 3.83479791e+00 -5.32587459e-01 -5.78444306e-01 -6.57084321e-01 -4.10689337e-01 -5.90757212e-01 7.69391788e-01 8.74411007e-01 -4.53547575e-01 1.64552235e+00 2.71180189e+00 -5.30287610e-01 -3.46668115e-02 1.87820402e-01 1.18519112e+00 4.09494394e-01 -5.91511609e-01 -3.76806075e-01 -6.37555601e-01 6.05302970e-01 -2.71471095e+00 2.38872086e-02 -2.73253936e-01 1.61070512e+00 -2.45499862e-01 7.04326998e-01 1.05593619e+00 -2.59108486e-01 -2.12136453e-02 -2.69001175e+00 -1.91431794e-02 -2.05967972e+00 -3.57449374e-02 8.26734333e-01 3.98346336e-01 1.21939437e+00 9.60168893e-01 4.73334831e-02 2.32573604e+00 -1.50248787e+00 -9.51108973e-01 -1.29286794e-01 2.34009138e-01 -7.66164198e-01 -5.45581085e-01 -3.65909640e-01 -6.27270422e-01 5.92397649e-01 1.17391894e+00 -1.17826814e-01 -5.44380228e-01 -1.09914906e+00 5.56872783e-01 1.31342437e+00 7.91791909e-01 -6.00073573e-01 -7.61173826e-01 2.14164009e-02 -9.90245534e-01 6.56238133e-01 4.88935034e-01 2.47039172e-01 2.24798041e+00 -5.25637510e-01 6.50978368e-01 1.36546416e+00 -8.88235229e-03 -8.83660691e-01 4.06965152e-01 -2.03730283e-01 1.17999449e+00 1.79737178e-01 -2.22934016e-01 -1.49710116e+00 -9.39485130e-01 -1.99624326e+00 1.56396919e+00 3.91826143e-02 1.46356577e+00 -1.38170336e-01 -1.17884374e+00 1.52977411e+00 -4.71900908e-01 -1.86608671e+00 6.91986056e-01 -1.56341402e-01 9.49867785e-01 -6.05138068e-01 2.98802976e-01 -1.01508278e+00 -8.90597191e-01 1.43219593e-01 -1.27697986e+00 -8.61617001e-01 -7.94793028e-01 5.16539061e-02 1.26357546e+00 1.87360169e-01 2.25494447e-01 -7.07581696e-02 3.35794899e-01 -1.69216472e-01 -4.27798192e-01 7.44279953e-01 -1.73093453e-01 1.54246495e+00 -5.59137870e-01 1.52524778e-01 -7.49300701e-02 1.68793770e+00 8.67686667e-01 1.05624739e-01 -8.91398389e-01 4.36509526e-01 -4.30250835e-01 2.66594006e-01 3.11126885e-01 -1.47491459e+00 -9.37202414e-01 -3.79008733e-02 5.04372296e-01 -7.96679698e-01 -3.39817465e-01 -1.80398676e+00 1.21709319e+00 -6.63546699e-01 6.44925710e-01 -9.91207886e-01 -5.20058182e-01 -1.06708041e+00 6.71034772e-01 -1.80448705e+00 3.41635707e-01 8.88201342e-02 -2.29242268e-03 -1.16798033e+00 -3.12448521e-01 -1.03676869e+00 2.21063594e+00 3.21279388e-01 -7.90173444e-01 -2.82174704e-01 -6.84403491e-01 5.80125507e-01 1.52377751e+00 4.83607370e-01 2.58868388e-01 2.77173720e-01 -5.62864898e-01 -7.30967350e-01 9.30118625e-01 1.27571907e-01 8.36158583e-01 2.00562951e-02 1.50748423e+00 -8.26187353e-02 8.22328461e-01 -1.27230920e-02 1.33537481e+00 -1.41840338e+00 -8.12398276e-01 9.83907585e-02 -9.81514410e-01 -1.36651899e+00 -1.76650268e+00 -1.37236425e+00 1.20055191e+00 4.36644688e-01 -4.29636916e-01 -5.59812539e-01 1.06641093e+00 -6.98815036e-01 -5.84426688e-01 1.24725962e+00 1.48185777e+00 -1.71184615e+00 -2.73531698e-01 1.05921694e+00 -4.23174172e-01 -3.36080123e-01 6.08503920e-01 3.24809010e-01 8.72523350e-01 5.96129216e-01 -5.40269268e-02 -5.40706605e-01 -4.63039480e-01 1.49619038e+00 7.78687727e-02 2.33509268e-01 -1.12554535e+00 1.94108852e+00 2.64839802e-01 -1.02826796e+00 -5.28142488e-01 1.16998155e+00 -1.22788823e-01 -5.44173340e-01 7.10658667e-01 -6.59053577e-01 1.51858805e+00 -1.36205009e+00 1.44498773e-01 1.95906157e-01 -1.24250863e+00 -2.50801818e-01 1.11790613e+00 -1.19455988e+00 3.02492400e-01 1.23725339e+00 -5.18949464e-01 1.63889667e+00 1.00488072e+00 -1.33365138e+00 -1.73142044e+00 2.18145337e+00 1.63982300e+00 -3.29857122e-01 6.24932907e-01 -1.07268759e+00 1.97129775e-01 -1.64027434e+00 2.13201683e+00 -2.42454741e-01 -5.87362433e-01 7.23956778e-01 -1.33551221e+00 2.09735774e-01 1.35922063e+00 -4.13401587e-01 -1.23728168e+00 8.79868294e-01 -4.04666597e-01 4.80980811e-01 -7.52917599e-01 -6.64806412e-01 -1.05157674e+00 5.02527097e-01 -2.60357543e-01 1.39636532e-01 -5.01184991e-01 2.14708261e-01 2.29061087e-01 -2.60702172e-01 -8.09569351e-01 7.31549800e-01 -3.28446983e-01 -6.44308511e-01 5.16294919e-01 2.31942003e+00 5.84945021e-01 -1.24794790e+00 6.92149438e-01 4.15743956e-01 4.13377865e-01 -6.13561334e-01 6.77150105e-01 -3.91883847e-01 2.35764970e+00 1.41787475e+00 1.73629127e+00 1.02071150e+00 -3.53960074e-01 1.25768458e-01 -2.27405960e+00 -1.81512885e+00 -4.32911021e-01 4.07051708e-02 1.24817502e-01 2.27202740e-01 9.58109233e-01 3.19253044e-01 8.28340457e-01 -3.51632731e-01 7.21152786e-01 -2.41315610e+00 5.32400426e-01 3.39643633e-02 -1.91364886e-01 -4.54382672e-01 7.20473882e-01 1.64517156e+00 -1.79252813e-01 1.38683547e+00 -8.15378365e-01 1.17223283e+00 7.86513397e-01 6.28575463e-01 -4.50144029e-01 -2.44981487e+00 6.34324205e-01 1.41790579e-01 1.31506817e+00 -1.51048118e+00 -2.30633265e+00 -1.09848375e+00 3.80150926e-01 -8.18821101e-01 5.58168772e-01 -6.99438478e-01 -8.51824675e-01 -7.41801953e-01 -3.52420864e-02 5.71942446e-01 1.41176461e+00 1.17757278e+00 -6.91849290e-01 -8.51077862e-01 -4.47141111e-02 1.11999848e+00 9.58387494e-01 1.88667363e+00 -1.39454290e+00 6.81383354e-01 1.01122378e+00 -3.00077681e-01 2.57483459e+00 -2.76337462e-01 -1.52584071e+00 -6.33366951e-01 2.90584388e-01 -6.54270107e-01 1.31148756e+00 5.93740563e-01 -2.31775785e+00 1.37291734e-01 3.11980307e-01 2.42331769e-01 1.38276469e+00 -5.99170003e-01 4.09748805e-01 -1.31456234e-02 -2.95349037e-01 3.37478955e-01 1.70004451e+00 -1.13911313e+00 -3.07438690e-01 -1.92700766e+00 -9.33259442e-02 -2.20940181e-01 -5.69872204e-01 -2.36914398e-01 -1.12685040e+00 -1.97877905e+00 6.10325005e-01 -1.55789951e+00 6.39434073e-01 -3.24655008e-03 1.88387326e-01 -4.58792743e-01 -2.72291615e-01 2.03788604e+00 -5.37702060e-01 6.02521681e-01 -1.23062903e-01 -4.54821102e-01 4.60681111e-01 -8.80281186e-01 -6.98826345e-01 -1.53139542e+00 1.12015544e+00 3.26251508e-01 8.09828341e-01 -1.17085386e+00 8.16417157e-01 -6.76079968e-01 9.56422369e-01 3.49142995e-01 2.19414538e-02 4.54047160e-01 -8.44887911e-01 -2.11782444e-01 -6.58637307e-01 -1.04715692e+00 -1.18451418e+00 -9.95396249e-01 -2.32536693e-01 -8.26607905e-01 -7.94645715e-01 7.96432908e-01 -1.57346843e+00 -9.90799665e-01 1.13473468e+00 2.39791977e-01 3.10941441e+00 -6.74763326e-01 -5.66351557e-01 1.29177337e+00 -2.44281439e+00 -1.66852288e+00 -2.23058877e-01 1.50578335e+00 -1.03766259e-01 2.16474180e-01 -6.96472254e-01 5.76805916e-01 -1.76567495e+00 -5.50461751e-01 -7.26640411e-01 1.31541453e+00 2.15052715e-01 -1.15996174e+00 -2.43506324e-01 2.00522937e-01 -5.66669324e-01 1.78535476e+00 1.10748651e+00 1.06642912e+00 6.68096257e-01 -1.82780347e+00 -7.83849348e-01 2.18468753e+00 -8.93248305e-01 1.01914540e+00 6.15274366e-02 2.50893143e-02 -8.91953202e-01 8.41467259e-01 2.55029815e-01 1.45135458e+00 -3.90749102e-01 -2.15160758e+00 1.17927558e+00 -5.87325701e-01 2.83429227e-01 -8.59861796e-01 -7.08998888e-01 2.69551556e-01 8.50782701e-01 -5.38262290e-01 -2.44769670e-01 -5.87553236e-02 -1.44541099e+00 5.65196835e-01 -7.23115009e-01 1.69406345e-01 -7.73202210e-01 9.98671780e-01 -5.17636801e-01 9.10802446e-01 1.53181499e+00 3.11818745e-01 -8.37281122e-01 9.38923711e-01 1.61240382e+00 -1.63444021e-01 1.10327428e+00 -3.85123130e-01 1.04539623e+00 -9.66212598e-01 6.76144667e-01 -5.04275872e-01 -5.54420078e-01 -9.08129442e-01 8.97923549e-01 -1.47268834e+00 -4.79573357e-01 8.67208215e-01 2.15995220e+00 -1.37478010e-01 7.25062108e-01 2.50929402e+00 -6.69577663e-01 2.63154382e-01 3.61871099e-01 -2.13718378e-01 1.55384618e+00 1.31535235e+00 -8.61348460e-01 -1.12304897e+00 -1.32957137e+00 -1.47158704e+00 6.50813340e-01 2.60720424e-01 -7.07821861e-01 -2.12981650e-01 4.88518851e-01 9.90008257e-01 -1.42320407e+00 -1.59243866e+00 -6.07258173e-02 3.05387175e-01 8.17817223e-01 -1.71467692e-01 1.04713621e-01 6.70423721e-01 -1.56857788e+00 -5.34409093e-02 -3.72750455e-01 1.26579860e+00 7.12596426e-02 1.24284049e+00 1.83228895e-01 1.97262124e+00 2.84481116e-01 3.63533883e-01 7.82784552e-01 -1.56313566e-01 1.37529371e+00 -2.45544470e-01 7.47477421e-01 -9.31958867e-01 -1.36215764e+00 2.76218400e-01 -2.33961822e+00 4.68181355e-01 -6.13063168e-01 1.61230172e+00 -4.97770006e-01 6.93783389e-01 -5.69082387e-01 1.47339514e-01 8.57773406e-01 -1.77950333e+00 -3.92985402e-01 2.89332773e-01 7.52717658e-01 -1.11906039e+00 -1.65325502e-01 5.48180692e-01 5.74525129e-01 -1.69684025e+00 1.18765343e+00 -3.54357943e-01 -1.85237282e-01 -4.55458061e-01 1.33001743e+00 1.36923786e+00 1.80103223e+00 -2.35156911e-01 -1.70830017e+00 1.91086924e-01 -5.36764085e-01 -1.78219192e-01 1.81585958e+00 3.98098517e-01 -2.82487157e-01 1.15569560e-01 2.06463359e-01 8.77814226e-02 -7.78837381e-01 -2.47828191e-01 -7.67487408e-01 1.20955881e+00 1.73540169e+00 -1.77886790e-01 1.48206050e+00 -1.54087662e+00 -2.34655724e-01 1.68932184e-01 -8.62977930e-01 1.08465234e+00 1.06177283e+00 1.66639947e-01 -5.34125901e-01 -3.37802986e-01 3.45231188e-01 -3.91736490e-01 7.53302914e-01 3.22665400e-01 7.86959562e-01 4.27747815e-01 1.46714126e+00 -1.97853386e+00 1.71202806e+00 9.47065811e-01 1.58687201e+00 2.31067379e-01 9.32094232e-01 -1.14900553e+00 -1.76102422e+00 2.96382845e-01 1.89880004e-01 8.63541716e-01 3.29930578e-01 4.89094948e-01 6.89064460e-01 -4.86675516e-01 -9.77875875e-01 -6.05870730e-01 -4.20564257e-01 -1.37304221e-01 3.30617116e-01 6.08712698e-01 -2.92674167e-01 -5.43060194e-01 -1.25621356e+00 -1.41528955e+00 1.70700059e-01 -9.03010911e-01 8.73326404e-01 -1.27890101e+00 4.37517372e-01 9.45801661e-01 -1.63981277e+00 1.24290838e+00 -1.18196133e-01 6.56421895e-01 -2.21901118e-01 -2.85468389e-01 -1.14577155e+00 9.61152569e-01 2.15861452e-01 -5.42474888e-01 7.43385680e-01 -1.17318294e+00 1.97598844e+00 -9.87604002e-02 7.39502090e-01 3.95626196e-02 -4.78869813e-01 -1.43379484e+00 -2.22914022e-02 6.51170237e-01 3.18305447e-01 -9.34613910e-01 -9.62221451e-01 1.75452714e+00 2.94708267e+00 -1.75182539e+00 -1.76007533e-01 1.13767980e+00 -1.63123383e+00 -1.35258550e-01 7.83850569e-01 3.49954367e-01 2.37040175e-01 -3.49664245e-01 1.31288212e+00 2.09839746e-01 -1.92468177e+00 -1.04064655e+00 -2.36433749e-01 7.51893919e-01 7.96518205e-01 -4.77730238e-01 -1.21568852e+00 -5.76551261e-01 1.34065402e+00 -9.10872708e-01 -1.08174177e+00 -8.06483237e-01 3.20597722e-01 2.94022330e-01 -1.82320765e-01 7.21313146e-02 3.75369915e-01 -9.40799512e-01 -4.77956290e-01 3.00134052e-01 5.46538757e-01 2.77382154e-01 -2.54440296e-01 -1.43777757e+00 3.70983249e-01 3.11511714e-01 -4.31143392e-01 3.82424238e-01 8.87689666e-01 3.38652105e-01 -5.23744098e-02 1.08989615e+00 4.62646533e-01 2.22696165e-01 1.48332723e+00 -1.51165201e-01 -4.64423417e-02 -1.78643578e+00 -8.96327027e-01 1.12425883e+00 1.07101353e+00 2.87562045e-01 4.99231477e-01 -2.54051378e-02 -1.46908654e-01 9.25733373e-01 -3.38559522e-01 3.70581919e-01 -8.19488756e-01 1.19922865e+00 4.80257985e-01 -1.51983101e-01 -1.50361598e-01 8.92718081e-01 -8.62044975e-01 -3.87405706e-01] valorY 800