Path: blob/main/Trabajo_grupal/WG4/Grupo_9_py.ipynb
2714 views
Kernel: Python 3 (ipykernel)
In [47]:
In [48]:
Out[48]:
collections.OrderedDict
In [49]:
In [50]:
Out[50]:
Valores a evaluar:
In [51]:
In [63]:
Demostración:
In [56]:
Usando funcion general
In [57]:
Out[57]:
array([[1.00000e+00, 0.00000e+00, 2.34256e+01, 1.00000e+00],
[1.00000e+00, 0.00000e+00, 8.10000e+01, 1.00000e+00],
[0.00000e+00, 0.00000e+00, 1.30321e+01, 1.00000e+00],
...,
[1.00000e+00, 0.00000e+00, 1.30321e+01, 1.00000e+00],
[1.00000e+00, 1.00000e+00, 1.00000e-04, 1.00000e+00],
[0.00000e+00, 1.00000e+00, 2.56000e-02, 1.00000e+00]])
Usando la funcion reg_beta_OLS para hallar los coeficientes;
$$ \begin{aligned}
\widehat{\beta} = (\widehat{\beta_1}, \widehat{\beta_2}, \widehat{\beta_3}, ..., \widehat{\beta_k}) \end{aligned} $$
In [58]:
Out[58]:
Usando la funcion var_standar
In [59]:
Out[59]:
array([-1.44421809e-01, -1.63013264e-01, -2.36178048e-04, 2.93652786e+00])
Usando la funcion var_robust
In [60]:
Out[60]:
array([2.30371053, 3.11630944, 0.03327363, 5.03995024])
Usando la funcion reg_OLS para ver el diccionario que incluye:
$$ \begin{aligned}
\widehat{\beta} = (\widehat{\beta_1}, \widehat{\beta_2}, \widehat{\beta_3}, ..., \widehat{\beta_k}) \end{aligned} $$
In [64]:
Out[64]:
{'OLS': Coef. Std.Err. Interv. sup. Interv. inf.
female -0.200733 0.028730 -0.144422 -0.257045
nevermarried -0.238444 0.038485 -0.163013 -0.313874
exp4 -0.001007 0.000393 -0.000236 -0.001778
ne 2.888145 0.024685 2.936528 2.839763,
'root MSE': 0.6478257987408599,
'R2': 0.0428913127155941}
In [65]:
Out[65]:
In [67]:
Out[67]:
{'OLS': Coef. Std.Err. Interv. sup. Interv. inf.
female -0.200733 1.277778 2.303711 -2.705177
nevermarried -0.238444 1.711609 3.116309 -3.593197
exp4 -0.001007 0.017490 0.033274 -0.035288
ne 2.888145 1.097860 5.039950 0.736340,
'root MSE': 0.6478257987408599,
'R2': 0.0428913127155941}