Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
robertopucp
GitHub Repository: robertopucp/1eco35_2022_2
Path: blob/main/Trabajo_grupal/WG6/Grupo_3_R.R
2714 views
1
# TAREA 6
2
3
4
pacman::p_load(haven,dplyr,stringr, fastDummies,srvyr)
5
6
user <- Sys.getenv("fdcc0")
7
8
setwd( paste0("C:/Users/fdcc0/Desktop/PUCP/2022-2/R-PYTHON/TAREA 6/enaho") )
9
10
#
11
12
enaho01_2019 <- read_dta("C:/Users/fdcc0/Desktop/PUCP/2022-2/R-PYTHON/TAREA 6/enaho/2019/687-Modulo01/687-Modulo01/enaho01-2019-100.dta")
13
14
enaho01_2020 <- read_dta("C:/Users/fdcc0/Desktop/PUCP/2022-2/R-PYTHON/TAREA 6/enaho/2020/737-Modulo01/737-Modulo01/enaho01-2020-100.dta")
15
16
17
enaho34_2019 <- read_dta("C:/Users/fdcc0/Desktop/PUCP/2022-2/R-PYTHON/TAREA 6/enaho/2019/687-Modulo34/687-Modulo34/sumaria-2019.dta")
18
19
enaho34_2020 <- read_dta("C:/Users/fdcc0/Desktop/PUCP/2022-2/R-PYTHON/TAREA 6/enaho/2020/737-Modulo34/737-Modulo34/sumaria-2020.dta")
20
21
22
deflactor_temporal <- read_dta("D:/PYTHON/2020/737-Modulo34/737-Modulo34/ConstVarGasto-Metodologia actualizada/Gasto2020/Bases/deflactores_base2020_new.dta")
23
24
# 1. MERGE DATASET
25
26
enaho_merge2019 <- merge(enaho34_2019, enaho01_2019,
27
by = c("conglome", "vivienda", "hogar"),
28
all.x = T
29
)
30
31
32
enaho_merge2020 <- merge(enaho34_2020, enaho01_2020,
33
by = c("conglome", "vivienda", "hogar"),
34
all.x = T
35
)
36
37
# juntamos las bases 2019 y 2020
38
enaho_append <- append(enaho_merge2019, enaho_merge2020)
39
40
# ingreso y gasto mensual
41
enaho_append$ingreso_mensual <- enaho_append$inghog1d / (12*enaho_append$mieperho)
42
43
enaho_append$gasto_mensual <- enaho_append$gashog2d / (12*enaho_append$mieperho)
44
45
# deflactando las variables (deflactor espacial y temporal)
46
47
# espacial
48
enaho_append$ingreso_mensual_defl <- enaho_append$ingreso_mensual * enaho_append$ld
49
50
enaho_append$gasto_mensual_defl <- enaho_append$gasto_mensual * enaho_append$ld
51
52
# temporal
53
54
55
##############################3#
56
57
# 2. Salario por hora del trabajador dependiente
58
59
enaho01_500 <- read_dta("D:/PYTHON/2020/737-Modulo05/737-Modulo05/enaho01a-2020-500.dta")
60
61
# salario anual del primer y segundo empleo
62
63
enaho01_500$ingreso_anual <- enaho01_500$i524e1 + enaho01_500$i538e1
64
65
# cantidad de hrs trabajadas a la semana
66
67
enaho01_500$horas_trab_sem <- enaho01_500$i513t + enaho01_500$i518
68
69
# salario por hora del trabajador dependiente
70
71
enaho01_500$salarioxhora <- enaho01_500$ingreso_anual / (enaho01_500$horas_trab_sem*52)
72
73
# reemplazamos los NA por valores cero
74
75
enaho01_500$salarioxhora[is.na(enaho01_500$salarioxhora)] = 0
76
77
78
# GROUPBY
79
80
# personas con 65 o más años que puedan participar del programa Juntos
81
enaho01_200_2019 <- read_dta("D:/PYTHON/2019/687-Modulo02/687-Modulo02/enaho01-2019-200.dta")
82
enaho01_200_2020 <- read_dta("D:/PYTHON/2020/737-Modulo02/737-Modulo02/enaho01-2020-200.dta")
83
84
enaho_200_append <- append(enaho01_200_2019, enaho01_200_2020)
85
86
enaho_200_append$mayor_65 <- enaho_200_append$p208a >= 65
87
88
89
90
91
# GROUPBY
92
93
# personas con 65 o más años que puedan participar del programa pensión 65
94
95
enaho01_200_2019 <- read_dta("C:/Users/fdcc0/Desktop/PUCP/2022-2/R-PYTHON/TAREA 6/enaho/2019/687-Modulo02/687-Modulo02/enaho01-2019-200.dta")
96
enaho01_200_2020 <- read_dta("C:/Users/fdcc0/Desktop/PUCP/2022-2/R-PYTHON/TAREA 6/enaho/2020/737-Modulo02/737-Modulo02/enaho01-2020-200.dta")
97
98
99
100
enaho01_200_2019 <- enaho01_200_2019[ , c("conglome", "vivienda", "hogar" , "codperso",
101
"ubigeo", "dominio" ,"estrato" ,"p208a", "p209",
102
"p207", "p203", "p201p" , "p204", "facpob07")]
103
104
105
enaho_merge2019 <- merge(enaho34_2019, enaho01_200_2019,
106
by = c("conglome", "vivienda", "hogar"),
107
all.x = T)
108
109
110
enaho_merge2019 <- enaho_merge2019[ , c("conglome", "vivienda", "hogar" , "codperso",
111
"pobreza" ,"p208a")] %>%
112
mutate(dummy_pobreza = ifelse(enaho_merge2019$pobreza == 3,0,1)) %>%
113
filter(enaho_merge2019$p208a >= 65)
114
115
# INDICADORES
116
117
# halle el porcentaje que hogares a nivel departamental que se beneficia del programa.
118
119
enaho01_37_2020 <- read_dta("C:/Users/fdcc0/Desktop/PUCP/2022-2/R-PYTHON/TAREA 6/enaho/2020/737-Modulo37/737-Modulo37/enaho01-2020-700.dta")
120
121
# Creamos la variable departamental
122
123
enaho01_37_2020["cod_departamento"] = paste(str_sub(enaho01_37_2020$ubigeo,1,2))
124
125
survey_enaho37 <- enaho01_37_2020 %>% as_survey_design(ids = conglome,
126
strata = estrato,
127
weight = factor07)
128
129
indicador1 <- survey_enaho37 %>%
130
group_by(cod_departamento) %>%
131
summarise (beneficiario = survey_mean(p710_04))
132
133
# muestre el promedio del porcentaje de gasto en salud a nivel región
134
135
136
enaho34_2020 <- read_dta("C:/Users/fdcc0/Desktop/PUCP/2022-2/R-PYTHON/TAREA 6/enaho/2020/737-Modulo34/737-Modulo34/sumaria-2020.dta")
137
138
# Creamos la variable departamental
139
140
enaho34_2020["cod_departamento"] = paste(str_sub(enaho34_2020$ubigeo,1,2))
141
142
survey_enaho34 <- enaho34_2020 %>% as_survey_design(ids = conglome,
143
strata = estrato,
144
weight = factor07)
145
146
147
indicador2 <- survey_enaho34 %>% mutate(gastosalud =
148
enaho34_2020$gru51hd/
149
enaho34_2020$gashog2d) %>%
150
group_by(cod_departamento) %>%
151
summarise (beneficiario = survey_median(gastosalud))
152
153
154
155
156
157
158
159
160