Path: blob/develop/src/doc/en/thematic_tutorials/lie/bibliography.rst
7453 views
============
Bibliography
============
.. [Bourbaki46] Nicolas Bourbaki. *Lie Groups and Lie Algebras: Chapters 4-6*.
Springer, reprint edition, 1998.
.. [BumpNakasuji2010] \D. Bump and M. Nakasuji. *Casselman's basis of
Iwahori vectors and the Bruhat order*. :arxiv:`1002.2996`,
:arxiv:`1002.2996`.
.. [BumpSchilling2017] \D. Bump and A. Schilling, *Crystal bases:
representations and combinatorics*, World Scientific, 2017.
.. [Carrell1994] \J. B. Carrell. The Bruhat graph of a Coxeter group, a
conjecture of Deodhar, and rational smoothness of Schubert varieties. In
*Algebraic Groups and Their Generalizations: Classical Methods*,
AMS Proceedings of Symposia in Pure Mathematics, 56, 53--61, 1994.
.. [Deodhar1977] \V. V. Deodhar. Some characterizations of Bruhat
ordering on a Coxeter group and determination of the relative
Moebius function. Inventiones Mathematicae, 39(2):187--198, 1977.
.. [Dyer1993] \M. J. Dyer. The nil Hecke ring and Deodhar's conjecture
on Bruhat intervals. Inventiones Mathematicae, 111(1):571--574, 1993.
.. [Dynkin1952] \E. B. Dynkin,
Semisimple subalgebras of semisimple Lie algebras. (Russian)
Mat. Sbornik N.S. 30(72):349–462, 1952.
.. [FauserEtAl2006] \B. Fauser, P. D. Jarvis, R. C. King, and
B. G. Wybourne. New branching rules induced by plethysm. *Journal of
Physics A*. 39(11):2611--2655, 2006.
.. [Fulton1997] \W. Fulton. *Young Tableaux*. Cambridge University
Press, 1997.
.. [FourierEtAl2009] \G. Fourier, M. Okado, A. Schilling.
Kirillov--Reshetikhin crystal for nonexceptional types.
*Advances in Mathematics*, 222:1080--1116, 2009.
.. [FourierEtAl2010] \G. Fourier, M. Okado, A. Schilling.
Perfectness of Kirillov-Reshetikhin crystals for nonexceptional types.
*Contemp. Math.*, 506:127--143, 2010.
.. [HatayamaEtAl2001] \G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Z. Tsuboi.
Paths, crystals and fermionic formulae.
in MathPhys Odyssey 2001, in : Prog. Math. Phys., vol 23, Birkhauser Boston,
Boston, MA 2002, pp. 205--272.
.. [HainesEtAl2009] \T. J. Haines, R. E. Kottwitz, and
A. Prasad. *Iwahori-Hecke Algebras*. :arxiv:`math/0309168`.
.. [HongKang2002] \J. Hong and S.-J. Kang. *Introduction to Quantum
Groups and Crystal Bases*. AMS Graduate Studies in Mathematics,
American Mathematical Society, 2002.
.. [HongLee2008] \J. Hong and H. Lee. Young tableaux and crystal
`B(\infty)` for finite simple Lie algebras. *J. Algebra*,
320:3680--3693, 2008.
.. [HoweEtAl2005] \R. Howe, E.-C.Tan, and J. F. Willenbring. Stable
branching rules for classical symmetric pairs. *Transactions of the
American Mathematical Society*, 357(4):1601--1626, 2005.
.. [Iwahori1964] \N. Iwahori. On the structure of a Hecke ring of a
Chevalley group over a finite field. *J. Fac. Sci. Univ. Tokyo
Sect. I*, 10:215--236, 1964.
.. [JayneMisra2014] \R. Jayne and K. Misra,
On multiplicities of maximal weights of
`\widehat{sl}(n)`-modules. Algebr. Represent. Theory 17 (2014), no. 4,
1303–1321. :arxiv:`1309.4969`.
.. [Jimbo1986] \M. A. Jimbo. `q`-analogue of `U(\mathfrak{gl}(N+1))`,
Hecke algebra, and the Yang-Baxter equation.
*Lett. Math. Phys*, 11(3):247--252, 1986.
.. [JonesEtAl2010] \B. Jones, A. Schilling.
Affine structures and a tableau model for E_6 crystals
*J. Algebra*, 324:2512-2542, 2010.
.. [Joseph1995] \A. Joseph. *Quantum Groups and Their Primitive Ideals*.
Springer-Verlag, 1995.
.. [Kac] Victor G. Kac. *Infinite Dimensional Lie algebras*,
Cambridge University Press, third edition, 1994.
.. [KacPeterson] Kac and Peterson. *Infinite-dimensional Lie algebras,
theta functions and modular forms*. Adv. in Math. 53 (1984),
no. 2, 125-264.
.. [KKMMNN1992] S-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa,
T. Nakashima, A. Nakayashiki.
Affine crystals and vertex models.
*Int. J. Mod. Phys.* A 7 (suppl. 1A): 449--484, 1992.
.. [KKS2007] \S.-J. Kang, J.-A. Kim, and D.-U. Shin.
Modified Nakajima monomials and the crystal `B(\infty)`.
*J. Algebra*, **308** (2007), 524-535.
.. [Kashiwara1993] \M. Kashiwara. The crystal base and Littelmann's refined
Demazure character formula. *Duke Math. J.*, 71(3):839--858, 1993.
.. [Kashiwara1995] \M. Kashiwara. On crystal bases. Representations of
groups (Banff, AB, 1994), 155--197, CMS Conference Proceedings, 16,
American Mathematical Society, Providence, RI, 1995.
.. [KashiwaraNakashima1994] \M. Kashiwara and T. Nakashima. Crystal
graphs for representations of the `q`-analogue of classical Lie
algebras. *Journal Algebra*, 165(2):295--345, 1994.
.. [KMPS] Kass, Moody, Patera and Slansky, *Affine Lie algebras,
weight multiplicities, and branching rules*. Vols. 1, 2. University
of California Press, Berkeley, CA, 1990.
.. [KimShin2010] \J.-A. Kim and D.-U. Shin. Generalized Young walls and
crystal bases for quantum affine algebra of type `A`. *Proc. Amer.
Math. Soc.*, 138(11):3877--3889, 2010.
.. [KimLeeOh2017] Jang Soo Kim, Kyu-Hwan Lee and Se-Jin Oh,
Weight multiplicities and Young tableaux through affine crystals.
:arxiv:`1703.10321` (2017).
.. [King1975] \R. C. King. Branching rules for classical Lie groups
using tensor and spinor methods. *Journal of Physics A*,
8:429--449, 1975.
.. [Knuth1970] \D. Knuth. Permutations, matrices, and generalized Young
tableaux. *Pacific Journal of Mathematics*, 34(3):709--727, 1970.
.. [Knuth1998] \D. Knuth. *The Art of Computer
Programming. Volume 3. Sorting and Searching*. Addison Wesley
Longman, 1998.
.. [LNSSS14I] \C. Lenart, S. Naito, D. Sagaki, A. Schilling, and M. Shimozono.
A uniform model for Kirillov-Reshetikhin crystals I: Lifting the
parabolic quantum Bruhat graph. (2014) :arxiv:`1211.2042`
.. [LNSSS14II] \C. Lenart, S. Naito, D. Sagaki, A. Schilling, and M. Shimozono.
A uniform model for Kirillov-Reshetikhin crystals II: Alcove model,
path model, and `P = X`. (2014) :arxiv:`1402.2203`
.. [L1995] \P. Littelmann. *Paths and root operators in representation theory*.
Ann. of Math. (2) 142 (1995), no. 3, 499-525.
.. [Macdonald2003] \I. Macdonald.
*Affine Hecke algebras and orthogonal polynomials*, Cambridge, 2003.
.. [McKayPatera1981] \W. G. McKay and J. Patera. *Tables of Dimensions,
Indices and Branching Rules for Representations of Simple Lie
Algebras*. Marcel Dekker, 1981.
.. [OkadoSchilling2008] \M. Okado, A.Schilling. Existence of crystal bases for
Kirillov--Reshetikhin crystals for nonexceptional types.
*Representation Theory* 12:186--207, 2008.
.. [Seitz1991] \G. Seitz,
Maximal subgroups of exceptional algebraic groups.
Mem. Amer. Math. Soc. 90 (1991), no. 441.
.. [Rubenthaler2008] \H. Rubenthaler,
The (A2,G2) duality in E6, octonions and the triality principle.
Trans. Amer. Math. Soc. 360 (2008), no. 1, 347–367.
.. [SalisburyScrimshaw2015] \B. Salisbury and T. Scrimshaw. A rigged
configuration model for `B(\infty)`. *J. Combin. Theory Ser. A*,
133:29--57, 2015.
.. [Schilling2006] \A. Schilling. Crystal structure on rigged configurations.
*Int. Math. Res. Not.*, Volume 2006. (2006) Article ID 97376. Pages 1-27.
.. [SchillingTingley2011] \A. Schilling, P. Tingley.
*Demazure crystals, Kirillov-Reshetikhin crystals, and the energy function*.
preprint :arxiv:`1104.2359`
.. [Stanley1999] \R. P. Stanley. *Enumerative Combinatorics, Volume
2*. Cambridge University Press, 1999.
.. [Testerman1989] Testerman, Donna M.
A construction of certain maximal subgroups of the algebraic groups E6 and F4.
J. Algebra 122 (1989), no. 2, 299–322.
.. [Testerman1992] Testerman, Donna M. The construction of the maximal A1's in
the exceptional algebraic groups. Proc. Amer. Math. Soc. 116 (1992), no. 3, 635–644.