Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
sagemath
GitHub Repository: sagemath/sage
Path: blob/develop/src/doc/ja/tutorial/tour_groups.rst
7339 views

有限群,アーベル群
=============================

Sageでは,置換群,有限古典群(例えば :math:`SU(n,q)`),有限行列群(生成元を指定して生成),そしてアーベル群(無限次も可)などの演算が可能である.
これらの機能の大半は,GAPとのインターフェイスを経由して実現されている.


まず,例として置換群を生成してみよう.
それには,以下のようにして生成元のリストを指定してやればよい.


::

    sage: G = PermutationGroup(['(1,2,3)(4,5)', '(3,4)'])
    sage: G
    Permutation Group with generators [(3,4), (1,2,3)(4,5)]
    sage: G.order()
    120
    sage: G.is_abelian()
    False
    sage: G.derived_series()           # 結果は変化しがち
    [Subgroup generated by [(3,4), (1,2,3)(4,5)] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)]),
     Subgroup generated by [...] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)])]
    sage: G.center()
    Subgroup generated by [()] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)])
    sage: G.random_element()           # random 出力は変化する
    (1,5,3)(2,4)
    sage: print(latex(G))
    \langle (3,4), (1,2,3)(4,5) \rangle

Sageを使えば(LaTeX形式で)指標表を作ることもできる:


::

    sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]])
    sage: latex(G.character_table()) # random
    \left(\begin{array}{rrrr}
    1 & 1 & 1 & 1 \\
    1 & -\zeta_{3} - 1 & \zeta_{3} & 1 \\
    1 & \zeta_{3} & -\zeta_{3} - 1 & 1 \\
    3 & 0 & 0 & -1
    \end{array}\right)

Sageは有限体上の古典群と行列群も扱うことができる:


::

    sage: MS = MatrixSpace(GF(7), 2)
    sage: gens = [MS([[1,0],[-1,1]]),MS([[1,1],[0,1]])]
    sage: G = MatrixGroup(gens)
    sage: G.conjugacy_classes_representatives()
    (
    [1 0]  [0 6]  [0 4]  [6 0]  [0 6]  [0 4]  [0 6]  [0 6]  [0 6]  [4 0]
    [0 1], [1 5], [5 5], [0 6], [1 2], [5 2], [1 0], [1 4], [1 3], [0 2],
    <BLANKLINE>
    [5 0]
    [0 3]
    )
    sage: G = Sp(4,GF(7))
    sage: G
    Symplectic Group of degree 4 over Finite Field of size 7
    sage: G.random_element()             # random 元をランダムに出力
    [5 5 5 1]
    [0 2 6 3]
    [5 0 1 0]
    [4 6 3 4]
    sage: G.order()
    276595200

(無限次および有限次の)アーベル群を使う演算も可能だ:


::

    sage: F = AbelianGroup(5, [5,5,7,8,9], names='abcde')
    sage: (a, b, c, d, e) = F.gens()
    sage: d * b**2 * c**3
    b^2*c^3*d
    sage: F = AbelianGroup(3,[2]*3); F
    Multiplicative Abelian group isomorphic to C2 x C2 x C2
    sage: H = AbelianGroup([2,3], names="xy"); H
    Multiplicative Abelian group isomorphic to C2 x C3
    sage: AbelianGroup(5)
    Multiplicative Abelian group isomorphic to Z x Z x Z x Z x Z
    sage: AbelianGroup(5).order()
    +Infinity