Path: blob/develop/src/doc/zh/constructions/number_fields.rst
7380 views
****
数域
****
分歧 (Ramification)
===================
如何在 Sage 中计算具有给定判别式和分歧的数域?
Sage 可以访问 Jones 数域数据库,该数据库包含有界分歧且度数不超过 6 的数域。
该数据库必须单独安装(``database_jones_numfield``)。
.. index::
pair: number field; database
首先加载数据库:
::
sage: J = JonesDatabase() # optional - database
sage: J # optional - database
John Jones's table of number fields with bounded ramification and degree <= 6
.. index::
pair: number field; discriminant
列出数据库中所有分歧最多为 2 的数域的度数和判别式:
.. link
::
sage: [(k.degree(), k.disc()) for k in J.unramified_outside([2])] # optional - database
[(4, -2048), (2, 8), (4, -1024), (1, 1), (4, 256), (2, -4), (4, 2048), (4, 512), (4, 2048), (2, -8), (4, 2048)]
列出在 2 之外无分歧且度数恰好为 2 的域的判别式:
.. link
::
sage: [k.disc() for k in J.unramified_outside([2],2)] # optional - database
[8, -4, -8]
列出数据库中在 3 和 5 处有分歧的立方域的判别式:
.. link
::
sage: [k.disc() for k in J.ramified_at([3,5],3)] # optional - database
[-6075, -6075, -675, -135]
sage: factor(6075)
3^5 * 5^2
sage: factor(675)
3^3 * 5^2
sage: factor(135)
3^3 * 5
列出所有在 101 处有分歧的域:
.. link
::
sage: J.ramified_at(101) # optional - database
[Number Field in a with defining polynomial x^2 - 101,
Number Field in a with defining polynomial x^4 - x^3 + 13*x^2 - 19*x + 361,
Number Field in a with defining polynomial x^5 - x^4 - 40*x^3 - 93*x^2 - 21*x + 17,
Number Field in a with defining polynomial x^5 + x^4 - 6*x^3 - x^2 + 18*x + 4,
Number Field in a with defining polynomial x^5 + 2*x^4 + 7*x^3 + 4*x^2 + 11*x - 6]
.. index::
pair: number field; class_number
类数 (Class numbers)
====================
如何在 Sage 中计算数域的类数 (class number)?
``class_number`` 是一个与 QuadraticField 对象相关的方法:
::
sage: K = QuadraticField(29, 'x')
sage: K.class_number()
1
sage: K = QuadraticField(65, 'x')
sage: K.class_number()
2
sage: K = QuadraticField(-11, 'x')
sage: K.class_number()
1
sage: K = QuadraticField(-15, 'x')
sage: K.class_number()
2
sage: K.class_group()
Class group of order 2 with structure C2 of Number Field in x with defining polynomial x^2 + 15 with x = 3.872983346207417?*I
sage: K = QuadraticField(401, 'x')
sage: K.class_group()
Class group of order 5 with structure C5 of Number Field in x with defining polynomial x^2 - 401 with x = 20.02498439450079?
sage: K.class_number()
5
sage: K.discriminant()
401
sage: K = QuadraticField(-479, 'x')
sage: K.class_group()
Class group of order 25 with structure C25 of Number Field in x with defining polynomial x^2 + 479 with x = 21.88606862823929?*I
sage: K.class_number()
25
sage: K.pari_polynomial()
x^2 + 479
sage: K.degree()
2
下面是一个更为一般的数域类型的例子:
::
sage: x = PolynomialRing(QQ, 'x').gen()
sage: K = NumberField(x^5+10*x+1, 'a')
sage: K
Number Field in a with defining polynomial x^5 + 10*x + 1
sage: K.degree()
5
sage: K.pari_polynomial()
x^5 + 10*x + 1
sage: K.discriminant()
25603125
sage: K.class_group()
Class group of order 1 of Number Field in a with defining
polynomial x^5 + 10*x + 1
sage: K.class_number()
1
- 另请参见 Math World 网站上的类数链接
http://mathworld.wolfram.com/ClassNumber.html
获取表格、公式和背景信息。
.. index::
pair: number field; cyclotomic
- 对于循环域,可以尝试:
::
sage: K = CyclotomicField(19)
sage: K.class_number() # long time
1
更多详情,请参见 ``ring/number_field.py`` 中的文档。
.. index::
pair: number field; integral basis
整基 (Integral basis)
=====================
如何在 Sage 中计算数域的整基?
Sage 可以计算数域的元素列表,该列表是该数域的整数全环的基。
::
sage: x = PolynomialRing(QQ, 'x').gen()
sage: K = NumberField(x^5+10*x+1, 'a')
sage: K.integral_basis()
[1, a, a^2, a^3, a^4]
接下来我们计算立方域的整数环,其中 2 是“基本判别式因子”,因此整数环不是由单个元素生成的。
::
sage: x = PolynomialRing(QQ, 'x').gen()
sage: K = NumberField(x^3 + x^2 - 2*x + 8, 'a')
sage: K.integral_basis()
[1, 1/2*a^2 + 1/2*a, a^2]