Path: blob/develop/src/doc/zh/constructions/polynomials.rst
7363 views
******
多项式
******
.. index::
pair: polynomial; powers
.. _section-polynomialpower:
多项式幂
========
如何在 Sage 中计算模多项式幂?
要计算 `GF(97)[x]` 中的 `x^{2006} \pmod {x^3 + 7}`,
我们需要创建商环 `GF(97)[x]/(x^3+7)`,
并在其中计算 `x^{2006}`。
作为 Sage 符号的一个重要细节,
我们必须区分 `GF(97)[x]` 中的 `x` 和商环 `GF(97)[x]/(x^3+7)` 中的的对应元素
(我们用 `a` 来表示)。
::
sage: R = PolynomialRing(GF(97),'x')
sage: x = R.gen()
sage: S = R.quotient(x^3 + 7, 'a')
sage: a = S.gen()
sage: S
Univariate Quotient Polynomial Ring in a over
Finite Field of size 97 with modulus x^3 + 7
sage: a^2006
4*a^2
另一种计算方法是:
::
sage: R = PolynomialRing(GF(97),'x')
sage: x = R.gen()
sage: S = R.quotient(x^3 + 7, 'a')
sage: a = S.gen()
sage: a^20062006
80*a
sage: libgap.eval("R:= PolynomialRing( GF(97))")
GF(97)[x_1]
sage: libgap.eval("i:= IndeterminatesOfPolynomialRing(R)")
[ x_1 ]
sage: libgap.eval("x:= i[1]"); libgap.eval("f:= x;")
x_1
x_1
sage: libgap.eval("PowerMod( R, x, 20062006, x^3+7 );")
Z(97)^41*x_1
sage: libgap.eval("PowerMod( R, x, 20062006, x^3+7 );")
Z(97)^41*x_1
sage: libgap.eval("PowerMod( R, x, 2006200620062006, x^3+7 );")
Z(97)^4*x_1^2
sage: a^2006200620062006
43*a^2
sage: libgap.eval("PowerMod( R, x, 2006200620062006, x^3+7 );")
Z(97)^4*x_1^2
sage: libgap.eval("Int(Z(97)^4)")
43
.. index::
pair: polynomial; factorization
.. _section-factor:
因式分解
========
你可以使用 Sage 对多项式进行因式分解。
在 Sage 中对一元多项式进行因式分解,
只需将方法 ``factor`` 应用到 PolynomialRingElement 对象 f 上。
实际上,该方法会调用 Pari,因此计算相当快。
::
sage: x = PolynomialRing(RationalField(), 'x').gen()
sage: f = (x^3 - 1)^2-(x^2-1)^2
sage: f.factor()
(x - 1)^2 * x^2 * (x^2 + 2*x + 2)
使用 Singular 接口,Sage 还可以对多元多项式进行因式分解。
::
sage: x, y = PolynomialRing(RationalField(), 2, ['x','y']).gens()
sage: f = (9*y^6 - 9*x^2*y^5 - 18*x^3*y^4 - 9*x^5*y^4 + 9*x^6*y^2 + 9*x^7*y^3
....: + 18*x^8*y^2 - 9*x^11)
sage: f.factor()
(9) * (-x^5 + y^2) * (x^6 - 2*x^3*y^2 - x^2*y^3 + y^4)
.. index::
pair: polynomial; gcd
多项式最大公约数
================
下面这个例子展示了一元多项式最大公约数:
::
sage: x = PolynomialRing(RationalField(), 'x').gen()
sage: f = 3*x^3 + x
sage: g = 9*x*(x+1)
sage: f.gcd(g)
x
下面这个例子展示了多元多项式最大公约数:
::
sage: R.<x,y,z> = PolynomialRing(RationalField(), order='lex')
sage: f = 3*x^2*(x+y)
sage: g = 9*x*(y^2 - x^2)
sage: f.gcd(g)
x^2 + x*y
下面是另一种方法:
::
sage: R2 = singular.ring(0, '(x,y,z)', 'lp')
sage: a = singular.new('3x2*(x+y)')
sage: b = singular.new('9x*(y2-x2)')
sage: g = a.gcd(b)
sage: g
x^2+x*y
下面这个例子展示了通过 GAP 接口计算一元多项式最大公约数。
::
sage: R = libgap.PolynomialRing(GF(2)); R
GF(2)[x_1]
sage: i = R.IndeterminatesOfPolynomialRing(); i
[ x_1 ]
sage: x_1 = i[0]
sage: f = (x_1^3 - x_1 + 1)*(x_1 + x_1^2); f
x_1^5+x_1^4+x_1^3+x_1
sage: g = (x_1^3 - x_1 + 1)*(x_1 + 1); g
x_1^4+x_1^3+x_1^2+Z(2)^0
sage: f.Gcd(g)
x_1^4+x_1^3+x_1^2+Z(2)^0
当然,我们也可以在生成器上执行相同的计算,
它使用 NTL 库(该库能够非常快速地处理有限域上的大规模多项式最大公约数计算)。
::
sage: x = PolynomialRing(GF(2), 'x').gen()
sage: f = (x^3 - x + 1)*(x + x^2); f
x^5 + x^4 + x^3 + x
sage: g = (x^3 - x + 1)*(x + 1)
sage: f.gcd(g)
x^4 + x^3 + x^2 + 1
.. index::
pair: polynomial; roots
.. _section-roots:
多项式的根
==========
Sage 可以计算一元多项式的根。
::
sage: x = PolynomialRing(RationalField(), 'x').gen()
sage: f = x^3 - 1
sage: f.roots()
[(1, 1)]
sage: f = (x^3 - 1)^2
sage: f.roots()
[(1, 2)]
sage: x = PolynomialRing(CyclotomicField(3), 'x').gen()
sage: f = x^3 - 1
sage: f.roots()
[(1, 1), (zeta3, 1), (-zeta3 - 1, 1)]
第一个元素是根,第二个元素是它的重数。
在某些情况下,GAP 确实可以求解一元多项式的根,
但 GAP 通常不会这样做(根必须生成有限域或循环域的子域)。
然而,有一个名为 ``RadiRoot`` 的 GAP 包,必须将其安装到 GAP 中,
因为它确实有助于为有理系数的多项式执行此操作(``radiroot`` 本身需要安装其他包;请参阅其网页了解更多详情)。
``Factors`` 命令实际上有一个选项,允许你增加基域,以便因式分解实际返回根。
更多详情,请参阅 GAP 参考手册第 64.10 节“多项式因式分解”中给出的示例。
.. index::
pair: polynomial; evaluation
.. _section-evaluate:
多元函数求值
============
你可以像往常一样在 Sage 中通过代入点来计算多项式的值:
::
sage: x = PolynomialRing(RationalField(), 3, 'x').gens()
sage: f = x[0] + x[1] - 2*x[1]*x[2]
sage: f
-2*x1*x2 + x0 + x1
sage: f(1,2,0)
3
sage: f(1,2,5)
-17
这也适用于有理函数:
.. link
::
sage: h = f /(x[1] + x[2])
sage: h
(-2*x1*x2 + x0 + x1)/(x1 + x2)
sage: h(1,2,3)
-9/5
.. index::
pair: polynomial; symbolic manipulation
Sage 还可以进行符号操作:
::
sage: var('x,y,z')
(x, y, z)
sage: f = (x + 3*y + x^2*y)^3; f
(x^2*y + x + 3*y)^3
sage: f(x=1,y=2,z=3)
729
sage: f.expand()
x^6*y^3 + 3*x^5*y^2 + 9*x^4*y^3 + 3*x^4*y + 18*x^3*y^2 +
27*x^2*y^3 +
x^3 + 9*x^2*y + 27*x*y^2 + 27*y^3
sage: f(x = 5/z)
(3*y + 25*y/z^2 + 5/z)^3
sage: g = f.subs(x = 5/z); g
(3*y + 25*y/z^2 + 5/z)^3
sage: h = g.rational_simplify(); h
(27*y^3*z^6 + 135*y^2*z^5 + 225*(3*y^3 + y)*z^4 + 125*(18*y^2 + 1)*z^3 +
15625*y^3 + 9375*y^2*z + 1875*(3*y^3 + y)*z^2)/z^6
多元多项式的根
==============
在某些情况下,Sage(使用 Singular 接口)可以
(假设解形成零维代数簇)使用 Gröbner 基求解多元多项式方程。
以下是一个简单的示例:
::
sage: R = PolynomialRing(QQ, 2, 'ab', order='lp')
sage: a,b = R.gens()
sage: I = (a^2-b^2-3, a-2*b)*R
sage: B = I.groebner_basis(); B
[a - 2*b, b^2 - 1]
所以 `b=\pm 1` 且 `a=2b`。
.. index:
pair: polynomial; Groebner basis of ideal
.. _section-groebner:
Gröbner 基
==========
此计算在后台使用 Singular 来计算 Gröbner 基。
::
sage: R = PolynomialRing(QQ, 4, 'abcd', order='lp')
sage: a,b,c,d = R.gens()
sage: I = (a+b+c+d, a*b+a*d+b*c+c*d, a*b*c+a*b*d+a*c*d+b*c*d, a*b*c*d-1)*R; I
Ideal (a + b + c + d, a*b + a*d + b*c + c*d, a*b*c + a*b*d + a*c*d + b*c*d,
a*b*c*d - 1) of Multivariate Polynomial Ring in a, b, c, d over Rational Field
sage: B = I.groebner_basis(); B
[a + b + c + d,
b^2 + 2*b*d + d^2,
b*c - b*d + c^2*d^4 + c*d - 2*d^2,
b*d^4 - b + d^5 - d,
c^3*d^2 + c^2*d^3 - c - d,
c^2*d^6 - c^2*d^2 - d^4 + 1]
你可以使用多个环,而不必像在 Singular 中那样来回切换。例如,
::
sage: a,b,c = QQ['a,b,c'].gens()
sage: X,Y = GF(7)['X,Y'].gens()
sage: I = ideal(a, b^2, b^3+c^3)
sage: J = ideal(X^10 + Y^10)
sage: I.minimal_associated_primes ()
[Ideal (c, b, a) of Multivariate Polynomial Ring in a, b, c over Rational Field]
sage: J.minimal_associated_primes () # slightly random output
[Ideal (Y^4 + 3*X*Y^3 + 4*X^2*Y^2 + 4*X^3*Y + X^4) of Multivariate Polynomial
Ring in X, Y over Finite Field of size 7,
Ideal (Y^4 + 4*X*Y^3 + 4*X^2*Y^2 + 3*X^3*Y + X^4) of Multivariate Polynomial
Ring in X, Y over Finite Field of size 7,
Ideal (Y^2 + X^2) of Multivariate Polynomial Ring in X, Y over Finite Field
of size 7]
所有实际工作均由 Singular 完成。
Sage 还包括 ``gfan``,它提供了计算 Gröbner 基的其他快速算法。
更多详情,请参阅参考手册中的 "Gröbner fans" 部分。