有限群与阿贝尔群 ================ Sage 支持置换群、有限经典群(例如 `SU(n,q)`)、有限矩阵群(使用自定义生成器) 和阿贝尔群(包括无限群)的计算。这些功能大部分是通过 GAP 接口实现的。 例如,要创建一个置换群,可以提供一个生成器列表,如下例所示: :: sage: G = PermutationGroup(['(1,2,3)(4,5)', '(3,4)']) sage: G Permutation Group with generators [(3,4), (1,2,3)(4,5)] sage: G.order() 120 sage: G.is_abelian() False sage: G.derived_series() # random-ish output [Permutation Group with generators [(1,2,3)(4,5), (3,4)], Permutation Group with generators [(1,5)(3,4), (1,5)(2,4), (1,3,5)]] sage: G.center() Subgroup generated by [()] of (Permutation Group with generators [(3,4), (1,2,3)(4,5)]) sage: G.random_element() # random output (1,5,3)(2,4) sage: print(latex(G)) \langle (3,4), (1,2,3)(4,5) \rangle 在 Sage 中,你还可以获得特征表(LaTeX 格式): :: sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]]) sage: latex(G.character_table()) \left(\begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 1 & -\zeta_{3} - 1 & \zeta_{3} & 1 \\ 1 & \zeta_{3} & -\zeta_{3} - 1 & 1 \\ 3 & 0 & 0 & -1 \end{array}\right) 此外,Sage 还支持有限域上的经典群和矩阵群: :: sage: MS = MatrixSpace(GF(7), 2) sage: gens = [MS([[1,0],[-1,1]]),MS([[1,1],[0,1]])] sage: G = MatrixGroup(gens) sage: G.conjugacy_classes_representatives() ( [1 0] [0 6] [0 4] [6 0] [0 6] [0 4] [0 6] [0 6] [0 6] [4 0] [0 1], [1 5], [5 5], [0 6], [1 2], [5 2], [1 0], [1 4], [1 3], [0 2], <BLANKLINE> [5 0] [0 3] ) sage: G = Sp(4,GF(7)) sage: G Symplectic Group of degree 4 over Finite Field of size 7 sage: G.random_element() # random output [5 5 5 1] [0 2 6 3] [5 0 1 0] [4 6 3 4] sage: G.order() 276595200 你还可以计算阿贝尔群(包括有限群和无限群): :: sage: F = AbelianGroup(5, [5,5,7,8,9], names='abcde') sage: (a, b, c, d, e) = F.gens() sage: d * b**2 * c**3 b^2*c^3*d sage: F = AbelianGroup(3,[2]*3); F Multiplicative Abelian group isomorphic to C2 x C2 x C2 sage: H = AbelianGroup([2,3], names="xy"); H Multiplicative Abelian group isomorphic to C2 x C3 sage: AbelianGroup(5) Multiplicative Abelian group isomorphic to Z x Z x Z x Z x Z sage: AbelianGroup(5).order() +Infinity