r"""
Spin Crystals
These are the crystals associated with the three spin
representations: the spin representations of odd orthogonal groups
(or rather their double covers); and the + and - spin
representations of the even orthogonal groups.
We follow Kashiwara and Nakashima (Journal of Algebra 165, 1994) in
representing the elements of the spin Crystal by sequences of signs
+/-. Two other representations are available as attributes
internal_repn and signature of the crystal element.
- A numerical internal representation, an integer N such that if N-1
is written in binary and the 1's are replaced by ``-``, the 0's by
``+``
- The signature, which is a list in which ``+`` is replaced by +1 and
``-`` by -1.
"""
from sage.structure.unique_representation import UniqueRepresentation
from sage.structure.parent import Parent
from sage.categories.classical_crystals import ClassicalCrystals
from sage.combinat.crystals.letters import Letter
from sage.combinat.root_system.cartan_type import CartanType
from sage.combinat.tableau import Tableau
def CrystalOfSpins(ct):
r"""
Return the spin crystal of the given type B.
This is a combinatorial model for the crystal with highest weight
`Lambda_n` (the n-th fundamental weight). It has
`2^n` elements, here called Spins. See also
CrystalOfLetters, CrystalOfSpinsPlus and CrystalOfSpinsMinus.
INPUT:
- ``['B',n]`` - A CartanType of type B.
EXAMPLES::
sage: C = CrystalOfSpins(['B',3])
sage: C.list()
[+++, ++-, +-+, -++, +--, -+-, --+, ---]
sage: C.cartan_type()
['B', 3]
::
sage: [x.signature() for x in C]
['+++', '++-', '+-+', '-++', '+--', '-+-', '--+', '---']
TESTS::
sage: TensorProductOfCrystals(C,C,generators=[[C.list()[0],C.list()[0]]]).cardinality()
35
"""
ct = CartanType(ct)
if ct[0] == 'B':
return GenericCrystalOfSpins(ct, Spin_crystal_type_B_element, "spins")
else:
raise NotImplementedError
def CrystalOfSpinsPlus(ct):
r"""
Return the plus spin crystal of the given type D.
This is the crystal with highest weight `Lambda_n` (the
n-th fundamental weight).
INPUT:
- ``['D',n]`` - A CartanType of type D.
EXAMPLES::
sage: D = CrystalOfSpinsPlus(['D',4])
sage: D.list()
[++++, ++--, +-+-, -++-, +--+, -+-+, --++, ----]
::
sage: [x.signature() for x in D]
['++++', '++--', '+-+-', '-++-', '+--+', '-+-+', '--++', '----']
TESTS::
sage: TestSuite(D).run()
"""
ct = CartanType(ct)
if ct[0] == 'D':
return GenericCrystalOfSpins(ct, Spin_crystal_type_D_element, "plus")
else:
raise NotImplementedError
def CrystalOfSpinsMinus(ct):
r"""
Return the minus spin crystal of the given type D.
This is the crystal with highest weight `Lambda_{n-1}`
(the (n-1)-st fundamental weight).
INPUT:
- ``['D',n]`` - A CartanType of type D.
EXAMPLES::
sage: E = CrystalOfSpinsMinus(['D',4])
sage: E.list()
[+++-, ++-+, +-++, -+++, +---, -+--, --+-, ---+]
sage: [x.signature() for x in E]
['+++-', '++-+', '+-++', '-+++', '+---', '-+--', '--+-', '---+']
TESTS::
sage: len(TensorProductOfCrystals(E,E,generators=[[E[0],E[0]]]).list())
35
sage: D = CrystalOfSpinsPlus(['D',4])
sage: len(TensorProductOfCrystals(D,E,generators=[[D.list()[0],E.list()[0]]]).list())
56
"""
ct = CartanType(ct)
if ct[0] == 'D':
return GenericCrystalOfSpins(ct, Spin_crystal_type_D_element, "minus")
else:
raise NotImplementedError
class GenericCrystalOfSpins(UniqueRepresentation, Parent):
def __init__(self, ct, element_class, case):
"""
EXAMPLES::
sage: E = CrystalOfSpinsMinus(['D',4])
sage: TestSuite(E).run()
"""
self._cartan_type = CartanType(ct)
if case == "spins":
self.rename("The crystal of spins for type %s"%ct)
elif case == "plus":
self.rename("The plus crystal of spins for type %s"%ct)
else:
self.rename("The minus crystal of spins for type %s"%ct)
self.Element = element_class
Parent.__init__(self, category = ClassicalCrystals())
if case == "minus":
generator = [1]*(ct[1]-1)
generator.append(-1)
else:
generator = [1]*ct[1]
self.module_generators = [self(generator)]
self._list = list(self)
self._digraph = super(GenericCrystalOfSpins, self).digraph()
self._digraph_closure = self.digraph().transitive_closure()
def __call__(self, value):
"""
EXAMPLES::
sage: C = CrystalOfSpins(['B',3])
sage: C([1,1,1])
+++
"""
if value.__class__ == self.element_class and value.parent() == self:
return value
else:
return self.element_class(self, value)
def list(self):
"""
Returns a list of the elements of self.
EXAMPLES::
sage: CrystalOfSpins(['B',3]).list()
[+++, ++-, +-+, -++, +--, -+-, --+, ---]
"""
return self._list
def digraph(self):
"""
Returns the directed graph associated to self.
EXAMPLES::
sage: CrystalOfSpins(['B',3]).digraph()
Digraph on 8 vertices
"""
return self._digraph
def lt_elements(self, x,y):
r"""
Returns True if and only if there is a path from x to y in the
crystal graph.
Because the crystal graph is classical, it is a directed acyclic
graph which can be interpreted as a poset. This function implements
the comparison function of this poset.
EXAMPLES::
sage: C = CrystalOfSpins(['B',3])
sage: x = C([1,1,1])
sage: y = C([-1,-1,-1])
sage: C.lt_elements(x,y)
True
sage: C.lt_elements(y,x)
False
sage: C.lt_elements(x,x)
False
"""
assert x.parent() == self and y.parent() == self
if self._digraph_closure.has_edge(x,y):
return True
return False
class Spin(Letter):
"""
EXAMPLES::
sage: C = CrystalOfSpins(['B',3])
sage: c = C([1,1,1])
sage: TestSuite(c).run()
sage: C([1,1,1]).parent()
The crystal of spins for type ['B', 3]
sage: c = C([1,1,1])
sage: c._repr_()
'+++'
sage: D = CrystalOfSpins(['B',4])
sage: a = C([1,1,1])
sage: b = C([-1,-1,-1])
sage: c = D([1,1,1,1])
sage: a == a
True
sage: a == b
False
sage: b == c
False
"""
def __hash__(self):
"""
EXAMPLES::
sage: C = CrystalOfSpins(['B',3])
sage: c = C([1,1,1])
sage: type(hash(c))
<type 'int'>
"""
return hash(tuple(self.value))
def signature(self):
"""
Returns the signature of self.
EXAMPLES::
sage: C = CrystalOfSpins(['B',3])
sage: C([1,1,1]).signature()
'+++'
sage: C([1,1,-1]).signature()
'++-'
"""
sword = ""
for x in range(self.parent().cartan_type().n):
sword += "+" if self.value[x] == 1 else "-"
return sword
def _repr_(self):
"""
Represents the spin elements in terms of its signature.
EXAMPLES::
sage: C = CrystalOfSpins(['B',3])
sage: b = C([1,1,-1])
sage: b
++-
sage: b._repr_()
'++-'
"""
return self.signature()
def _latex_(self):
"""
Gives the latex output of a spin column.
EXAMPLES::
sage: C = CrystalOfSpins(['B',3])
sage: b = C([1,1,-1])
sage: b._latex_()
'{\\def\\lr#1{\\multicolumn{1}{|@{\\hspace{.6ex}}c@{\\hspace{.6ex}}|}{\\raisebox{-.3ex}{$#1$}}}\n\\raisebox{-.6ex}{$\\begin{array}[b]{c}\n\\cline{1-1}\n\\lr{-}\\\\\n\\cline{1-1}\n\\lr{+}\\\\\n\\cline{1-1}\n\\lr{+}\\\\\n\\cline{1-1}\n\\end{array}$}\n}'
"""
return Tableau([[i] for i in reversed(self.signature())])._latex_()
class Spin_crystal_type_B_element(Spin):
r"""
Type B spin representation crystal element
"""
def e(self, i):
r"""
Returns the action of `e_i` on self.
EXAMPLES::
sage: C = CrystalOfSpins(['B',3])
sage: [[C[m].e(i) for i in range(1,4)] for m in range(8)]
[[None, None, None], [None, None, +++], [None, ++-, None], [+-+, None, None],
[None, None, +-+], [+--, None, -++], [None, -+-, None], [None, None, --+]]
"""
assert i in self.index_set()
rank = self.parent().cartan_type().n
if i < rank:
if self.value[i-1] == -1 and self.value[i] == 1:
ret = [self.value[x] for x in range(rank)]
ret[i-1] = 1
ret[i] = -1
return self.parent()(ret)
elif i == rank:
if self.value[i-1] == -1:
ret = [self.value[x] for x in range(rank)]
ret[i-1] = 1
return self.parent()(ret)
else:
return None
def f(self, i):
r"""
Returns the action of `f_i` on self.
EXAMPLES::
sage: C = CrystalOfSpins(['B',3])
sage: [[C[m].f(i) for i in range(1,4)] for m in range(8)]
[[None, None, ++-], [None, +-+, None], [-++, None, +--], [None, None, -+-],
[-+-, None, None], [None, --+, None], [None, None, ---], [None, None, None]]
"""
assert i in self.index_set()
rank = self.parent().cartan_type().n
if i < rank:
if self.value[i-1] == 1 and self.value[i] == -1:
ret = [self.value[x] for x in range(rank)]
ret[i-1] = -1
ret[i] = 1
return self.parent()(ret)
elif i == rank:
if self.value[i-1] == 1:
ret = [self.value[x] for x in range(rank)]
ret[i-1] = -1
return self.parent()(ret)
else:
return None
class Spin_crystal_type_D_element(Spin):
r"""
Type D spin representation crystal element
"""
def e(self, i):
r"""
Returns the action of `e_i` on self.
EXAMPLES::
sage: D = CrystalOfSpinsPlus(['D',4])
sage: [[D.list()[m].e(i) for i in range(1,4)] for m in range(8)]
[[None, None, None], [None, None, None], [None, ++--, None], [+-+-, None, None],
[None, None, +-+-], [+--+, None, -++-], [None, -+-+, None], [None, None, None]]
::
sage: E = CrystalOfSpinsMinus(['D',4])
sage: [[E[m].e(i) for i in range(1,4)] for m in range(8)]
[[None, None, None], [None, None, +++-], [None, ++-+, None], [+-++, None, None],
[None, None, None], [+---, None, None], [None, -+--, None], [None, None, --+-]]
"""
assert i in self.index_set()
rank = self.parent().cartan_type().n
if i < rank:
if self.value[i-1] == -1 and self.value[i] == 1:
ret = [self.value[x] for x in range(rank)]
ret[i-1] = 1
ret[i] = -1
return self.parent()(ret)
elif i == rank:
if self.value[i-2] == -1 and self.value[i-1] == -1:
ret = [self.value[x] for x in range(rank)]
ret[i-2] = 1
ret[i-1] = 1
return self.parent()(ret)
else:
return None
def f(self, i):
r"""
Returns the action of `f_i` on self.
EXAMPLES::
sage: D = CrystalOfSpinsPlus(['D',4])
sage: [[D.list()[m].f(i) for i in range(1,4)] for m in range(8)]
[[None, None, None], [None, +-+-, None], [-++-, None, +--+], [None, None, -+-+],
[-+-+, None, None], [None, --++, None], [None, None, None], [None, None, None]]
::
sage: E = CrystalOfSpinsMinus(['D',4])
sage: [[E[m].f(i) for i in range(1,4)] for m in range(8)]
[[None, None, ++-+], [None, +-++, None], [-+++, None, None], [None, None, None],
[-+--, None, None], [None, --+-, None], [None, None, ---+], [None, None, None]]
"""
assert i in self.index_set()
rank = self.parent().cartan_type().n
if i < rank:
if self.value[i-1] == 1 and self.value[i] == -1:
ret = [self.value[x] for x in range(rank)]
ret[i-1] = -1
ret[i] = 1
return self.parent()(ret)
elif i == rank:
if self.value[i-2] == 1 and self.value[i-1] == 1:
ret = [self.value[x] for x in range(rank)]
ret[i-2] = -1
ret[i-1] = -1
return self.parent()(ret)
else:
return None