"""
Stream Cryptosystems
"""
from cryptosystem import SymmetricKeyCryptosystem
from stream_cipher import LFSRCipher, ShrinkingGeneratorCipher
from sage.crypto.util import random_blum_prime
from sage.monoids.string_monoid import BinaryStrings
from sage.rings.arith import gcd
from sage.rings.arith import power_mod
from sage.rings.finite_rings.constructor import FiniteField
from sage.rings.finite_rings.integer_mod_ring import IntegerModFactory
from sage.rings.polynomial.polynomial_element import is_Polynomial
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
IntegerModRing = IntegerModFactory("IntegerModRing")
class LFSRCryptosystem(SymmetricKeyCryptosystem):
"""
Linear feedback shift register cryptosystem class
"""
def __init__(self, field = None):
"""
Create a linear feedback shift cryptosystem.
INPUT: A string monoid over a binary alphabet.
OUTPUT:
EXAMPLES::
sage: E = LFSRCryptosystem(FiniteField(2))
sage: E
LFSR cryptosystem over Finite Field of size 2
TESTS::
sage: E = LFSRCryptosystem(FiniteField(2))
sage: E == loads(dumps(E))
True
TODO: Implement LFSR cryptosystem for arbitrary rings. The current
implementation is limited to the finite field of 2 elements only
because of the dependence on binary strings.
"""
if field is None:
field = FiniteField(2)
if field.cardinality() != 2:
raise NotImplementedError, "Not yet implemented."
S = BinaryStrings()
P = PolynomialRing(FiniteField(2),'x')
SymmetricKeyCryptosystem.__init__(self, S, S, None)
self._field = field
def __eq__(self,right):
return type(self) == type(right) and self._field == right._field
def __call__(self, key):
"""
Create a LFSR cipher.
INPUT: A polynomial and initial state of the LFSR.
"""
if not isinstance(key, (list,tuple)) and len(key) == 2:
raise TypeError, "Argument key (= %s) must be a list of tuple of length 2" % key
poly = key[0]; IS = key[1]
if not is_Polynomial(poly):
raise TypeError, "poly (= %s) must be a polynomial." % poly
if not isinstance(IS, (list,tuple)):
raise TypeError, "IS (= %s) must be an initial in the key space."%K
if len(IS) != poly.degree():
raise TypeError, \
"The length of IS (= %s) must equal the degree of poly (= %s)" % (IS, poly)
return LFSRCipher(self, poly, IS)
def _repr_(self):
r"""
Return the string representation of this LFSR cryptosystem.
EXAMPLES::
sage: LFSRCryptosystem(FiniteField(2))
LFSR cryptosystem over Finite Field of size 2
"""
return "LFSR cryptosystem over %s" % self._field
def encoding(self,M):
S = self.cipher_domain()
try:
return S.encoding(M)
except:
raise TypeError, "Argument M = %s does not encode in the cipher domain" % M
class ShrinkingGeneratorCryptosystem(SymmetricKeyCryptosystem):
"""
Shrinking generator cryptosystem class
"""
def __init__(self, field = None):
"""
Create a shrinking generator cryptosystem.
INPUT: A string monoid over a binary alphabet.
OUTPUT:
EXAMPLES::
sage: E = ShrinkingGeneratorCryptosystem()
sage: E
Shrinking generator cryptosystem over Finite Field of size 2
"""
if field is None:
field = FiniteField(2)
if field.cardinality() != 2:
raise NotImplementedError, "Not yet implemented."
S = BinaryStrings()
P = PolynomialRing(field, 'x')
SymmetricKeyCryptosystem.__init__(self, S, S, None)
self._field = field
def __call__(self, key):
"""
Create a Shrinking generator cipher.
INPUT: A list or tuple consisting of two LFSR ciphers (e1,e2).
OUTPUT: The shrinking generator cipher with key stream generator e1
and decimating cipher e2.
"""
if not isinstance(key, (list,tuple)) and len(key) == 2:
raise TypeError, "Argument key (= %s) must be a list of tuple of length 2" % key
e1 = key[0]; e2 = key[1]
if not isinstance(e1, LFSRCipher) or not isinstance(e2, LFSRCipher):
raise TypeError, "The key (= (%s,%s)) must be a tuple of two LFSR ciphers." % key
return ShrinkingGeneratorCipher(self, e1, e2)
def _repr_(self):
r"""
Return the string representation of this shrinking generator
cryptosystem.
EXAMPLES::
sage: ShrinkingGeneratorCryptosystem()
Shrinking generator cryptosystem over Finite Field of size 2
"""
return "Shrinking generator cryptosystem over %s" % self._field
def encoding(self,M):
S = self.cipher_domain()
try:
return S.encoding(M)
except:
raise TypeError, "Argument M = %s does not encode in the cipher domain" % M
def blum_blum_shub(length, seed=None, p=None, q=None,
lbound=None, ubound=None, ntries=100):
r"""
The Blum-Blum-Shub (BBS) pseudorandom bit generator.
See the original paper by Blum, Blum and Shub [BlumBlumShub1986]_. The
BBS algorithm is also discussed in section 5.5.2 of [MenezesEtAl1996]_.
INPUT:
- ``length`` -- positive integer; the number of bits in the output
pseudorandom bit sequence.
- ``seed`` -- (default: ``None``) if `p` and `q` are Blum primes, then
``seed`` is a quadratic residue in the multiplicative group
`(\ZZ/n\ZZ)^{\ast}` where `n = pq`. If ``seed=None``, then the function
would generate its own random quadratic residue in `(\ZZ/n\ZZ)^{\ast}`.
If you provide a value for ``seed``, then it is your responsibility to
ensure that the seed is a quadratic residue in the multiplicative group
`(\ZZ/n\ZZ)^{\ast}`.
- ``p`` -- (default: ``None``) a large positive prime congruent to 3
modulo 4. Both ``p`` and ``q`` must be distinct. If ``p=None``, then
a value for ``p`` will be generated, where
``0 < lower_bound <= p <= upper_bound``.
- ``q`` -- (default: ``None``) a large positive prime congruence to 3
modulo 4. Both ``p`` and ``q`` must be distinct. If ``q=None``, then
a value for ``q`` will be generated, where
``0 < lower_bound <= q <= upper_bound``.
- ``lbound`` -- (positive integer, default: ``None``) the lower
bound on how small each random primes `p` and `q` can be. So we
have ``0 < lbound <= p, q <= ubound``. The lower bound must be
distinct from the upper bound.
- ``ubound`` -- (positive integer, default: ``None``) the upper
bound on how large each random primes `p` and `q` can be. So we have
``0 < lbound <= p, q <= ubound``. The lower bound must be distinct
from the upper bound.
- ``ntries`` -- (default: ``100``) the number of attempts to generate
a random Blum prime. If ``ntries`` is a positive integer, then
perform that many attempts at generating a random Blum prime. This
might or might not result in a Blum prime.
OUTPUT:
- A pseudorandom bit sequence whose length is specified by ``length``.
Here is a common use case for this function. If you want this
function to use pre-computed values for `p` and `q`, you should pass
those pre-computed values to this function. In that case, you only need
to specify values for ``length``, ``p`` and ``q``, and you do not need
to worry about doing anything with the parameters ``lbound`` and
``ubound``. The pre-computed values `p` and `q` must be Blum primes.
It is your responsibility to check that both `p` and `q` are Blum primes.
Here is another common use case. If you want the function to generate
its own values for `p` and `q`, you must specify the lower and upper
bounds within which these two primes must lie. In that case, you must
specify values for ``length``, ``lbound`` and ``ubound``, and you do
not need to worry about values for the parameters ``p`` and ``q``. The
parameter ``ntries`` is only relevant when you want this function to
generate ``p`` and ``q``.
.. NOTE::
Beware that there might not be any primes between the lower and
upper bounds. So make sure that these two bounds are
"sufficiently" far apart from each other for there to be primes
congruent to 3 modulo 4. In particular, there should be at least
two distinct primes within these bounds, each prime being congruent
to 3 modulo 4. This function uses the function
:func:`random_blum_prime() <sage.crypto.util.random_blum_prime>` to
generate random primes that are congruent to 3 modulo 4.
ALGORITHM:
The BBS algorithm as described below is adapted from the presentation
in Algorithm 5.40, page 186 of [MenezesEtAl1996]_.
#. Let `L` be the desired number of bits in the output bit sequence.
That is, `L` is the desired length of the bit string.
#. Let `p` and `q` be two large distinct primes, each congruent to 3
modulo 4.
#. Let `n = pq` be the product of `p` and `q`.
#. Select a random seed value `s \in (\ZZ/n\ZZ)^{\ast}`, where
`(\ZZ/n\ZZ)^{\ast}` is the multiplicative group of `\ZZ/n\ZZ`.
#. Let `x_0 = s^2 \bmod n`.
#. For `i` from 1 to `L`, do
#. Let `x_i = x_{i-1}^2 \bmod n`.
#. Let `z_i` be the least significant bit of `x_i`.
#. The output pseudorandom bit sequence is `z_1, z_2, \dots, z_L`.
EXAMPLES:
A BBS pseudorandom bit sequence with a specified seed::
sage: from sage.crypto.stream import blum_blum_shub
sage: blum_blum_shub(length=6, seed=3, p=11, q=19)
110000
You could specify the length of the bit string, with given values for
``p`` and ``q``::
sage: blum_blum_shub(length=6, p=11, q=19) # random
001011
Or you could specify the length of the bit string, with given values for
the lower and upper bounds::
sage: blum_blum_shub(length=6, lbound=10**4, ubound=10**5) # random
110111
Under some reasonable hypotheses, Blum-Blum-Shub [BlumBlumShub1982]_
sketch a proof that the period of the BBS stream cipher is equal to
`\lambda(\lambda(n))`, where `\lambda(n)` is the Carmichael function of
`n`. This is verified below in a few examples by using the function
:func:`lfsr_connection_polynomial() <sage.crypto.lfsr.lfsr_connection_polynomial>`
(written by Tim Brock) which computes the connection polynomial of a
linear feedback shift register sequence. The degree of that polynomial
is the period. ::
sage: from sage.crypto.stream import blum_blum_shub
sage: from sage.crypto.util import carmichael_lambda
sage: carmichael_lambda(carmichael_lambda(7*11))
4
sage: s = [GF(2)(int(str(x))) for x in blum_blum_shub(60, p=7, q=11, seed=13)]
sage: lfsr_connection_polynomial(s)
x^3 + x^2 + x + 1
sage: carmichael_lambda(carmichael_lambda(11*23))
20
sage: s = [GF(2)(int(str(x))) for x in blum_blum_shub(60, p=11, q=23, seed=13)]
sage: lfsr_connection_polynomial(s)
x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
TESTS:
Make sure that there is at least one Blum prime between the lower and
upper bounds. In the following example, we have ``lbound=24`` and
``ubound=30`` with 29 being the only prime within those bounds. But 29
is not a Blum prime. ::
sage: from sage.crypto.stream import blum_blum_shub
sage: blum_blum_shub(6, lbound=24, ubound=30, ntries=10)
Traceback (most recent call last):
...
ValueError: No Blum primes within the specified closed interval.
Both the lower and upper bounds must be greater than 2::
sage: blum_blum_shub(6, lbound=2, ubound=3)
Traceback (most recent call last):
...
ValueError: Both the lower and upper bounds must be > 2.
sage: blum_blum_shub(6, lbound=3, ubound=2)
Traceback (most recent call last):
...
ValueError: Both the lower and upper bounds must be > 2.
sage: blum_blum_shub(6, lbound=2, ubound=2)
Traceback (most recent call last):
...
ValueError: Both the lower and upper bounds must be > 2.
The lower and upper bounds must be distinct from each other::
sage: blum_blum_shub(6, lbound=3, ubound=3)
Traceback (most recent call last):
...
ValueError: The lower and upper bounds must be distinct.
The lower bound must be less than the upper bound::
sage: blum_blum_shub(6, lbound=4, ubound=3)
Traceback (most recent call last):
...
ValueError: The lower bound must be less than the upper bound.
REFERENCES:
.. [BlumBlumShub1982] L. Blum, M. Blum, and M. Shub.
Comparison of Two Pseudo-Random Number Generators.
*Advances in Cryptology: Proceedings of Crypto '82*,
pp.61--78, 1982.
.. [BlumBlumShub1986] L. Blum, M. Blum, and M. Shub.
A Simple Unpredictable Pseudo-Random Number Generator.
*SIAM Journal on Computing*, 15(2):364--383, 1986.
"""
if length < 0:
raise ValueError("The length of the bit string must be positive.")
if (p is None) and (p == q == lbound == ubound):
raise ValueError("Either specify values for p and q, or specify values for the lower and upper bounds.")
randp = 0
randq = 0
if (p is not None) and (q is not None):
randp = p
randq = q
elif (lbound is not None) and (ubound is not None):
randp = random_blum_prime(lbound, ubound, ntries=ntries)
randq = random_blum_prime(lbound, ubound, ntries=ntries)
while randp == randq:
randq = random_blum_prime(lbound, ubound, ntries=ntries)
else:
raise ValueError("Either specify values for p and q, or specify values for the lower and upper bounds.")
n = randp * randq
x0 = seed
if seed is None:
zmod = IntegerModRing(n)
s = zmod.random_element().lift()
while gcd(s, n) != 1:
s = zmod.random_element().lift()
x0 = power_mod(s, 2, n)
z = []
for i in xrange(length):
x1 = power_mod(x0, 2, n)
z.append(x1 % 2)
x0 = x1
bin = BinaryStrings()
return bin(z)