"""
Logarithmic functions
"""
from sage.symbolic.function import GinacFunction, BuiltinFunction, is_inexact
from sage.symbolic.pynac import symbol_table
from sage.symbolic.constants import e as const_e
from sage.libs.mpmath import utils as mpmath_utils
from sage.structure.coerce import parent as sage_structure_coerce_parent
from sage.symbolic.expression import Expression
from sage.rings.real_double import RDF
from sage.rings.complex_double import CDF
from sage.rings.all import Integer
class Function_exp(GinacFunction):
def __init__(self):
r"""
The exponential function, `\exp(x) = e^x`.
EXAMPLES::
sage: exp(-1)
e^(-1)
sage: exp(2)
e^2
sage: exp(2).n(100)
7.3890560989306502272304274606
sage: exp(x^2 + log(x))
e^(x^2 + log(x))
sage: exp(x^2 + log(x)).simplify()
x*e^(x^2)
sage: exp(2.5)
12.1824939607035
sage: exp(float(2.5))
12.182493960703473
sage: exp(RDF('2.5'))
12.1824939607
To prevent automatic evaluation, use the ``hold`` parameter::
sage: exp(I*pi,hold=True)
e^(I*pi)
sage: exp(0,hold=True)
e^0
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: exp(0,hold=True).simplify()
1
::
sage: exp(pi*I/2)
I
sage: exp(pi*I)
-1
sage: exp(8*pi*I)
1
sage: exp(7*pi*I/2)
-I
TEST::
sage: latex(exp(x))
e^{x}
sage: latex(exp(sqrt(x)))
e^{\sqrt{x}}
sage: latex(exp)
\exp
sage: latex(exp(sqrt(x))^x)
\left(e^{\sqrt{x}}\right)^{x}
sage: latex(exp(sqrt(x)^x))
e^{\left(\sqrt{x}^{x}\right)}
Test conjugates::
sage: conjugate(exp(x))
e^conjugate(x)
Test simplifications when taking powers of exp, #7264::
sage: var('a,b,c,II')
(a, b, c, II)
sage: model_exp = exp(II)**a*(b)
sage: sol1_l={b: 5.0, a: 1.1}
sage: model_exp.subs(sol1_l)
5.00000000000000*(e^II)^1.10000000000000
::
sage: exp(3)^II*exp(x)
(e^3)^II*e^x
sage: exp(x)*exp(x)
e^(2*x)
sage: exp(x)*exp(a)
e^(a + x)
sage: exp(x)*exp(a)^2
e^(2*a + x)
Another instance of the same problem, #7394::
sage: 2*sqrt(e)
2*sqrt(e)
"""
GinacFunction.__init__(self, "exp", latex_name=r"\exp",
conversions=dict(maxima='exp'))
def __call__(self, x, coerce=True, hold=False, prec=None,
dont_call_method_on_arg=False):
"""
Note that the ``prec`` argument is deprecated. The precision for
the result is deduced from the precision of the input. Convert
the input to a higher precision explicitly if a result with higher
precision is desired.::
sage: t = exp(RealField(100)(2)); t
7.3890560989306502272304274606
sage: t.prec()
100
TESTS::
sage: exp(2,prec=100)
doctest:...: DeprecationWarning: The prec keyword argument is deprecated. Explicitly set the precision of the input, for example exp(RealField(300)(1)), or use the prec argument to .n() for exact inputs, e.g., exp(1).n(300), instead.
7.3890560989306502272304274606
"""
if prec is not None:
from sage.misc.misc import deprecation
deprecation("The prec keyword argument is deprecated. Explicitly set the precision of the input, for example exp(RealField(300)(1)), or use the prec argument to .n() for exact inputs, e.g., exp(1).n(300), instead.")
x = GinacFunction.__call__(self, x, coerce=coerce, hold=hold,
dont_call_method_on_arg=dont_call_method_on_arg)
return x.n(prec)
return GinacFunction.__call__(self, x, coerce=coerce, hold=hold,
dont_call_method_on_arg=dont_call_method_on_arg)
exp = Function_exp()
class Function_log(GinacFunction):
def __init__(self):
r"""
The natural logarithm of x. See `log?` for
more information about its behavior.
EXAMPLES::
sage: ln(e^2)
2
sage: ln(2)
log(2)
sage: ln(10)
log(10)
::
sage: ln(RDF(10))
2.30258509299
sage: ln(2.718)
0.999896315728952
sage: ln(2.0)
0.693147180559945
sage: ln(float(-1))
3.141592653589793j
sage: ln(complex(-1))
3.141592653589793j
We do not currently support a ``hold`` parameter in functional
notation::
sage: log(SR(-1),hold=True)
Traceback (most recent call last):
...
TypeError: log() got an unexpected keyword argument 'hold'
This is possible with method notation::
sage: I.log(hold=True)
log(I)
sage: I.log(hold=True).simplify()
1/2*I*pi
TESTS::
sage: latex(x.log())
\log\left(x\right)
sage: latex(log(1/4))
\log\left(\frac{1}{4}\right)
sage: loads(dumps(ln(x)+1))
log(x) + 1
``conjugate(log(x))==log(conjugate(x))`` unless on the branch cut which
runs along the negative real axis.::
sage: conjugate(log(x))
conjugate(log(x))
sage: var('y', domain='positive')
y
sage: conjugate(log(y))
log(y)
sage: conjugate(log(y+I))
conjugate(log(y + I))
sage: conjugate(log(-1))
-I*pi
sage: log(conjugate(-1))
I*pi
Check if float arguments are handled properly.::
sage: from sage.functions.log import function_log as log
sage: log(float(5))
1.6094379124341003
sage: log(float(0))
-inf
sage: log(float(-1))
3.141592653589793j
sage: log(x).subs(x=float(-1))
3.141592653589793j
"""
GinacFunction.__init__(self, 'log', latex_name=r'\log',
conversions=dict(maxima='log'))
ln = function_log = Function_log()
def log(x, base=None):
"""
Return the logarithm of x to the given base.
Calls the ``log`` method of the object x when computing
the logarithm, thus allowing use of logarithm on any object
containing a ``log`` method. In other words, log works
on more than just real numbers.
EXAMPLES::
sage: log(e^2)
2
sage: log(1024, 2); RDF(log(1024, 2))
10
10.0
sage: log(10, 4); RDF(log(10, 4))
log(10)/log(4)
1.66096404744
::
sage: log(10, 2)
log(10)/log(2)
sage: n(log(10, 2))
3.32192809488736
sage: log(10, e)
log(10)
sage: n(log(10, e))
2.30258509299405
The log function works for negative numbers, complex
numbers, and symbolic numbers too, picking the branch
with angle between `-pi` and `pi`::
sage: log(-1+0*I)
I*pi
sage: log(CC(-1))
3.14159265358979*I
sage: log(-1.0)
3.14159265358979*I
For input zero, the following behavior occurs::
sage: log(0)
-Infinity
sage: log(CC(0))
-infinity
sage: log(0.0)
-infinity
The log function also works in finite fields as long as the argument lies
in the multiplicative group generated by the base::
sage: F = GF(13); g = F.multiplicative_generator(); g
2
sage: a = F(8)
sage: log(a,g); g^log(a,g)
3
8
sage: log(a,3)
Traceback (most recent call last):
...
ValueError: No discrete log of 8 found to base 3
sage: log(F(9), 3)
2
The log function also works for p-adics (see documentation for
p-adics for more information)::
sage: R = Zp(5); R
5-adic Ring with capped relative precision 20
sage: a = R(16); a
1 + 3*5 + O(5^20)
sage: log(a)
3*5 + 3*5^2 + 3*5^4 + 3*5^5 + 3*5^6 + 4*5^7 + 2*5^8 + 5^9 + 5^11 + 2*5^12 + 5^13 + 3*5^15 + 2*5^16 + 4*5^17 + 3*5^18 + 3*5^19 + O(5^20)
"""
if base is None:
try:
return x.log()
except AttributeError:
return ln(x)
else:
try:
return x.log(base)
except (AttributeError, TypeError):
return log(x) / log(base)
class Function_polylog(GinacFunction):
def __init__(self):
r"""
The polylog function
`\text{Li}_n(z) = \sum_{k=1}^{\infty} z^k / k^n`.
INPUT:
- ``n`` - object
- ``z`` - object
EXAMPLES::
sage: polylog(1, x)
-log(-x + 1)
sage: polylog(2,1)
1/6*pi^2
sage: polylog(2,x^2+1)
polylog(2, x^2 + 1)
sage: polylog(4,0.5)
polylog(4, 0.500000000000000)
sage: f = polylog(4, 1); f
1/90*pi^4
sage: f.n()
1.08232323371114
sage: polylog(4, 2).n()
2.42786280675470 - 0.174371300025453*I
sage: complex(polylog(4,2))
(2.4278628067547032-0.17437130002545306j)
sage: float(polylog(4,0.5))
0.5174790616738993
sage: z = var('z')
sage: polylog(2,z).series(z==0, 5)
1*z + 1/4*z^2 + 1/9*z^3 + 1/16*z^4 + Order(z^5)
sage: loads(dumps(polylog))
polylog
sage: latex(polylog(5, x))
{\rm Li}_{5}(x)
TESTS:
Check if #8459 is fixed::
sage: t = maxima(polylog(5,x)).sage(); t
polylog(5, x)
sage: t.operator() == polylog
True
sage: t.subs(x=.5).n()
0.508400579242269
"""
GinacFunction.__init__(self, "polylog", nargs=2)
def _maxima_init_evaled_(self, *args):
"""
EXAMPLES:
These are indirect doctests for this function.::
sage: polylog(2, x)._maxima_()
li[2](x)
sage: polylog(4, x)._maxima_()
polylog(4,x)
"""
n, x = args
if int(n) in [1,2,3]:
return 'li[%s](%s)'%(n, x)
else:
return 'polylog(%s, %s)'%(n, x)
polylog = Function_polylog()
class Function_dilog(GinacFunction):
def __init__(self):
r"""
The dilogarithm function
`\text{Li}_2(z) = \sum_{k=1}^{\infty} z^k / k^2`.
This is simply an alias for polylog(2, z).
EXAMPLES::
sage: dilog(1)
1/6*pi^2
sage: dilog(1/2)
1/12*pi^2 - 1/2*log(2)^2
sage: dilog(x^2+1)
dilog(x^2 + 1)
sage: dilog(-1)
-1/12*pi^2
sage: dilog(-1.1)
-0.890838090262283
sage: float(dilog(1))
1.6449340668482262
sage: var('z')
z
sage: dilog(z).diff(z, 2)
log(-z + 1)/z^2 - 1/((z - 1)*z)
sage: dilog(z).series(z==1/2, 3)
(1/12*pi^2 - 1/2*log(2)^2) + (-2*log(1/2))*(z - 1/2) + (2*log(1/2) + 2)*(z - 1/2)^2 + Order(1/8*(2*z - 1)^3)
sage: latex(dilog(z))
{\rm Li}_2\left(z\right)
TESTS:
``conjugate(dilog(x))==dilog(conjugate(x))`` unless on the branch cuts
which run along the positive real axis beginning at 1.::
sage: conjugate(dilog(x))
conjugate(dilog(x))
sage: var('y',domain='positive')
y
sage: conjugate(dilog(y))
conjugate(dilog(y))
sage: conjugate(dilog(1/19))
dilog(1/19)
sage: conjugate(dilog(1/2*I))
dilog(-1/2*I)
sage: dilog(conjugate(1/2*I))
dilog(-1/2*I)
sage: conjugate(dilog(2))
conjugate(dilog(2))
"""
GinacFunction.__init__(self, 'dilog',
conversions=dict(maxima='li[2]'))
dilog = Function_dilog()
class Function_lambert_w(BuiltinFunction):
r"""
The integral branches of the Lambert W function `W_n(z)`.
This function satisfies the equation
.. math::
z = W_n(z) e^{W_n(z)}
INPUT:
- ``n`` - an integer. `n=0` corresponds to the principal branch.
- ``z`` - a complex number
If called with a single argument, that argument is ``z`` and the branch ``n`` is
assumed to be 0 (the principal branch).
ALGORITHM:
Numerical evaluation is handled using the mpmath and SciPy libraries.
REFERENCES:
- http://en.wikipedia.org/wiki/Lambert_W_function
EXAMPLES:
Evaluation of the principal branch::
sage: lambert_w(1.0)
0.567143290409784
sage: lambert_w(-1).n()
-0.318131505204764 + 1.33723570143069*I
sage: lambert_w(-1.5 + 5*I)
1.17418016254171 + 1.10651494102011*I
Evaluation of other branches::
sage: lambert_w(2, 1.0)
-2.40158510486800 + 10.7762995161151*I
Solutions to certain exponential equations are returned in terms of lambert_w::
sage: S = solve(e^(5*x)+x==0, x, to_poly_solve=True)
sage: z = S[0].rhs(); z
-1/5*lambert_w(5)
sage: N(z)
-0.265344933048440
Check the defining equation numerically at `z=5`::
sage: N(lambert_w(5)*exp(lambert_w(5)) - 5)
0.000000000000000
There are several special values of the principal branch which
are automatically simplified::
sage: lambert_w(0)
0
sage: lambert_w(e)
1
sage: lambert_w(-1/e)
-1
Integration (of the principal branch) is evaluated using Maxima::
sage: integrate(lambert_w(x), x)
(lambert_w(x)^2 - lambert_w(x) + 1)*x/lambert_w(x)
sage: integrate(lambert_w(x), x, 0, 1)
(lambert_w(1)^2 - lambert_w(1) + 1)/lambert_w(1) - 1
sage: integrate(lambert_w(x), x, 0, 1.0)
0.330366124762
Warning: The integral of a non-principal branch is not implemented,
neither is numerical integration using GSL. The :meth:`numerical_integral`
function does work if you pass a lambda function::
sage: numerical_integral(lambda x: lambert_w(x), 0, 1)
(0.33036612476168054, 3.667800782666048e-15)
"""
def __init__(self):
r"""
See the docstring for :meth:`Function_lambert_w`.
EXAMPLES::
sage: lambert_w(0, 1.0)
0.567143290409784
"""
BuiltinFunction.__init__(self, "lambert_w", nargs=2,
conversions={'mathematica':'ProductLog',
'maple':'LambertW'})
def __call__(self, *args, **kwds):
r"""
Custom call method allows the user to pass one argument or two. If
one argument is passed, we assume it is ``z`` and that ``n=0``.
EXAMPLES::
sage: lambert_w(1)
lambert_w(1)
sage: lambert_w(1, 2)
lambert_w(1, 2)
"""
if len(args) == 2:
return BuiltinFunction.__call__(self, *args, **kwds)
elif len(args) == 1:
return BuiltinFunction.__call__(self, 0, args[0], **kwds)
else:
raise TypeError("lambert_w takes either one or two arguments.")
def _eval_(self, n, z):
"""
EXAMPLES::
sage: lambert_w(6.0)
1.43240477589830
sage: lambert_w(1)
lambert_w(1)
sage: lambert_w(x+1)
lambert_w(x + 1)
There are three special values which are automatically simplified::
sage: lambert_w(0)
0
sage: lambert_w(e)
1
sage: lambert_w(-1/e)
-1
sage: lambert_w(SR(0))
0
The special values only hold on the principal branch::
sage: lambert_w(1,e)
lambert_w(1, e)
sage: lambert_w(1, e.n())
-0.532092121986380 + 4.59715801330257*I
TESTS:
When automatic simplication occurs, the parent of the output value should be
either the same as the parent of the input, or a Sage type::
sage: parent(lambert_w(int(0)))
<type 'int'>
sage: parent(lambert_w(Integer(0)))
Integer Ring
sage: parent(lambert_w(e))
Integer Ring
"""
if not isinstance(z, Expression):
if is_inexact(z):
return self._evalf_(n, z, parent=sage_structure_coerce_parent(z))
elif n == 0 and z == 0:
return sage_structure_coerce_parent(z)(Integer(0))
elif n == 0:
if z.is_trivial_zero():
return sage_structure_coerce_parent(z)(Integer(0))
elif (z-const_e).is_trivial_zero():
return sage_structure_coerce_parent(z)(Integer(1))
elif (z+1/const_e).is_trivial_zero():
return sage_structure_coerce_parent(z)(Integer(-1))
return None
def _evalf_(self, n, z, parent=None):
"""
EXAMPLES::
sage: N(lambert_w(1))
0.567143290409784
sage: lambert_w(RealField(100)(1))
0.56714329040978387299996866221
SciPy is used to evaluate for float, RDF, and CDF inputs::
sage: lambert_w(RDF(1))
0.56714329041
"""
R = parent or sage_structure_coerce_parent(z)
if R is float or R is complex or R is RDF or R is CDF:
import scipy.special
return scipy.special.lambertw(z, n)
else:
import mpmath
return mpmath_utils.call(mpmath.lambertw, z, n, parent=R)
def _derivative_(self, n, z, diff_param=None):
"""
The derivative of `W_n(x)` is `W_n(x)/(x \cdot W_n(x) + x)`.
EXAMPLES::
sage: x = var('x')
sage: derivative(lambert_w(x), x)
lambert_w(x)/(x*lambert_w(x) + x)
"""
return lambert_w(n, z)/(z*lambert_w(n, z)+z)
def _maxima_init_evaled_(self, n, z):
"""
EXAMPLES:
These are indirect doctests for this function.::
sage: lambert_w(0, x)._maxima_()
lambert_w(x)
sage: lambert_w(1, x)._maxima_()
Traceback (most recent call last):
...
NotImplementedError: Non-principal branch lambert_w[1](x) is not implemented in Maxima
"""
if n == 0:
return "lambert_w(%s)" % z
else:
raise NotImplementedError("Non-principal branch lambert_w[%s](%s) is not implemented in Maxima" % (n, z))
def _print_(self, n, z):
"""
Custom _print_ method to avoid printing the branch number if
it is zero.
EXAMPLES::
sage: lambert_w(1)
lambert_w(1)
sage: lambert_w(0,x)
lambert_w(x)
"""
if n == 0:
return "lambert_w(%s)" % z
else:
return "lambert_w(%s, %s)" % (n,z)
def _print_latex_(self, n, z):
"""
Custom _print_latex_ method to avoid printing the branch
number if it is zero.
EXAMPLES::
sage: latex(lambert_w(1))
\operatorname{W_0}(1)
sage: latex(lambert_w(0,x))
\operatorname{W_0}(x)
sage: latex(lambert_w(1,x))
\operatorname{W_{1}}(x)
"""
if n == 0:
return r"\operatorname{W_0}(%s)" % z
else:
return r"\operatorname{W_{%s}}(%s)" % (n,z)
lambert_w = Function_lambert_w()