r"""
Generic graphs
This module implements the base class for graphs and digraphs, and methods that
can be applied on both. Here is what it can do:
**Basic Graph operations:**
.. csv-table::
:class: contentstable
:widths: 30, 70
:delim: |
:meth:`~GenericGraph.networkx_graph` | Creates a new NetworkX graph from the Sage graph
:meth:`~GenericGraph.adjacency_matrix` | Returns the adjacency matrix of the (di)graph.
:meth:`~GenericGraph.incidence_matrix` | Returns an incidence matrix of the (di)graph
:meth:`~GenericGraph.weighted_adjacency_matrix` | Returns the weighted adjacency matrix of the graph
:meth:`~GenericGraph.kirchhoff_matrix` | Returns the Kirchhoff matrix (a.k.a. the Laplacian) of the graph.
:meth:`~GenericGraph.get_boundary` | Returns the boundary of the (di)graph.
:meth:`~GenericGraph.set_boundary` | Sets the boundary of the (di)graph.
:meth:`~GenericGraph.has_loops` | Returns whether there are loops in the (di)graph.
:meth:`~GenericGraph.allows_loops` | Returns whether loops are permitted in the (di)graph.
:meth:`~GenericGraph.allow_loops` | Changes whether loops are permitted in the (di)graph.
:meth:`~GenericGraph.loops` | Returns any loops in the (di)graph.
:meth:`~GenericGraph.has_multiple_edges` | Returns whether there are multiple edges in the (di)graph.
:meth:`~GenericGraph.allows_multiple_edges` | Returns whether multiple edges are permitted in the (di)graph.
:meth:`~GenericGraph.allow_multiple_edges` | Changes whether multiple edges are permitted in the (di)graph.
:meth:`~GenericGraph.multiple_edges` | Returns any multiple edges in the (di)graph.
:meth:`~GenericGraph.name` | Returns or sets the graph's name.
:meth:`~GenericGraph.weighted` | Whether the (di)graph is to be considered as a weighted (di)graph.
:meth:`~GenericGraph.antisymmetric` | Tests whether the graph is antisymmetric
:meth:`~GenericGraph.density` | Returns the density
:meth:`~GenericGraph.order` | Returns the number of vertices.
:meth:`~GenericGraph.size` | Returns the number of edges.
:meth:`~GenericGraph.add_vertex` | Creates an isolated vertex.
:meth:`~GenericGraph.add_vertices` | Add vertices to the (di)graph from an iterable container
:meth:`~GenericGraph.delete_vertex` | Deletes a vertex, removing all incident edges.
:meth:`~GenericGraph.delete_vertices` | Remove vertices from the (di)graph taken from an iterable container of vertices.
:meth:`~GenericGraph.has_vertex` | Return True if vertex is one of the vertices of this graph.
:meth:`~GenericGraph.random_vertex` | Returns a random vertex of self.
:meth:`~GenericGraph.random_edge` | Returns a random edge of self.
:meth:`~GenericGraph.vertex_boundary` | Returns a list of all vertices in the external boundary of vertices1, intersected with vertices2.
:meth:`~GenericGraph.set_vertices` | Associate arbitrary objects with each vertex
:meth:`~GenericGraph.set_vertex` | Associate an arbitrary object with a vertex.
:meth:`~GenericGraph.get_vertex` | Retrieve the object associated with a given vertex.
:meth:`~GenericGraph.get_vertices` | Return a dictionary of the objects associated to each vertex.
:meth:`~GenericGraph.loop_vertices` | Returns a list of vertices with loops.
:meth:`~GenericGraph.vertex_iterator` | Returns an iterator over the vertices.
:meth:`~GenericGraph.neighbor_iterator` | Return an iterator over neighbors of vertex.
:meth:`~GenericGraph.vertices` | Return a list of the vertices.
:meth:`~GenericGraph.neighbors` | Return a list of neighbors (in and out if directed) of vertex.
:meth:`~GenericGraph.merge_vertices` | Merge vertices.
:meth:`~GenericGraph.add_edge` | Adds an edge from u and v.
:meth:`~GenericGraph.add_edges` | Add edges from an iterable container.
:meth:`~GenericGraph.subdivide_edge` | Subdivides an edge `k` times.
:meth:`~GenericGraph.subdivide_edges` | Subdivides k times edges from an iterable container.
:meth:`~GenericGraph.delete_edge` | Delete the edge from u to v
:meth:`~GenericGraph.delete_edges` | Delete edges from an iterable container.
:meth:`~GenericGraph.delete_multiedge` | Deletes all edges from u and v.
:meth:`~GenericGraph.set_edge_label` | Set the edge label of a given edge.
:meth:`~GenericGraph.has_edge` | Returns True if (u, v) is an edge, False otherwise.
:meth:`~GenericGraph.edges` | Return a list of edges.
:meth:`~GenericGraph.edge_boundary` | Returns a list of edges `(u,v,l)` with `u` in ``vertices1``
:meth:`~GenericGraph.edge_iterator` | Returns an iterator over edges.
:meth:`~GenericGraph.edges_incident` | Returns incident edges to some vertices.
:meth:`~GenericGraph.edge_label` | Returns the label of an edge.
:meth:`~GenericGraph.edge_labels` | Returns a list of edge labels.
:meth:`~GenericGraph.remove_multiple_edges` | Removes all multiple edges, retaining one edge for each.
:meth:`~GenericGraph.remove_loops` | Removes loops on vertices in vertices. If vertices is None, removes all loops.
:meth:`~GenericGraph.loop_edges` | Returns a list of all loops in the graph.
:meth:`~GenericGraph.number_of_loops` | Returns the number of edges that are loops.
:meth:`~GenericGraph.clear` | Empties the graph of vertices and edges and removes name, boundary, associated objects, and position information.
:meth:`~GenericGraph.degree` | Gives the degree (in + out for digraphs) of a vertex or of vertices.
:meth:`~GenericGraph.average_degree` | Returns the average degree of the graph.
:meth:`~GenericGraph.degree_histogram` | Returns a list, whose ith entry is the frequency of degree i.
:meth:`~GenericGraph.degree_iterator` | Returns an iterator over the degrees of the (di)graph.
:meth:`~GenericGraph.degree_sequence` | Return the degree sequence of this (di)graph.
:meth:`~GenericGraph.random_subgraph` | Return a random subgraph that contains each vertex with prob. p.
:meth:`~GenericGraph.add_cycle` | Adds a cycle to the graph with the given vertices.
:meth:`~GenericGraph.add_path` | Adds a cycle to the graph with the given vertices.
:meth:`~GenericGraph.complement` | Returns the complement of the (di)graph.
:meth:`~GenericGraph.line_graph` | Returns the line graph of the (di)graph.
:meth:`~GenericGraph.to_simple` | Returns a simple version of itself (i.e., undirected and loops and multiple edges are removed).
:meth:`~GenericGraph.disjoint_union` | Returns the disjoint union of self and other.
:meth:`~GenericGraph.union` | Returns the union of self and other.
:meth:`~GenericGraph.relabel` | Relabels the vertices of ``self``
:meth:`~GenericGraph.degree_to_cell` | Returns the number of edges from vertex to an edge in cell.
:meth:`~GenericGraph.subgraph` | Returns the subgraph containing the given vertices and edges.
:meth:`~GenericGraph.is_subgraph` | Tests whether self is a subgraph of other.
**Graph products:**
.. csv-table::
:class: contentstable
:widths: 30, 70
:delim: |
:meth:`~GenericGraph.cartesian_product` | Returns the Cartesian product of self and other.
:meth:`~GenericGraph.tensor_product` | Returns the tensor product, also called the categorical product, of self and other.
:meth:`~GenericGraph.lexicographic_product` | Returns the lexicographic product of self and other.
:meth:`~GenericGraph.strong_product` | Returns the strong product of self and other.
:meth:`~GenericGraph.disjunctive_product` | Returns the disjunctive product of self and other.
**Paths and cycles:**
.. csv-table::
:class: contentstable
:widths: 30, 70
:delim: |
:meth:`~GenericGraph.eulerian_orientation` | Returns a DiGraph which is an Eulerian orientation of the current graph.
:meth:`~GenericGraph.eulerian_circuit` | Return a list of edges forming an eulerian circuit if one exists.
:meth:`~GenericGraph.cycle_basis` | Returns a list of cycles which form a basis of the cycle space of ``self``.
:meth:`~GenericGraph.interior_paths` | Returns an exhaustive list of paths (also lists) through only interior vertices from vertex start to vertex end in the (di)graph.
:meth:`~GenericGraph.all_paths` | Returns a list of all paths (also lists) between a pair of vertices in the (di)graph.
**Linear algebra:**
.. csv-table::
:class: contentstable
:widths: 30, 70
:delim: |
:meth:`~GenericGraph.spectrum` | Returns a list of the eigenvalues of the adjacency matrix.
:meth:`~GenericGraph.eigenvectors` | Returns the *right* eigenvectors of the adjacency matrix of the graph.
:meth:`~GenericGraph.eigenspaces` | Returns the *right* eigenspaces of the adjacency matrix of the graph.
**Some metrics:**
.. csv-table::
:class: contentstable
:widths: 30, 70
:delim: |
:meth:`~GenericGraph.cluster_triangles` | Returns the number of triangles for nbunch of vertices as a dictionary keyed by vertex.
:meth:`~GenericGraph.clustering_average` | Returns the average clustering coefficient.
:meth:`~GenericGraph.clustering_coeff` | Returns the clustering coefficient for each vertex in nbunch
:meth:`~GenericGraph.cluster_transitivity` | Returns the transitivity (fraction of transitive triangles) of the graph.
:meth:`~GenericGraph.szeged_index` | Returns the Szeged index of the graph.
**Automorphism group:**
.. csv-table::
:class: contentstable
:widths: 30, 70
:delim: |
:meth:`~GenericGraph.coarsest_equitable_refinement` | Returns the coarsest partition which is finer than the input partition, and equitable with respect to self.
:meth:`~GenericGraph.automorphism_group` | Returns the largest subgroup of the automorphism group of the (di)graph whose orbit partition is finer than the partition given.
:meth:`~GenericGraph.is_vertex_transitive` | Returns whether the automorphism group of self is transitive within the partition provided
:meth:`~GenericGraph.is_isomorphic` | Tests for isomorphism between self and other.
:meth:`~GenericGraph.canonical_label` | Returns the unique graph on `\{0,1,...,n-1\}` ( ``n = self.order()`` ) which 1) is isomorphic to self 2) is invariant in the isomorphism class.
**Graph properties:**
.. csv-table::
:class: contentstable
:widths: 30, 70
:delim: |
:meth:`~GenericGraph.is_eulerian` | Return true if the graph has a (closed) tour that visits each edge exactly once.
:meth:`~GenericGraph.is_tree` | Return True if the graph is a tree.
:meth:`~GenericGraph.is_forest` | Return True if the graph is a forest, i.e. a disjoint union of trees.
:meth:`~GenericGraph.is_overfull` | Tests whether the current graph is overfull.
:meth:`~GenericGraph.is_planar` | Tests whether the graph is planar.
:meth:`~GenericGraph.is_circular_planar` | Tests whether the graph is circular planar (outerplanar)
:meth:`~GenericGraph.is_regular` | Return ``True`` if this graph is (`k`-)regular.
:meth:`~GenericGraph.is_chordal` | Tests whether the given graph is chordal.
:meth:`~GenericGraph.is_interval` | Check whether self is an interval graph
:meth:`~GenericGraph.is_gallai_tree` | Returns whether the current graph is a Gallai tree.
:meth:`~GenericGraph.is_clique` | Tests whether a set of vertices is a clique
:meth:`~GenericGraph.is_independent_set` | Tests whether a set of vertices is an independent set
:meth:`~GenericGraph.is_transitively_reduced` | Tests whether the digraph is transitively reduced.
:meth:`~GenericGraph.is_equitable` | Checks whether the given partition is equitable with respect to self.
**Traversals:**
.. csv-table::
:class: contentstable
:widths: 30, 70
:delim: |
:meth:`~GenericGraph.breadth_first_search` | Returns an iterator over the vertices in a breadth-first ordering.
:meth:`~GenericGraph.depth_first_search` | Returns an iterator over the vertices in a depth-first ordering.
:meth:`~GenericGraph.lex_BFS` | Performs a Lex BFS on the graph.
**Distances:**
.. csv-table::
:class: contentstable
:widths: 30, 70
:delim: |
:meth:`~GenericGraph.distance` | Returns the (directed) distance from u to v in the (di)graph
:meth:`~GenericGraph.distance_all_pairs` | Returns the distances between all pairs of vertices.
:meth:`~GenericGraph.distances_distribution` | Returns the distances distribution of the (di)graph in a dictionary.
:meth:`~GenericGraph.eccentricity` | Return the eccentricity of vertex (or vertices) v.
:meth:`~GenericGraph.radius` | Returns the radius of the (di)graph.
:meth:`~GenericGraph.center` | Returns the set of vertices in the center of the graph
:meth:`~GenericGraph.diameter` | Returns the largest distance between any two vertices.
:meth:`~GenericGraph.distance_graph` | Returns the graph on the same vertex set as the original graph but vertices are adjacent in the returned graph if and only if they are at specified distances in the original graph.
:meth:`~GenericGraph.girth` | Computes the girth of the graph.
:meth:`~GenericGraph.periphery` | Returns the set of vertices in the periphery
:meth:`~GenericGraph.shortest_path` | Returns a list of vertices representing some shortest path from `u` to `v`
:meth:`~GenericGraph.shortest_path_length` | Returns the minimal length of paths from u to v
:meth:`~GenericGraph.shortest_paths` | Returns a dictionary associating to each vertex v a shortest path from u to v, if it exists.
:meth:`~GenericGraph.shortest_path_lengths` | Returns a dictionary of shortest path lengths keyed by targets that are connected by a path from u.
:meth:`~GenericGraph.shortest_path_all_pairs` | Computes a shortest path between each pair of vertices.
:meth:`~GenericGraph.wiener_index` | Returns the Wiener index of the graph.
:meth:`~GenericGraph.average_distance` | Returns the average distance between vertices of the graph.
**Flows, connectivity, trees:**
.. csv-table::
:class: contentstable
:widths: 30, 70
:delim: |
:meth:`~GenericGraph.is_connected` | Tests whether the (di)graph is connected.
:meth:`~GenericGraph.connected_components` | Returns the list of connected components
:meth:`~GenericGraph.connected_components_number` | Returns the number of connected components.
:meth:`~GenericGraph.connected_components_subgraphs` | Returns a list of connected components as graph objects.
:meth:`~GenericGraph.connected_component_containing_vertex` | Returns a list of the vertices connected to vertex.
:meth:`~GenericGraph.blocks_and_cut_vertices` | Computes the blocks and cut vertices of the graph.
:meth:`~GenericGraph.edge_cut` | Returns a minimum edge cut between vertices `s` and `t`
:meth:`~GenericGraph.vertex_cut` | Returns a minimum vertex cut between non-adjacent vertices `s` and `t`
:meth:`~GenericGraph.flow` | Returns a maximum flow in the graph from ``x`` to ``y``
:meth:`~GenericGraph.edge_disjoint_paths` | Returns a list of edge-disjoint paths between two vertices
:meth:`~GenericGraph.vertex_disjoint_paths` | Returns a list of vertex-disjoint paths between two vertices as given by Menger's theorem.
:meth:`~GenericGraph.edge_connectivity` | Returns the edge connectivity of the graph.
:meth:`~GenericGraph.vertex_connectivity` | Returns the vertex connectivity of the graph.
:meth:`~GenericGraph.transitive_closure` | Computes the transitive closure of a graph and returns it.
:meth:`~GenericGraph.transitive_reduction` | Returns a transitive reduction of a graph.
:meth:`~GenericGraph.min_spanning_tree` | Returns the edges of a minimum spanning tree.
:meth:`~GenericGraph.spanning_trees_count` | Returns the number of spanning trees in a graph.
**Plot/embedding-related methods:**
.. csv-table::
:class: contentstable
:widths: 30, 70
:delim: |
:meth:`~GenericGraph.set_embedding` | Sets a combinatorial embedding dictionary to ``_embedding`` attribute.
:meth:`~GenericGraph.get_embedding` | Returns the attribute _embedding if it exists.
:meth:`~GenericGraph.check_embedding_validity` | Checks whether an ``_embedding`` attribute is well defined
:meth:`~GenericGraph.get_pos` | Returns the position dictionary
:meth:`~GenericGraph.check_pos_validity` | Checks whether pos specifies two (resp. 3) coordinates for every vertex (and no more vertices).
:meth:`~GenericGraph.set_pos` | Sets the position dictionary.
:meth:`~GenericGraph.set_planar_positions` | Compute a planar layout for self using Schnyder's algorithm
:meth:`~GenericGraph.layout_planar` | Uses Schnyder's algorithm to compute a planar layout for self.
:meth:`~GenericGraph.is_drawn_free_of_edge_crossings` | Tests whether the position dictionary gives a planar embedding.
:meth:`~GenericGraph.latex_options` | Returns an instance of :class:`~sage.graphs.graph_latex.GraphLatex` for the graph.
:meth:`~GenericGraph.set_latex_options` | Sets multiple options for rendering a graph with LaTeX.
:meth:`~GenericGraph.layout` | Returns a layout for the vertices of this graph.
:meth:`~GenericGraph.layout_spring` | Computes a spring layout for this graph
:meth:`~GenericGraph.layout_ranked` | Computes a ranked layout for this graph
:meth:`~GenericGraph.layout_extend_randomly` | Extends randomly a partial layout
:meth:`~GenericGraph.layout_circular` | Computes a circular layout for this graph
:meth:`~GenericGraph.layout_tree` | Computes an ordered tree layout for this graph, which should be a tree (no non-oriented cycles).
:meth:`~GenericGraph.layout_graphviz` | Calls ``graphviz`` to compute a layout of the vertices of this graph.
:meth:`~GenericGraph.graphplot` | Returns a GraphPlot object.
:meth:`~GenericGraph.plot` | Returns a graphics object representing the (di)graph.
:meth:`~GenericGraph.show` | Shows the (di)graph.
:meth:`~GenericGraph.plot3d` | Plot a graph in three dimensions.
:meth:`~GenericGraph.show3d` | Plots the graph using Tachyon, and shows the resulting plot.
:meth:`~GenericGraph.graphviz_string` | Returns a representation in the dot language.
:meth:`~GenericGraph.graphviz_to_file_named` | Write a representation in the dot in a file.
**Algorithmically hard stuff:**
.. csv-table::
:class: contentstable
:widths: 30, 70
:delim: |
:meth:`~GenericGraph.steiner_tree` | Returns a tree of minimum weight connecting the given set of vertices.
:meth:`~GenericGraph.edge_disjoint_spanning_trees` | Returns the desired number of edge-disjoint spanning trees/arborescences.
:meth:`~GenericGraph.multiway_cut` | Returns a minimum edge multiway cut
:meth:`~GenericGraph.max_cut` | Returns a maximum edge cut of the graph.
:meth:`~GenericGraph.longest_path` | Returns a longest path of ``self``.
:meth:`~GenericGraph.traveling_salesman_problem` | Solves the traveling salesman problem (TSP)
:meth:`~GenericGraph.is_hamiltonian` | Tests whether the current graph is Hamiltonian.
:meth:`~GenericGraph.hamiltonian_cycle` | Returns a Hamiltonian cycle/circuit of the current graph/digraph
:meth:`~GenericGraph.multicommodity_flow` | Solves a multicommodity flow problem.
:meth:`~GenericGraph.disjoint_routed_paths` | Returns a set of disjoint routed paths.
:meth:`~GenericGraph.dominating_set` | Returns a minimum dominating set of the graph
:meth:`~GenericGraph.subgraph_search` | Returns a copy of ``G`` in ``self``.
:meth:`~GenericGraph.subgraph_search_count` | Returns the number of labelled occurences of ``G`` in ``self``.
:meth:`~GenericGraph.subgraph_search_iterator` | Returns an iterator over the labelled copies of ``G`` in ``self``.
:meth:`~GenericGraph.characteristic_polynomial` | Returns the characteristic polynomial of the adjacency matrix of the (di)graph.
:meth:`~GenericGraph.genus` | Returns the minimal genus of the graph.
:meth:`~GenericGraph.trace_faces` | A helper function for finding the genus of a graph.
**Graph stuff that should not be in this file:**
.. csv-table::
:class: contentstable
:widths: 30, 70
:delim: |
:meth:`~GenericGraph.minimum_outdegree_orientation` | Returns an orientation of ``self`` with the smallest possible maximum outdegree
:meth:`~GenericGraph.matching` | Returns a maximum weighted matching of the graph
:meth:`~GenericGraph.maximum_average_degree` | Returns the Maximum Average Degree (MAD) of the current graph.
:meth:`~GenericGraph.cores` | Returns the core number for each vertex in an ordered list.
Methods
-------
"""
from sage.misc.decorators import options
from sage.misc.prandom import random
from sage.rings.integer_ring import ZZ
from sage.rings.integer import Integer
from sage.rings.rational import Rational
from sage.groups.perm_gps.partn_ref.refinement_graphs import isomorphic, search_tree
from generic_graph_pyx import GenericGraph_pyx, spring_layout_fast
from sage.graphs.dot2tex_utils import assert_have_dot2tex
class GenericGraph(GenericGraph_pyx):
"""
Base class for graphs and digraphs.
"""
graphics_array_defaults = {'layout': 'circular', 'vertex_size':50, 'vertex_labels':False, 'graph_border':True}
def __init__(self):
r"""
Every graph carries a dictionary of options, which is set
here to ``None``. Some options are added to the global
:data:`sage.misc.latex.latex` instance which will insure
that if `\mbox{\rm\LaTeX}` is used to render the graph,
then the right packages are loaded and jsMath reacts
properly.
Most other initialization is done in the directed
and undirected subclasses.
TESTS::
sage: g = Graph()
sage: g
Graph on 0 vertices
"""
self._latex_opts = None
from sage.graphs.graph_latex import setup_latex_preamble
setup_latex_preamble()
def __add__(self, other_graph):
"""
Returns the disjoint union of self and other.
If there are common vertices to both, they will be renamed.
EXAMPLES::
sage: G = graphs.CycleGraph(3)
sage: H = graphs.CycleGraph(4)
sage: J = G + H; J
Cycle graph disjoint_union Cycle graph: Graph on 7 vertices
sage: J.vertices()
[0, 1, 2, 3, 4, 5, 6]
"""
if isinstance(other_graph, GenericGraph):
return self.disjoint_union(other_graph, verbose_relabel=False)
def __eq__(self, other):
"""
Comparison of self and other. For equality, must be in the same
class, have the same settings for loops and multiedges, output the
same vertex list (in order) and the same adjacency matrix.
Note that this is _not_ an isomorphism test.
EXAMPLES::
sage: G = graphs.EmptyGraph()
sage: H = Graph()
sage: G == H
True
sage: G.to_directed() == H.to_directed()
True
sage: G = graphs.RandomGNP(8,.9999)
sage: H = graphs.CompleteGraph(8)
sage: G == H # most often true
True
sage: G = Graph( {0:[1,2,3,4,5,6,7]} )
sage: H = Graph( {1:[0], 2:[0], 3:[0], 4:[0], 5:[0], 6:[0], 7:[0]} )
sage: G == H
True
sage: G.allow_loops(True)
sage: G == H
False
sage: G = graphs.RandomGNP(9,.3).to_directed()
sage: H = graphs.RandomGNP(9,.3).to_directed()
sage: G == H # most often false
False
sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edge(0,1)
sage: H = copy(G)
sage: H.add_edge(0,1)
sage: G == H
False
Note that graphs must be considered weighted, or Sage will not pay
attention to edge label data in equality testing::
sage: foo = Graph(sparse=True)
sage: foo.add_edges([(0, 1, 1), (0, 2, 2)])
sage: bar = Graph(sparse=True)
sage: bar.add_edges([(0, 1, 2), (0, 2, 1)])
sage: foo == bar
True
sage: foo.weighted(True)
sage: foo == bar
False
sage: bar.weighted(True)
sage: foo == bar
False
"""
if not isinstance(other, GenericGraph):
raise TypeError("Cannot compare graph to non-graph (%s)."%str(other))
from sage.graphs.all import Graph
g1_is_graph = isinstance(self, Graph)
g2_is_graph = isinstance(other, Graph)
if g1_is_graph != g2_is_graph:
return False
if self.allows_multiple_edges() != other.allows_multiple_edges():
return False
if self.allows_loops() != other.allows_loops():
return False
if self.vertices() != other.vertices():
return False
if self._weighted != other._weighted:
return False
verts = self.vertices()
if not self.allows_multiple_edges():
for i in verts:
for j in verts:
if self.has_edge(i,j) != other.has_edge(i,j):
return False
if self.has_edge(i,j) and self._weighted and other._weighted:
if self.edge_label(i,j) != other.edge_label(i,j):
return False
return True
else:
for i in verts:
for j in verts:
if self.has_edge(i, j):
edges1 = self.edge_label(i, j)
else:
edges1 = []
if other.has_edge(i, j):
edges2 = other.edge_label(i, j)
else:
edges2 = []
if len(edges1) != len(edges2):
return False
if sorted(edges1) != sorted(edges2) and self._weighted and other._weighted:
return False
return True
def __hash__(self):
"""
Since graphs are mutable, they should not be hashable, so we return
a type error.
EXAMPLES::
sage: hash(Graph())
Traceback (most recent call last):
...
TypeError: graphs are mutable, and thus not hashable
"""
if getattr(self, "_immutable", False):
return hash((tuple(self.vertices()), tuple(self.edges())))
raise TypeError, "graphs are mutable, and thus not hashable"
def __mul__(self, n):
"""
Returns the sum of a graph with itself n times.
EXAMPLES::
sage: G = graphs.CycleGraph(3)
sage: H = G*3; H
Cycle graph disjoint_union Cycle graph disjoint_union Cycle graph: Graph on 9 vertices
sage: H.vertices()
[0, 1, 2, 3, 4, 5, 6, 7, 8]
sage: H = G*1; H
Cycle graph: Graph on 3 vertices
"""
if isinstance(n, (int, long, Integer)):
if n < 1:
raise TypeError('Multiplication of a graph and a nonpositive integer is not defined.')
if n == 1:
from copy import copy
return copy(self)
return sum([self]*(n-1), self)
else:
raise TypeError('Multiplication of a graph and something other than an integer is not defined.')
def __ne__(self, other):
"""
Tests for inequality, complement of __eq__.
EXAMPLES::
sage: g = Graph()
sage: g2 = copy(g)
sage: g == g
True
sage: g != g
False
sage: g2 == g
True
sage: g2 != g
False
sage: g is g
True
sage: g2 is g
False
"""
return (not (self == other))
def __rmul__(self, n):
"""
Returns the sum of a graph with itself n times.
EXAMPLES::
sage: G = graphs.CycleGraph(3)
sage: H = int(3)*G; H
Cycle graph disjoint_union Cycle graph disjoint_union Cycle graph: Graph on 9 vertices
sage: H.vertices()
[0, 1, 2, 3, 4, 5, 6, 7, 8]
"""
return self*n
def __str__(self):
"""
str(G) returns the name of the graph, unless the name is the empty
string, in which case it returns the default representation.
EXAMPLES::
sage: G = graphs.PetersenGraph()
sage: str(G)
'Petersen graph'
"""
if self.name():
return self.name()
else:
return repr(self)
def _bit_vector(self):
"""
Returns a string representing the edges of the (simple) graph for
graph6 and dig6 strings.
EXAMPLES::
sage: G = graphs.PetersenGraph()
sage: G._bit_vector()
'101001100110000010000001001000010110000010110'
sage: len([a for a in G._bit_vector() if a == '1'])
15
sage: G.num_edges()
15
"""
vertices = self.vertices()
n = len(vertices)
if self._directed:
total_length = n*n
bit = lambda x,y : x*n + y
else:
total_length = int(n*(n - 1))/int(2)
n_ch_2 = lambda b : int(b*(b-1))/int(2)
bit = lambda x,y : n_ch_2(max([x,y])) + min([x,y])
bit_vector = set()
for u,v,_ in self.edge_iterator():
bit_vector.add(bit(vertices.index(u), vertices.index(v)))
bit_vector = sorted(bit_vector)
s = []
j = 0
for i in bit_vector:
s.append( '0'*(i - j) + '1' )
j = i + 1
s = "".join(s)
s += '0'*(total_length-len(s))
return s
def _latex_(self):
r""" Returns a string to render the graph using
`\mbox{\rm{\LaTeX}}`.
To adjust the string, use the
:meth:`set_latex_options` method to set options,
or call the :meth:`latex_options` method to
get a :class:`~sage.graphs.graph_latex.GraphLatex`
object that may be used to also customize the
output produced here. Possible options are documented at
:meth:`sage.graphs.graph_latex.GraphLatex.set_option`.
EXAMPLES::
sage: from sage.graphs.graph_latex import check_tkz_graph
sage: check_tkz_graph() # random - depends on TeX installation
sage: g = graphs.CompleteGraph(2)
sage: print g._latex_()
\begin{tikzpicture}
%
\useasboundingbox (0,0) rectangle (5.0cm,5.0cm);
%
\definecolor{cv0}{rgb}{0.0,0.0,0.0}
\definecolor{cfv0}{rgb}{1.0,1.0,1.0}
\definecolor{clv0}{rgb}{0.0,0.0,0.0}
\definecolor{cv1}{rgb}{0.0,0.0,0.0}
\definecolor{cfv1}{rgb}{1.0,1.0,1.0}
\definecolor{clv1}{rgb}{0.0,0.0,0.0}
\definecolor{cv0v1}{rgb}{0.0,0.0,0.0}
%
\Vertex[style={minimum size=1.0cm,draw=cv0,fill=cfv0,text=clv0,shape=circle},LabelOut=false,L=\hbox{$0$},x=5.0cm,y=5.0cm]{v0}
\Vertex[style={minimum size=1.0cm,draw=cv1,fill=cfv1,text=clv1,shape=circle},LabelOut=false,L=\hbox{$1$},x=0.0cm,y=0.0cm]{v1}
%
\Edge[lw=0.1cm,style={color=cv0v1,},](v0)(v1)
%
\end{tikzpicture}
"""
return self.latex_options().latex()
def _matrix_(self, R=None):
"""
Returns the adjacency matrix of the graph over the specified ring.
EXAMPLES::
sage: G = graphs.CompleteBipartiteGraph(2,3)
sage: m = matrix(G); m.parent()
Full MatrixSpace of 5 by 5 dense matrices over Integer Ring
sage: m
[0 0 1 1 1]
[0 0 1 1 1]
[1 1 0 0 0]
[1 1 0 0 0]
[1 1 0 0 0]
sage: G._matrix_()
[0 0 1 1 1]
[0 0 1 1 1]
[1 1 0 0 0]
[1 1 0 0 0]
[1 1 0 0 0]
sage: factor(m.charpoly())
x^3 * (x^2 - 6)
"""
if R is None:
return self.am()
else:
return self.am().change_ring(R)
def _repr_(self):
"""
Return a string representation of self.
EXAMPLES::
sage: G = graphs.PetersenGraph()
sage: G._repr_()
'Petersen graph: Graph on 10 vertices'
"""
name = ""
if self.allows_loops():
name += "looped "
if self.allows_multiple_edges():
name += "multi-"
if self._directed:
name += "di"
name += "graph on %d vert"%self.order()
if self.order() == 1:
name += "ex"
else:
name += "ices"
name = name.capitalize()
if self.name() != '':
name = self.name() + ": " + name
return name
def __copy__(self, implementation='c_graph', sparse=None):
"""
Creates a copy of the graph.
INPUT:
- ``implementation`` - string (default: 'networkx') the
implementation goes here. Current options are only
'networkx' or 'c_graph'.
- ``sparse`` - boolean (default: None) whether the
graph given is sparse or not.
OUTPUT:
A Graph object.
.. warning::
Please use this method only if you need to copy but change the
underlying implementation. Otherwise simply do ``copy(g)``
instead of doing ``g.copy()``.
EXAMPLES::
sage: g=Graph({0:[0,1,1,2]},loops=True,multiedges=True,sparse=True)
sage: g==copy(g)
True
sage: g=DiGraph({0:[0,1,1,2],1:[0,1]},loops=True,multiedges=True,sparse=True)
sage: g==copy(g)
True
Note that vertex associations are also kept::
sage: d = {0 : graphs.DodecahedralGraph(), 1 : graphs.FlowerSnark(), 2 : graphs.MoebiusKantorGraph(), 3 : graphs.PetersenGraph() }
sage: T = graphs.TetrahedralGraph()
sage: T.set_vertices(d)
sage: T2 = copy(T)
sage: T2.get_vertex(0)
Dodecahedron: Graph on 20 vertices
Notice that the copy is at least as deep as the objects::
sage: T2.get_vertex(0) is T.get_vertex(0)
False
Examples of the keywords in use::
sage: G = graphs.CompleteGraph(19)
sage: H = G.copy(implementation='c_graph')
sage: H == G; H is G
True
False
sage: G1 = G.copy(sparse=True)
sage: G1==G
True
sage: G1 is G
False
sage: G2 = copy(G)
sage: G2 is G
False
TESTS: We make copies of the _pos and _boundary attributes.
::
sage: g = graphs.PathGraph(3)
sage: h = copy(g)
sage: h._pos is g._pos
False
sage: h._boundary is g._boundary
False
"""
if sparse is None:
from sage.graphs.base.dense_graph import DenseGraphBackend
sparse = (not isinstance(self._backend, DenseGraphBackend))
from copy import copy
G = self.__class__(self, name=self.name(), pos=copy(self._pos), boundary=copy(self._boundary), implementation=implementation, sparse=sparse)
attributes_to_copy = ('_assoc', '_embedding')
for attr in attributes_to_copy:
if hasattr(self, attr):
copy_attr = {}
old_attr = getattr(self, attr)
if isinstance(old_attr, dict):
for v,value in old_attr.iteritems():
try:
copy_attr[v] = value.copy()
except AttributeError:
from copy import copy
copy_attr[v] = copy(value)
setattr(G, attr, copy_attr)
else:
setattr(G, attr, copy(old_attr))
G._weighted = self._weighted
return G
copy = __copy__
def networkx_graph(self, copy=True):
"""
Creates a new NetworkX graph from the Sage graph.
INPUT:
- ``copy`` - if False, and the underlying
implementation is a NetworkX graph, then the actual object itself
is returned.
EXAMPLES::
sage: G = graphs.TetrahedralGraph()
sage: N = G.networkx_graph()
sage: type(N)
<class 'networkx.classes.graph.Graph'>
::
sage: G = graphs.TetrahedralGraph()
sage: G = Graph(G, implementation='networkx')
sage: N = G.networkx_graph()
sage: G._backend._nxg is N
False
::
sage: G = Graph(graphs.TetrahedralGraph(), implementation='networkx')
sage: N = G.networkx_graph(copy=False)
sage: G._backend._nxg is N
True
"""
try:
if copy:
from copy import copy
return self._backend._nxg.copy()
else:
return self._backend._nxg
except:
import networkx
if self._directed and self.allows_multiple_edges():
class_type = networkx.MultiDiGraph
elif self._directed:
class_type = networkx.DiGraph
elif self.allows_multiple_edges():
class_type = networkx.MultiGraph
else:
class_type = networkx.Graph
N = class_type(selfloops=self.allows_loops(), multiedges=self.allows_multiple_edges(),
name=self.name())
N.add_nodes_from(self.vertices())
for u,v,l in self.edges():
if l is None:
N.add_edge(u,v)
else:
from networkx import NetworkXError
try:
N.add_edge(u,v,l)
except (TypeError, ValueError, NetworkXError):
N.add_edge(u,v,weight=l)
return N
def adjacency_matrix(self, sparse=None, boundary_first=False):
"""
Returns the adjacency matrix of the (di)graph.
Each vertex is represented by its position in the list returned by the
vertices() function.
The matrix returned is over the integers. If a different ring is
desired, use either the change_ring function or the matrix
function.
INPUT:
- ``sparse`` - whether to represent with a sparse
matrix
- ``boundary_first`` - whether to represent the
boundary vertices in the upper left block
EXAMPLES::
sage: G = graphs.CubeGraph(4)
sage: G.adjacency_matrix()
[0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0]
[1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0]
[1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0]
[0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0]
[1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0]
[0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0]
[0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0]
[0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0]
[0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0]
[0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0]
[0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1]
[0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0]
[0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1]
[0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1]
[0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0]
::
sage: matrix(GF(2),G) # matrix over GF(2)
[0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0]
[1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0]
[1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0]
[0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0]
[1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0]
[0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0]
[0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0]
[0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0]
[0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0]
[0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0]
[0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1]
[0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0]
[0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1]
[0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1]
[0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0]
::
sage: D = DiGraph( { 0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1] } )
sage: D.adjacency_matrix()
[0 1 1 1 0 0]
[1 0 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[1 0 0 0 0 1]
[0 1 0 0 0 0]
TESTS::
sage: graphs.CubeGraph(8).adjacency_matrix().parent()
Full MatrixSpace of 256 by 256 dense matrices over Integer Ring
sage: graphs.CubeGraph(9).adjacency_matrix().parent()
Full MatrixSpace of 512 by 512 sparse matrices over Integer Ring
"""
n = self.order()
if sparse is None:
if n <= 256 or self.density() > 0.05:
sparse=False
else:
sparse=True
verts = self.vertices(boundary_first=boundary_first)
new_indices = dict((v,i) for i,v in enumerate(verts))
D = {}
directed = self._directed
multiple_edges = self.allows_multiple_edges()
for i,j,l in self.edge_iterator():
i = new_indices[i]
j = new_indices[j]
if multiple_edges and (i,j) in D:
D[(i,j)] += 1
if not directed and i != j:
D[(j,i)] += 1
else:
D[(i,j)] = 1
if not directed and i != j:
D[(j,i)] = 1
from sage.rings.integer_ring import IntegerRing
from sage.matrix.constructor import matrix
M = matrix(IntegerRing(), n, n, D, sparse=sparse)
return M
am = adjacency_matrix
def incidence_matrix(self, sparse=True):
"""
Returns the incidence matrix of the (di)graph.
Each row is a vertex, and each column is an edge. Note that in the case
of graphs, there is a choice of orientation for each edge.
EXAMPLES::
sage: G = graphs.CubeGraph(3)
sage: G.incidence_matrix()
[-1 -1 -1 0 0 0 0 0 0 0 0 0]
[ 0 0 1 -1 -1 0 0 0 0 0 0 0]
[ 0 1 0 0 0 -1 -1 0 0 0 0 0]
[ 0 0 0 0 1 0 1 -1 0 0 0 0]
[ 1 0 0 0 0 0 0 0 -1 -1 0 0]
[ 0 0 0 1 0 0 0 0 0 1 -1 0]
[ 0 0 0 0 0 1 0 0 1 0 0 -1]
[ 0 0 0 0 0 0 0 1 0 0 1 1]
::
sage: D = DiGraph( { 0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1] } )
sage: D.incidence_matrix()
[-1 -1 -1 0 0 0 0 0 1 1]
[ 0 0 1 -1 0 0 0 1 -1 0]
[ 0 1 0 1 -1 0 0 0 0 0]
[ 1 0 0 0 1 -1 0 0 0 0]
[ 0 0 0 0 0 1 -1 0 0 -1]
[ 0 0 0 0 0 0 1 -1 0 0]
"""
from sage.matrix.constructor import matrix
from copy import copy
n = self.order()
verts = self.vertices()
d = [0]*n
cols = []
if self._directed:
for i, j, l in self.edge_iterator():
col = copy(d)
i = verts.index(i)
j = verts.index(j)
col[i] = -1
col[j] = 1
cols.append(col)
else:
for i, j, l in self.edge_iterator():
col = copy(d)
i,j = (i,j) if i <= j else (j,i)
i = verts.index(i)
j = verts.index(j)
col[i] = -1
col[j] = 1
cols.append(col)
cols.sort()
return matrix(cols, sparse=sparse).transpose()
def weighted_adjacency_matrix(self, sparse=True, boundary_first=False):
"""
Returns the weighted adjacency matrix of the graph.
Each vertex is represented by its position in the list returned by the
vertices() function.
EXAMPLES::
sage: G = Graph(sparse=True, weighted=True)
sage: G.add_edges([(0,1,1),(1,2,2),(0,2,3),(0,3,4)])
sage: M = G.weighted_adjacency_matrix(); M
[0 1 3 4]
[1 0 2 0]
[3 2 0 0]
[4 0 0 0]
sage: H = Graph(data=M, format='weighted_adjacency_matrix', sparse=True)
sage: H == G
True
The following doctest verifies that \#4888 is fixed::
sage: G = DiGraph({0:{}, 1:{0:1}, 2:{0:1}}, weighted = True,sparse=True)
sage: G.weighted_adjacency_matrix()
[0 0 0]
[1 0 0]
[1 0 0]
"""
if self.has_multiple_edges():
raise NotImplementedError, "Don't know how to represent weights for a multigraph."
verts = self.vertices(boundary_first=boundary_first)
new_indices = dict((v,i) for i,v in enumerate(verts))
D = {}
if self._directed:
for i,j,l in self.edge_iterator():
i = new_indices[i]
j = new_indices[j]
D[(i,j)] = l
else:
for i,j,l in self.edge_iterator():
i = new_indices[i]
j = new_indices[j]
D[(i,j)] = l
D[(j,i)] = l
from sage.matrix.constructor import matrix
M = matrix(self.num_verts(), D, sparse=sparse)
return M
def kirchhoff_matrix(self, weighted=None, indegree=True, normalized=False, **kwds):
"""
Returns the Kirchhoff matrix (a.k.a. the Laplacian) of the graph.
The Kirchhoff matrix is defined to be `D - M`, where `D` is
the diagonal degree matrix (each diagonal entry is the degree
of the corresponding vertex), and `M` is the adjacency matrix.
If ``normalized`` is ``True``, then the returned matrix is
`D^{-1/2}(D-M)D^{-1/2}`.
( In the special case of DiGraphs, `D` is defined as the diagonal
in-degree matrix or diagonal out-degree matrix according to the
value of ``indegree``)
INPUT:
- ``weighted`` -- Binary variable :
- If ``True``, the weighted adjacency matrix is used for `M`,
and the diagonal matrix `D` takes into account the weight of edges
(replace in the definition "degree" by "sum of the incident edges" ).
- Else, each edge is assumed to have weight 1.
Default is to take weights into consideration if and only if the graph is
weighted.
- ``indegree`` -- Binary variable :
- If ``True``, each diagonal entry of `D` is equal to the
in-degree of the corresponding vertex.
- Else, each diagonal entry of `D` is equal to the
out-degree of the corresponding vertex.
By default, ``indegree`` is set to ``True``
( This variable only matters when the graph is a digraph )
- ``normalized`` -- Binary variable :
- If ``True``, the returned matrix is
`D^{-1/2}(D-M)D^{-1/2}`, a normalized version of the
Laplacian matrix.
(More accurately, the normalizing matrix used is equal to `D^{-1/2}`
only for non-isolated vertices. If vertex `i` is isolated, then
diagonal entry `i` in the matrix is 1, rather than a division by
zero.)
- Else, the matrix `D-M` is returned
Note that any additional keywords will be passed on to either
the ``adjacency_matrix`` or ``weighted_adjacency_matrix`` method.
AUTHORS:
- Tom Boothby
- Jason Grout
EXAMPLES::
sage: G = Graph(sparse=True)
sage: G.add_edges([(0,1,1),(1,2,2),(0,2,3),(0,3,4)])
sage: M = G.kirchhoff_matrix(weighted=True); M
[ 8 -1 -3 -4]
[-1 3 -2 0]
[-3 -2 5 0]
[-4 0 0 4]
sage: M = G.kirchhoff_matrix(); M
[ 3 -1 -1 -1]
[-1 2 -1 0]
[-1 -1 2 0]
[-1 0 0 1]
sage: G.set_boundary([2,3])
sage: M = G.kirchhoff_matrix(weighted=True, boundary_first=True); M
[ 5 0 -3 -2]
[ 0 4 -4 0]
[-3 -4 8 -1]
[-2 0 -1 3]
sage: M = G.kirchhoff_matrix(boundary_first=True); M
[ 2 0 -1 -1]
[ 0 1 -1 0]
[-1 -1 3 -1]
[-1 0 -1 2]
sage: M = G.laplacian_matrix(boundary_first=True); M
[ 2 0 -1 -1]
[ 0 1 -1 0]
[-1 -1 3 -1]
[-1 0 -1 2]
sage: M = G.laplacian_matrix(boundary_first=True, sparse=False); M
[ 2 0 -1 -1]
[ 0 1 -1 0]
[-1 -1 3 -1]
[-1 0 -1 2]
sage: M = G.laplacian_matrix(normalized=True); M
[ 1 -1/6*sqrt(2)*sqrt(3) -1/6*sqrt(2)*sqrt(3) -1/3*sqrt(3)]
[-1/6*sqrt(2)*sqrt(3) 1 -1/2 0]
[-1/6*sqrt(2)*sqrt(3) -1/2 1 0]
[ -1/3*sqrt(3) 0 0 1]
sage: Graph({0:[],1:[2]}).laplacian_matrix(normalized=True)
[ 0 0 0]
[ 0 1 -1]
[ 0 -1 1]
A weighted directed graph with loops, changing the variable ``indegree`` ::
sage: G = DiGraph({1:{1:2,2:3}, 2:{1:4}}, weighted=True,sparse=True)
sage: G.laplacian_matrix()
[ 4 -3]
[-4 3]
::
sage: G = DiGraph({1:{1:2,2:3}, 2:{1:4}}, weighted=True,sparse=True)
sage: G.laplacian_matrix(indegree=False)
[ 3 -3]
[-4 4]
"""
from sage.matrix.constructor import matrix, diagonal_matrix
from sage.rings.integer_ring import IntegerRing
from sage.functions.all import sqrt
if weighted is None:
weighted = self._weighted
if weighted:
M = self.weighted_adjacency_matrix(**kwds)
else:
M = self.adjacency_matrix(**kwds)
D = M.parent(0)
if M.is_sparse():
row_sums = {}
if indegree:
for (i,j), entry in M.dict().iteritems():
row_sums[j] = row_sums.get(j, 0) + entry
else:
for (i,j), entry in M.dict().iteritems():
row_sums[i] = row_sums.get(i, 0) + entry
for i in range(M.nrows()):
D[i,i] += row_sums.get(i, 0)
else:
if indegree:
col_sums=[sum(v) for v in M.columns()]
for i in range(M.nrows()):
D[i,i] += col_sums[i]
else:
row_sums=[sum(v) for v in M.rows()]
for i in range(M.nrows()):
D[i,i] += row_sums[i]
if normalized:
Dsqrt = diagonal_matrix([1/sqrt(D[i,i]) if D[i,i]>0 else 1 \
for i in range(D.nrows())])
return Dsqrt*(D-M)*Dsqrt
else:
return D-M
laplacian_matrix = kirchhoff_matrix
def get_boundary(self):
"""
Returns the boundary of the (di)graph.
EXAMPLES::
sage: G = graphs.PetersenGraph()
sage: G.set_boundary([0,1,2,3,4])
sage: G.get_boundary()
[0, 1, 2, 3, 4]
"""
return self._boundary
def set_boundary(self, boundary):
"""
Sets the boundary of the (di)graph.
EXAMPLES::
sage: G = graphs.PetersenGraph()
sage: G.set_boundary([0,1,2,3,4])
sage: G.get_boundary()
[0, 1, 2, 3, 4]
sage: G.set_boundary((1..4))
sage: G.get_boundary()
[1, 2, 3, 4]
"""
if isinstance(boundary,list):
self._boundary = boundary
else:
self._boundary = list(boundary)
def set_embedding(self, embedding):
"""
Sets a combinatorial embedding dictionary to ``_embedding`` attribute.
Dictionary is organized with vertex labels as keys and a list of
each vertex's neighbors in clockwise order.
Dictionary is error-checked for validity.
INPUT:
- ``embedding`` - a dictionary
EXAMPLES::
sage: G = graphs.PetersenGraph()
sage: G.set_embedding({0: [1, 5, 4], 1: [0, 2, 6], 2: [1, 3, 7], 3: [8, 2, 4], 4: [0, 9, 3], 5: [0, 8, 7], 6: [8, 1, 9], 7: [9, 2, 5], 8: [3, 5, 6], 9: [4, 6, 7]})
sage: G.set_embedding({'s': [1, 5, 4], 1: [0, 2, 6], 2: [1, 3, 7], 3: [8, 2, 4], 4: [0, 9, 3], 5: [0, 8, 7], 6: [8, 1, 9], 7: [9, 2, 5], 8: [3, 5, 6], 9: [4, 6, 7]})
Traceback (most recent call last):
...
Exception: embedding is not valid for Petersen graph
"""
if self.check_embedding_validity(embedding):
self._embedding = embedding
else:
raise Exception('embedding is not valid for %s'%self)
def get_embedding(self):
"""
Returns the attribute _embedding if it exists.
``_embedding`` is a dictionary organized with vertex labels as keys and a
list of each vertex's neighbors in clockwise order.
Error-checked to insure valid embedding is returned.
EXAMPLES::
sage: G = graphs.PetersenGraph()
sage: G.genus()
1
sage: G.get_embedding()
{0: [1, 4, 5], 1: [0, 2, 6], 2: [1, 3, 7], 3: [2, 4, 8], 4: [0, 3, 9], 5: [0, 7, 8], 6: [1, 9, 8], 7: [2, 5, 9], 8: [3, 6, 5], 9: [4, 6, 7]}
"""
if self.check_embedding_validity():
return self._embedding
else:
raise Exception('%s has been modified and the embedding is no longer valid.'%self)
def check_embedding_validity(self, embedding=None):
"""
Checks whether an _embedding attribute is well defined.
If the ``_embedding`` attribute exists, it is checked for
accuracy. Returns True if everything is okay, False otherwise.
If embedding=None will test the attribute _embedding.
EXAMPLES::
sage: d = {0: [1, 5, 4], 1: [0, 2, 6], 2: [1, 3, 7], 3: [8, 2, 4], 4: [0, 9, 3], 5: [0, 8, 7], 6: [8, 1, 9], 7: [9, 2, 5], 8: [3, 5, 6], 9: [4, 6, 7]}
sage: G = graphs.PetersenGraph()
sage: G.check_embedding_validity(d)
True
"""
if embedding is None:
embedding = getattr(self, '_embedding', None)
if embedding is None:
return False
if len(embedding) != self.order():
return False
if self._directed:
connected = lambda u,v : self.has_edge(u,v) or self.has_edge(v,u)
else:
connected = lambda u,v : self.has_edge(u,v)
for v in embedding:
if not self.has_vertex(v):
return False
if len(embedding[v]) != len(self.neighbors(v)):
return False
for u in embedding[v]:
if not connected(v,u):
return False
return True
def has_loops(self):
"""
Returns whether there are loops in the (di)graph.
EXAMPLES::
sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops()
False
sage: G.allows_loops()
True
sage: G.add_edge((0,0))
sage: G.has_loops()
True
sage: G.loops()
[(0, 0, None)]
sage: G.allow_loops(False); G
Graph on 1 vertex
sage: G.has_loops()
False
sage: G.edges()
[]
sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()
False
sage: D.allows_loops()
True
sage: D.add_edge((0,0))
sage: D.has_loops()
True
sage: D.loops()
[(0, 0, None)]
sage: D.allow_loops(False); D
Digraph on 1 vertex
sage: D.has_loops()
False
sage: D.edges()
[]
"""
if self.allows_loops():
for v in self:
if self.has_edge(v,v):
return True
return False
def allows_loops(self):
"""
Returns whether loops are permitted in the (di)graph.
EXAMPLES::
sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops()
False
sage: G.allows_loops()
True
sage: G.add_edge((0,0))
sage: G.has_loops()
True
sage: G.loops()
[(0, 0, None)]
sage: G.allow_loops(False); G
Graph on 1 vertex
sage: G.has_loops()
False
sage: G.edges()
[]
sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()
False
sage: D.allows_loops()
True
sage: D.add_edge((0,0))
sage: D.has_loops()
True
sage: D.loops()
[(0, 0, None)]
sage: D.allow_loops(False); D
Digraph on 1 vertex
sage: D.has_loops()
False
sage: D.edges()
[]
"""
return self._backend.loops(None)
def allow_loops(self, new, check=True):
"""
Changes whether loops are permitted in the (di)graph.
INPUT:
- ``new`` - boolean.
EXAMPLES::
sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops()
False
sage: G.allows_loops()
True
sage: G.add_edge((0,0))
sage: G.has_loops()
True
sage: G.loops()
[(0, 0, None)]
sage: G.allow_loops(False); G
Graph on 1 vertex
sage: G.has_loops()
False
sage: G.edges()
[]
sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()
False
sage: D.allows_loops()
True
sage: D.add_edge((0,0))
sage: D.has_loops()
True
sage: D.loops()
[(0, 0, None)]
sage: D.allow_loops(False); D
Digraph on 1 vertex
sage: D.has_loops()
False
sage: D.edges()
[]
"""
if new is False and check:
self.remove_loops()
self._backend.loops(new)
def loops(self, new=None, labels=True):
"""
Returns any loops in the (di)graph.
INPUT:
- ``new`` -- deprecated
- ``labels`` -- whether returned edges have labels ((u,v,l)) or not ((u,v)).
EXAMPLES::
sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops()
False
sage: G.allows_loops()
True
sage: G.add_edge((0,0))
sage: G.has_loops()
True
sage: G.loops()
[(0, 0, None)]
sage: G.allow_loops(False); G
Graph on 1 vertex
sage: G.has_loops()
False
sage: G.edges()
[]
sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()
False
sage: D.allows_loops()
True
sage: D.add_edge((0,0))
sage: D.has_loops()
True
sage: D.loops()
[(0, 0, None)]
sage: D.allow_loops(False); D
Digraph on 1 vertex
sage: D.has_loops()
False
sage: D.edges()
[]
sage: G = graphs.PetersenGraph()
sage: G.loops()
[]
"""
from sage.misc.misc import deprecation
if new is not None:
deprecation("The function loops is replaced by allow_loops and allows_loops.")
loops = []
for v in self:
loops += self.edge_boundary([v], [v], labels)
return loops
def has_multiple_edges(self, to_undirected=False):
"""
Returns whether there are multiple edges in the (di)graph.
INPUT:
- ``to_undirected`` -- (default: False) If True, runs the test on the undirected version of a DiGraph.
Otherwise, treats DiGraph edges (u,v) and (v,u) as unique individual edges.
EXAMPLES::
sage: G = Graph(multiedges=True,sparse=True); G
Multi-graph on 0 vertices
sage: G.has_multiple_edges()
False
sage: G.allows_multiple_edges()
True
sage: G.add_edges([(0,1)]*3)
sage: G.has_multiple_edges()
True
sage: G.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: G.allow_multiple_edges(False); G
Graph on 2 vertices
sage: G.has_multiple_edges()
False
sage: G.edges()
[(0, 1, None)]
sage: D = DiGraph(multiedges=True,sparse=True); D
Multi-digraph on 0 vertices
sage: D.has_multiple_edges()
False
sage: D.allows_multiple_edges()
True
sage: D.add_edges([(0,1)]*3)
sage: D.has_multiple_edges()
True
sage: D.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: D.allow_multiple_edges(False); D
Digraph on 2 vertices
sage: D.has_multiple_edges()
False
sage: D.edges()
[(0, 1, None)]
sage: G = DiGraph({1:{2: 'h'}, 2:{1:'g'}},sparse=True)
sage: G.has_multiple_edges()
False
sage: G.has_multiple_edges(to_undirected=True)
True
sage: G.multiple_edges()
[]
sage: G.multiple_edges(to_undirected=True)
[(1, 2, 'h'), (2, 1, 'g')]
"""
if self.allows_multiple_edges() or (self._directed and to_undirected):
if self._directed:
for u in self:
s = set()
for a,b,c in self.outgoing_edge_iterator(u):
if b in s:
return True
s.add(b)
if to_undirected:
for a,b,c in self.incoming_edge_iterator(u):
if a in s:
return True
s.add(a)
else:
for u in self:
s = set()
for a,b,c in self.edge_iterator(u):
if a is u:
if b in s:
return True
s.add(b)
if b is u:
if a in s:
return True
s.add(a)
return False
def allows_multiple_edges(self):
"""
Returns whether multiple edges are permitted in the (di)graph.
EXAMPLES::
sage: G = Graph(multiedges=True,sparse=True); G
Multi-graph on 0 vertices
sage: G.has_multiple_edges()
False
sage: G.allows_multiple_edges()
True
sage: G.add_edges([(0,1)]*3)
sage: G.has_multiple_edges()
True
sage: G.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: G.allow_multiple_edges(False); G
Graph on 2 vertices
sage: G.has_multiple_edges()
False
sage: G.edges()
[(0, 1, None)]
sage: D = DiGraph(multiedges=True,sparse=True); D
Multi-digraph on 0 vertices
sage: D.has_multiple_edges()
False
sage: D.allows_multiple_edges()
True
sage: D.add_edges([(0,1)]*3)
sage: D.has_multiple_edges()
True
sage: D.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: D.allow_multiple_edges(False); D
Digraph on 2 vertices
sage: D.has_multiple_edges()
False
sage: D.edges()
[(0, 1, None)]
"""
return self._backend.multiple_edges(None)
def allow_multiple_edges(self, new, check=True):
"""
Changes whether multiple edges are permitted in the (di)graph.
INPUT:
- ``new`` - boolean.
EXAMPLES::
sage: G = Graph(multiedges=True,sparse=True); G
Multi-graph on 0 vertices
sage: G.has_multiple_edges()
False
sage: G.allows_multiple_edges()
True
sage: G.add_edges([(0,1)]*3)
sage: G.has_multiple_edges()
True
sage: G.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: G.allow_multiple_edges(False); G
Graph on 2 vertices
sage: G.has_multiple_edges()
False
sage: G.edges()
[(0, 1, None)]
sage: D = DiGraph(multiedges=True,sparse=True); D
Multi-digraph on 0 vertices
sage: D.has_multiple_edges()
False
sage: D.allows_multiple_edges()
True
sage: D.add_edges([(0,1)]*3)
sage: D.has_multiple_edges()
True
sage: D.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: D.allow_multiple_edges(False); D
Digraph on 2 vertices
sage: D.has_multiple_edges()
False
sage: D.edges()
[(0, 1, None)]
"""
seen = set()
if self.allows_multiple_edges() and new is False and check:
for u,v,l in self.multiple_edges():
if (u,v) in seen:
self.delete_edge(u,v,l)
else:
seen.add((u,v))
self._backend.multiple_edges(new)
def multiple_edges(self, new=None, to_undirected=False, labels=True):
"""
Returns any multiple edges in the (di)graph.
EXAMPLES::
sage: G = Graph(multiedges=True,sparse=True); G
Multi-graph on 0 vertices
sage: G.has_multiple_edges()
False
sage: G.allows_multiple_edges()
True
sage: G.add_edges([(0,1)]*3)
sage: G.has_multiple_edges()
True
sage: G.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: G.allow_multiple_edges(False); G
Graph on 2 vertices
sage: G.has_multiple_edges()
False
sage: G.edges()
[(0, 1, None)]
sage: D = DiGraph(multiedges=True,sparse=True); D
Multi-digraph on 0 vertices
sage: D.has_multiple_edges()
False
sage: D.allows_multiple_edges()
True
sage: D.add_edges([(0,1)]*3)
sage: D.has_multiple_edges()
True
sage: D.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: D.allow_multiple_edges(False); D
Digraph on 2 vertices
sage: D.has_multiple_edges()
False
sage: D.edges()
[(0, 1, None)]
sage: G = DiGraph({1:{2: 'h'}, 2:{1:'g'}},sparse=True)
sage: G.has_multiple_edges()
False
sage: G.has_multiple_edges(to_undirected=True)
True
sage: G.multiple_edges()
[]
sage: G.multiple_edges(to_undirected=True)
[(1, 2, 'h'), (2, 1, 'g')]
"""
from sage.misc.misc import deprecation
if new is not None:
deprecation("The function multiple_edges is replaced by allow_multiple_edges and allows_multiple_edges.")
multi_edges = []
if self._directed and not to_undirected:
for v in self:
for u in self.neighbor_in_iterator(v):
edges = self.edge_boundary([u], [v], labels)
if len(edges) > 1:
multi_edges += edges
else:
to_undirected *= self._directed
for v in self:
for u in self.neighbor_iterator(v):
if hash(u) >= hash(v):
edges = self.edge_boundary([v], [u], labels)
if to_undirected:
edges += self.edge_boundary([u],[v], labels)
if len(edges) > 1:
multi_edges += edges
return multi_edges
def name(self, new=None):
"""
Returns or sets the graph's name.
INPUT:
- ``new`` - if not None, then this becomes the new name of the (di)graph.
(if new == '', removes any name)
EXAMPLES::
sage: d = {0: [1,4,5], 1: [2,6], 2: [3,7], 3: [4,8], 4: [9], 5: [7, 8], 6: [8,9], 7: [9]}
sage: G = Graph(d); G
Graph on 10 vertices
sage: G.name("Petersen Graph"); G
Petersen Graph: Graph on 10 vertices
sage: G.name(new=""); G
Graph on 10 vertices
sage: G.name()
''
"""
return self._backend.name(new)
def get_pos(self, dim = 2):
"""
Returns the position dictionary, a dictionary specifying the
coordinates of each vertex.
EXAMPLES: By default, the position of a graph is None::
sage: G = Graph()
sage: G.get_pos()
sage: G.get_pos() is None
True
sage: P = G.plot(save_pos=True)
sage: G.get_pos()
{}
Some of the named graphs come with a pre-specified positioning::
sage: G = graphs.PetersenGraph()
sage: G.get_pos()
{0: (...e-17, 1.0),
...
9: (0.475..., 0.154...)}
"""
if dim == 2:
return self._pos
elif dim == 3:
return getattr(self, "_pos3d", None)
else:
raise ValueError("dim must be 2 or 3")
def check_pos_validity(self, pos=None, dim = 2):
r"""
Checks whether pos specifies two (resp. 3) coordinates for every vertex (and no more vertices).
INPUT:
- ``pos`` - a position dictionary for a set of vertices
- ``dim`` - 2 or 3 (default: 3
OUTPUT:
If ``pos`` is ``None`` then the position dictionary of ``self`` is
investigated, otherwise the position dictionary provided in ``pos`` is
investigated. The function returns ``True`` if the dictionary is of the
correct form for ``self``.
EXAMPLES::
sage: p = {0: [1, 5], 1: [0, 2], 2: [1, 3], 3: [8, 2], 4: [0, 9], 5: [0, 8], 6: [8, 1], 7: [9, 5], 8: [3, 5], 9: [6, 7]}
sage: G = graphs.PetersenGraph()
sage: G.check_pos_validity(p)
True
"""
if pos is None:
pos = self.get_pos(dim = dim)
if pos is None:
return False
if len(pos) != self.order():
return False
for v in pos:
if not self.has_vertex(v):
return False
if len(pos[v]) != dim:
return False
return True
def set_pos(self, pos, dim = 2):
"""
Sets the position dictionary, a dictionary specifying the
coordinates of each vertex.
EXAMPLES: Note that set_pos will allow you to do ridiculous things,
which will not blow up until plotting::
sage: G = graphs.PetersenGraph()
sage: G.get_pos()
{0: (..., ...),
...
9: (..., ...)}
::
sage: G.set_pos('spam')
sage: P = G.plot()
Traceback (most recent call last):
...
TypeError: string indices must be integers, not str
"""
if dim == 2:
self._pos = pos
elif dim == 3:
self._pos3d = pos
else:
raise ValueError("dim must be 2 or 3")
def weighted(self, new=None):
"""
Whether the (di)graph is to be considered as a weighted (di)graph.
Note that edge weightings can still exist for (di)graphs ``G`` where
``G.weighted()`` is ``False``.
EXAMPLES:
Here we have two graphs with different labels, but ``weighted()`` is
``False`` for both, so we just check for the presence of edges::
sage: G = Graph({0:{1:'a'}}, sparse=True)
sage: H = Graph({0:{1:'b'}}, sparse=True)
sage: G == H
True
Now one is weighted and the other is not, and thus the graphs are
not equal::
sage: G.weighted(True)
sage: H.weighted()
False
sage: G == H
False
However, if both are weighted, then we finally compare 'a' to 'b'::
sage: H.weighted(True)
sage: G == H
False
TESTS:
Ensure that ticket #10490 is fixed: allows a weighted graph to be
set as unweighted. ::
sage: G = Graph({1:{2:3}})
sage: G.weighted()
False
sage: G.weighted('a')
sage: G.weighted(True)
sage: G.weighted()
True
sage: G.weighted('a')
sage: G.weighted()
True
sage: G.weighted(False)
sage: G.weighted()
False
sage: G.weighted('a')
sage: G.weighted()
False
sage: G.weighted(True)
sage: G.weighted()
True
"""
if new is not None:
if new in [True, False]:
self._weighted = new
else:
return self._weighted
def antisymmetric(self):
r"""
Tests whether the graph is antisymmetric.
A graph represents an antisymmetric relation if there being a path
from a vertex x to a vertex y implies that there is not a path from
y to x unless x=y.
A directed acyclic graph is antisymmetric. An undirected graph is
never antisymmetric unless it is just a union of isolated
vertices.
::
sage: graphs.RandomGNP(20,0.5).antisymmetric()
False
sage: digraphs.RandomDirectedGNR(20,0.5).antisymmetric()
True
"""
if not self._directed:
if self.size()-len(self.loop_edges())>0:
return False
else:
return True
from copy import copy
g = copy(self)
g.allow_multiple_edges(False)
g.allow_loops(False)
g = g.transitive_closure()
gpaths = g.edges(labels=False)
for e in gpaths:
if (e[1],e[0]) in gpaths:
return False
return True
def density(self):
"""
Returns the density (number of edges divided by number of possible
edges).
In the case of a multigraph, raises an error, since there is an
infinite number of possible edges.
EXAMPLES::
sage: d = {0: [1,4,5], 1: [2,6], 2: [3,7], 3: [4,8], 4: [9], 5: [7, 8], 6: [8,9], 7: [9]}
sage: G = Graph(d); G.density()
1/3
sage: G = Graph({0:[1,2], 1:[0] }); G.density()
2/3
sage: G = DiGraph({0:[1,2], 1:[0] }); G.density()
1/2
Note that there are more possible edges on a looped graph::
sage: G.allow_loops(True)
sage: G.density()
1/3
"""
if self.has_multiple_edges():
raise TypeError("Density is not well-defined for multigraphs.")
from sage.rings.rational import Rational
n = self.order()
if self.allows_loops():
if n == 0:
return Rational(0)
if self._directed:
return Rational(self.size())/Rational(n**2)
else:
return Rational(self.size())/Rational((n**2 + n)/2)
else:
if n < 2:
return Rational(0)
if self._directed:
return Rational(self.size())/Rational((n**2 - n))
else:
return Rational(self.size())/Rational((n**2 - n)/2)
def is_eulerian(self, path=False):
r"""
Return true if the graph has a (closed) tour that visits each edge exactly
once.
INPUT:
- ``path`` -- by default this function finds if the graph contains a closed
tour visiting each edge once, i.e. an eulerian cycle. If you want to test
the existence of an eulerian path, set this argument to ``True``. Graphs
with this property are sometimes called semi-eulerian.
OUTPUT:
``True`` or ``False`` for the closed tour case. For an open tour search
(``path``=``True``) the function returns ``False`` if the graph is not
semi-eulerian, or a tuple (u, v) in the other case. This tuple defines the
edge that would make the graph eulerian, i.e. close an existing open tour.
This edge may or may not be already present in the graph.
EXAMPLES::
sage: graphs.CompleteGraph(4).is_eulerian()
False
sage: graphs.CycleGraph(4).is_eulerian()
True
sage: g = DiGraph({0:[1,2], 1:[2]}); g.is_eulerian()
False
sage: g = DiGraph({0:[2], 1:[3], 2:[0,1], 3:[2]}); g.is_eulerian()
True
sage: g = DiGraph({0:[1], 1:[2], 2:[0], 3:[]}); g.is_eulerian()
True
sage: g = Graph([(1,2), (2,3), (3,1), (4,5), (5,6), (6,4)]); g.is_eulerian()
False
::
sage: g = DiGraph({0: [1]}); g.is_eulerian(path=True)
(1, 0)
sage: graphs.CycleGraph(4).is_eulerian(path=True)
False
sage: g = DiGraph({0: [1], 1: [2,3], 2: [4]}); g.is_eulerian(path=True)
False
::
sage: g = Graph({0:[1,2,3], 1:[2,3], 2:[3,4], 3:[4]}, multiedges=True)
sage: g.is_eulerian()
False
sage: e = g.is_eulerian(path=True); e
(0, 1)
sage: g.add_edge(e)
sage: g.is_eulerian(path=False)
True
sage: g.is_eulerian(path=True)
False
TESTS::
sage: g = Graph({0:[], 1:[], 2:[], 3:[]}); g.is_eulerian()
True
"""
nontrivial_components = 0
for cc in self.connected_components():
if len(cc) > 1:
nontrivial_components += 1
if nontrivial_components > 1:
return False
uv = [None, None]
if self._directed:
for v in self.vertex_iterator():
if self.in_degree(v) != self.out_degree(v):
if path:
diff = self.out_degree(v) - self.in_degree(v)
if abs(diff) > 1:
return False
else:
if uv[(diff+1)/2] != None:
return False
else:
uv[(diff+1)/2] = v
else:
return False
else:
for v in self.vertex_iterator():
if self.degree(v) % 2 != 0:
if not path:
return False
else:
if uv[0] is None or uv[1] is None:
uv[0 if uv[0] is None else 1] = v
else:
return False
if path and (uv[0] is None or uv[1] is None):
return False
return True if not path else tuple(uv)
def is_tree(self):
"""
Return True if the graph is a tree.
EXAMPLES::
sage: for g in graphs.trees(6):
... g.is_tree()
True
True
True
True
True
True
"""
if not self.is_connected():
return False
if self.num_verts() != self.num_edges() + 1:
return False
return True
def is_forest(self):
"""
Return True if the graph is a forest, i.e. a disjoint union of
trees.
EXAMPLES::
sage: seven_acre_wood = sum(graphs.trees(7), Graph())
sage: seven_acre_wood.is_forest()
True
"""
number_of_connected_components = len(self.connected_components())
return self.num_verts() == self.num_edges() + number_of_connected_components
def is_overfull(self):
r"""
Tests whether the current graph is overfull.
A graph `G` on `n` vertices and `m` edges is said to
be overfull if:
- `n` is odd
- It satisfies `2m > (n-1)\Delta(G)`, where
`\Delta(G)` denotes the maximum degree
among all vertices in `G`.
An overfull graph must have a chromatic index of `\Delta(G)+1`.
EXAMPLES:
A complete graph of order `n > 1` is overfull if and only if `n` is
odd::
sage: graphs.CompleteGraph(6).is_overfull()
False
sage: graphs.CompleteGraph(7).is_overfull()
True
sage: graphs.CompleteGraph(1).is_overfull()
False
The claw graph is not overfull::
sage: from sage.graphs.graph_coloring import edge_coloring
sage: g = graphs.ClawGraph()
sage: g
Claw graph: Graph on 4 vertices
sage: edge_coloring(g, value_only=True)
3
sage: g.is_overfull()
False
Checking that all complete graphs `K_n` for even `0 \leq n \leq 100`
are not overfull::
sage: def check_overfull_Kn_even(n):
... i = 0
... while i <= n:
... if graphs.CompleteGraph(i).is_overfull():
... print "A complete graph of even order cannot be overfull."
... return
... i += 2
... print "Complete graphs of even order up to %s are not overfull." % n
...
sage: check_overfull_Kn_even(100) # long time
Complete graphs of even order up to 100 are not overfull.
The null graph, i.e. the graph with no vertices, is not overfull::
sage: Graph().is_overfull()
False
sage: graphs.CompleteGraph(0).is_overfull()
False
Checking that all complete graphs `K_n` for odd `1 < n \leq 100`
are overfull::
sage: def check_overfull_Kn_odd(n):
... i = 3
... while i <= n:
... if not graphs.CompleteGraph(i).is_overfull():
... print "A complete graph of odd order > 1 must be overfull."
... return
... i += 2
... print "Complete graphs of odd order > 1 up to %s are overfull." % n
...
sage: check_overfull_Kn_odd(100) # long time
Complete graphs of odd order > 1 up to 100 are overfull.
The Petersen Graph, though, is not overfull while
its chromatic index is `\Delta+1`::
sage: g = graphs.PetersenGraph()
sage: g.is_overfull()
False
sage: from sage.graphs.graph_coloring import edge_coloring
sage: max(g.degree()) + 1 == edge_coloring(g, value_only=True)
True
"""
return (self.order() % 2 == 1) and (
2 * self.size() > max(self.degree()) * (self.order() - 1))
def order(self):
"""
Returns the number of vertices. Note that len(G) returns the number
of vertices in G also.
EXAMPLES::
sage: G = graphs.PetersenGraph()
sage: G.order()
10
::
sage: G = graphs.TetrahedralGraph()
sage: len(G)
4
"""
return self._backend.num_verts()
__len__ = order
num_verts = order
def size(self):
"""
Returns the number of edges.
EXAMPLES::
sage: G = graphs.PetersenGraph()
sage: G.size()
15
"""
return self._backend.num_edges(self._directed)
num_edges = size
def eulerian_orientation(self):
r"""
Returns a DiGraph which is an Eulerian orientation of the current graph.
An Eulerian graph being a graph such that any vertex has an even degree,
an Eulerian orientation of a graph is an orientation of its edges such
that each vertex `v` verifies `d^+(v)=d^-(v)=d(v)/2`, where `d^+` and
`d^-` respectively represent the out-degree and the in-degree of a vertex.
If the graph is not Eulerian, the orientation verifies for any vertex `v`
that `| d^+(v)-d^-(v) | \leq 1`.
ALGORITHM:
This algorithm is a random walk through the edges of the graph, which
orients the edges according to the walk. When a vertex is reached which
has no non-oriented edge ( this vertex must have odd degree ), the
walk resumes at another vertex of odd degree, if any.
This algorithm has complexity `O(m)`, where `m` is the number of edges
in the graph.
EXAMPLES:
The CubeGraph with parameter 4, which is regular of even degree, has an
Eulerian orientation such that `d^+=d^-`::
sage: g=graphs.CubeGraph(4)
sage: g.degree()
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
sage: o=g.eulerian_orientation()
sage: o.in_degree()
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
sage: o.out_degree()
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
Secondly, the Petersen Graph, which is 3 regular has an orientation
such that the difference between `d^+` and `d^-` is at most 1::
sage: g=graphs.PetersenGraph()
sage: o=g.eulerian_orientation()
sage: o.in_degree()
[2, 2, 2, 2, 2, 1, 1, 1, 1, 1]
sage: o.out_degree()
[1, 1, 1, 1, 1, 2, 2, 2, 2, 2]
"""
from copy import copy
g=copy(self)
from sage.graphs.digraph import DiGraph
d=DiGraph()
d.add_vertices(g.vertex_iterator())
from itertools import izip
odd=[x for (x,deg) in izip(g.vertex_iterator(),g.degree_iterator()) if deg%2==1]
if len(odd)>0:
v=odd.pop()
else:
v=g.edge_iterator(labels=None).next()[0]
odd.append(v)
while True:
if g.degree(v)>0:
e = g.edge_iterator(v).next()
g.delete_edge(e)
if e[0]!=v:
e=(e[1],e[0],e[2])
d.add_edge(e)
v=e[1]
else:
odd.remove(v)
if len(odd)>0:
v=odd.pop()
elif g.size()>0:
v=g.edge_iterator().next()[0]
odd.append(v)
else:
return d
def eulerian_circuit(self, return_vertices=False, labels=True, path=False):
r"""
Return a list of edges forming an eulerian circuit if one exists.
Otherwise return False.
This is implemented using Hierholzer's algorithm.
INPUT:
- ``return_vertices`` -- (default: ``False``) optionally provide a list of
vertices for the path
- ``labels`` -- (default: ``True``) whether to return edges with labels
(3-tuples)
- ``path`` -- (default: ``False``) find an eulerian path instead
OUTPUT:
either ([edges], [vertices]) or [edges] of an Eulerian circuit (or path)
EXAMPLES::
sage: g=graphs.CycleGraph(5);
sage: g.eulerian_circuit()
[(0, 4, None), (4, 3, None), (3, 2, None), (2, 1, None), (1, 0, None)]
sage: g.eulerian_circuit(labels=False)
[(0, 4), (4, 3), (3, 2), (2, 1), (1, 0)]
::
sage: g = graphs.CompleteGraph(7)
sage: edges, vertices = g.eulerian_circuit(return_vertices=True)
sage: vertices
[0, 6, 5, 4, 6, 3, 5, 2, 4, 3, 2, 6, 1, 5, 0, 4, 1, 3, 0, 2, 1, 0]
::
sage: graphs.CompleteGraph(4).eulerian_circuit()
False
A disconnected graph can be eulerian::
sage: g = Graph({0: [], 1: [2], 2: [3], 3: [1], 4: []})
sage: g.eulerian_circuit(labels=False)
[(1, 3), (3, 2), (2, 1)]
::
sage: g = DiGraph({0: [1], 1: [2, 4], 2:[3], 3:[1]})
sage: g.eulerian_circuit(labels=False, path=True)
[(0, 1), (1, 2), (2, 3), (3, 1), (1, 4)]
::
sage: g = Graph({0:[1,2,3], 1:[2,3], 2:[3,4], 3:[4]})
sage: g.is_eulerian(path=True)
(0, 1)
sage: g.eulerian_circuit(labels=False, path=True)
[(1, 3), (3, 4), (4, 2), (2, 3), (3, 0), (0, 2), (2, 1), (1, 0)]
TESTS::
sage: Graph({'H': ['G','L','L','D'], 'L': ['G','D']}).eulerian_circuit(labels=False)
[('H', 'D'), ('D', 'L'), ('L', 'G'), ('G', 'H'), ('H', 'L'), ('L', 'H')]
sage: Graph({0: [0, 1, 1, 1, 1]}).eulerian_circuit(labels=False)
[(0, 1), (1, 0), (0, 1), (1, 0), (0, 0)]
"""
if self.order() == 0:
return ([], []) if return_vertices else []
edge = self.is_eulerian(path=path)
if not edge:
return False
if path:
start_vertex = edge[0]
edges = []
vertices = []
if self.is_directed():
g = self.reverse()
else:
from copy import copy
g = copy(self)
if not path:
start_vertex = None
for v in g.vertex_iterator():
if g.degree(v) != 0:
start_vertex = v
break
stack = [ (start_vertex, None) ]
while len(stack) != 0:
v, e = stack.pop()
degr = g.out_degree(v) if self.is_directed() else g.degree(v)
if degr == 0:
vertices.append(v)
if e != None:
edges.append(e if labels else (e[0], e[1]))
else:
if self.is_directed():
next_edge = g.outgoing_edge_iterator(v).next()
else:
next_edge = g.edge_iterator(v).next()
if next_edge[0] == v:
next_edge_new = (next_edge[1], next_edge[0], next_edge[2])
else:
next_edge_new = next_edge
next_vertex = next_edge_new[0]
stack.append((v, e))
stack.append((next_vertex, next_edge_new))
g.delete_edge(next_edge)
if return_vertices:
return edges, vertices
else:
return edges
def min_spanning_tree(self,
weight_function=lambda e: 1,
algorithm="Kruskal",
starting_vertex=None,
check=False):
r"""
Returns the edges of a minimum spanning tree.
INPUT:
- ``weight_function`` -- A function that takes an edge and returns a
numeric weight. Defaults to assigning each edge a weight of 1.
- ``algorithm`` -- The algorithm to use in computing a minimum spanning
tree of ``G``. The default is to use Kruskal's algorithm. The
following algorithms are supported:
- ``"Kruskal"`` -- Kruskal's algorithm.
- ``"Prim_fringe"`` -- a variant of Prim's algorithm.
``"Prim_fringe"`` ignores the labels on the edges.
- ``"Prim_edge"`` -- a variant of Prim's algorithm.
- ``NetworkX`` -- Uses NetworkX's minimum spanning tree
implementation.
- ``starting_vertex`` -- The vertex from which to begin the search
for a minimum spanning tree.
- ``check`` -- Boolean; default: ``False``. Whether to first perform
sanity checks on the input graph ``G``. If appropriate, ``check``
is passed on to any minimum spanning tree functions that are
invoked from the current method. See the documentation of the
corresponding functions for details on what sort of sanity checks
will be performed.
OUTPUT:
The edges of a minimum spanning tree of ``G``, if one exists, otherwise
returns the empty list.
.. seealso::
- :func:`sage.graphs.spanning_tree.kruskal`
EXAMPLES:
Kruskal's algorithm::
sage: g = graphs.CompleteGraph(5)
sage: len(g.min_spanning_tree())
4
sage: weight = lambda e: 1 / ((e[0] + 1) * (e[1] + 1))
sage: g.min_spanning_tree(weight_function=weight)
[(3, 4, None), (2, 4, None), (1, 4, None), (0, 4, None)]
sage: g = graphs.PetersenGraph()
sage: g.allow_multiple_edges(True)
sage: g.weighted(True)
sage: g.add_edges(g.edges())
sage: g.min_spanning_tree()
[(0, 1, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 6, None), (2, 3, None), (2, 7, None), (3, 8, None), (4, 9, None)]
Prim's algorithm::
sage: g = graphs.CompleteGraph(5)
sage: g.min_spanning_tree(algorithm='Prim_edge', starting_vertex=2, weight_function=weight)
[(2, 4, None), (3, 4, None), (1, 4, None), (0, 4, None)]
sage: g.min_spanning_tree(algorithm='Prim_fringe', starting_vertex=2, weight_function=weight)
[(2, 4), (4, 3), (4, 1), (4, 0)]
"""
if algorithm == "Kruskal":
from spanning_tree import kruskal
return kruskal(self, wfunction=weight_function, check=check)
elif algorithm == "Prim_fringe":
if starting_vertex is None:
v = self.vertex_iterator().next()
else:
v = starting_vertex
tree = set([v])
edges = []
fringe_list = dict([u, (weight_function((v, u)), v)] for u in self[v])
cmp_fun = lambda x: fringe_list[x]
for i in range(self.order() - 1):
u = min(fringe_list, key=cmp_fun)
edges.append((fringe_list[u][1], u))
tree.add(u)
fringe_list.pop(u)
for neighbor in [v for v in self[u] if v not in tree]:
w = weight_function((u, neighbor))
if neighbor not in fringe_list or fringe_list[neighbor][0] > w:
fringe_list[neighbor] = (w, u)
return edges
elif algorithm == "Prim_edge":
if starting_vertex is None:
v = self.vertex_iterator().next()
else:
v = starting_vertex
sorted_edges = sorted(self.edges(), key=weight_function)
tree = set([v])
edges = []
for _ in range(self.order() - 1):
i = 0
while True:
e = sorted_edges[i]
v0, v1 = e[0], e[1]
if v0 in tree:
del sorted_edges[i]
if v1 in tree:
continue
edges.append(e)
tree.add(v1)
break
elif v1 in tree:
del sorted_edges[i]
edges.append(e)
tree.add(v0)
break
else:
i += 1
return edges
elif algorithm == "NetworkX":
import networkx
G = networkx.Graph([(u, v, dict(weight=weight_function((u, v)))) for u, v, l in self.edge_iterator()])
return list(networkx.mst(G))
else:
raise NotImplementedError("Minimum Spanning Tree algorithm '%s' is not implemented." % algorithm)
def spanning_trees_count(self, root_vertex=None):
"""
Returns the number of spanning trees in a graph.
In the case of a digraph, counts the number of spanning out-trees rooted
in ``root_vertex``. Default is to set first vertex as root.
This computation uses Kirchhoff's Matrix Tree Theorem [1] to calculate
the number of spanning trees. For complete graphs on `n` vertices the
result can also be reached using Cayley's formula: the number of
spanning trees are `n^(n-2)`.
For digraphs, the augmented Kirchhoff Matrix as defined in [2] is
used for calculations. Here the result is the number of out-trees
rooted at a specific vertex.
INPUT:
- ``root_vertex`` -- integer (default: the first vertex) This is the vertex
that will be used as root for all spanning out-trees if the graph
is a directed graph. This argument is ignored if the graph is not a digraph.
REFERENCES:
- [1] http://mathworld.wolfram.com/MatrixTreeTheorem.html
- [2] Lih-Hsing Hsu, Cheng-Kuan Lin, "Graph Theory and
Interconnection Networks"
AUTHORS:
- Anders Jonsson (2009-10-10)
EXAMPLES::
sage: G = graphs.PetersenGraph()
sage: G.spanning_trees_count()
2000
::
sage: n = 11
sage: G = graphs.CompleteGraph(n)
sage: ST = G.spanning_trees_count()
sage: ST == n^(n-2)
True
::
sage: M=matrix(3,3,[0,1,0,0,0,1,1,1,0])
sage: D=DiGraph(M)
sage: D.spanning_trees_count()
1
sage: D.spanning_trees_count(0)
1
sage: D.spanning_trees_count(2)
2
"""
if self.is_directed() == False:
M=self.kirchhoff_matrix()
M.subdivide(1,1)
M2 = M.subdivision(1,1)
return abs(M2.determinant())
else:
if root_vertex == None:
root_vertex=self.vertex_iterator().next()
if root_vertex not in self.vertices():
raise ValueError, ("Vertex (%s) not in the graph."%root_vertex)
M=self.kirchhoff_matrix()
index=self.vertices().index(root_vertex)
M[index,index]+=1
return abs(M.determinant())
def cycle_basis(self):
r"""
Returns a list of cycles which form a basis of the cycle space
of ``self``.
A basis of cycles of a graph is a minimal collection of cycles
(considered as sets of edges) such that the edge set of any
cycle in the graph can be written as a `Z/2Z` sum of the
cycles in the basis.
OUTPUT:
A list of lists, each of them representing the vertices of a
cycle in a basis.
ALGORITHM:
Uses the NetworkX library.
EXAMPLE:
A cycle basis in Petersen's Graph ::
sage: g = graphs.PetersenGraph()
sage: g.cycle_basis()
[[1, 2, 7, 5, 0], [8, 3, 2, 7, 5], [4, 3, 2, 7, 5, 0], [4, 9, 7, 5, 0], [8, 6, 9, 7, 5], [1, 6, 9, 7, 5, 0]]
Checking the given cycles are algebraically free::
sage: g = graphs.RandomGNP(30,.4)
sage: basis = g.cycle_basis()
Building the space of (directed) edges over `Z/2Z`. On the way,
building a dictionary associating an unique vector to each
undirected edge::
sage: m = g.size()
sage: edge_space = VectorSpace(FiniteField(2),m)
sage: edge_vector = dict( zip( g.edges(labels = False), edge_space.basis() ) )
sage: for (u,v),vec in edge_vector.items():
... edge_vector[(v,u)] = vec
Defining a lambda function associating a vector to the
vertices of a cycle::
sage: vertices_to_edges = lambda x : zip( x, x[1:] + [x[0]] )
sage: cycle_to_vector = lambda x : sum( edge_vector[e] for e in vertices_to_edges(x) )
Finally checking the cycles are a free set::
sage: basis_as_vectors = map( cycle_to_vector, basis )
sage: edge_space.span(basis_as_vectors).rank() == len(basis)
True
"""
import networkx
return networkx.cycle_basis(self.networkx_graph(copy=False))
def minimum_outdegree_orientation(self, use_edge_labels=False, solver=None, verbose=0):
r"""
Returns an orientation of ``self`` with the smallest possible maximum
outdegree.
Given a Graph `G`, is is polynomial to compute an orientation
`D` of the edges of `G` such that the maximum out-degree in
`D` is minimized. This problem, though, is NP-complete in the
weighted case [AMOZ06]_.
INPUT:
- ``use_edge_labels`` -- boolean (default: ``False``)
- When set to ``True``, uses edge labels as weights to
compute the orientation and assumes a weight of `1`
when there is no value available for a given edge.
- When set to ``False`` (default), gives a weight of 1
to all the edges.
- ``solver`` -- (default: ``None``) Specify a Linear Program (LP)
solver to be used. If set to ``None``, the default one is used. For
more information on LP solvers and which default solver is used, see
the method
:meth:`solve <sage.numerical.mip.MixedIntegerLinearProgram.solve>`
of the class
:class:`MixedIntegerLinearProgram <sage.numerical.mip.MixedIntegerLinearProgram>`.
- ``verbose`` -- integer (default: ``0``). Sets the level of
verbosity. Set to 0 by default, which means quiet.
EXAMPLE:
Given a complete bipartite graph `K_{n,m}`, the maximum out-degree
of an optimal orientation is `\left\lceil \frac {nm} {n+m}\right\rceil`::
sage: g = graphs.CompleteBipartiteGraph(3,4)
sage: o = g.minimum_outdegree_orientation()
sage: max(o.out_degree()) == ceil((4*3)/(3+4))
True
REFERENCES:
.. [AMOZ06] Asahiro, Y. and Miyano, E. and Ono, H. and Zenmyo, K.
Graph orientation algorithms to minimize the maximum outdegree
Proceedings of the 12th Computing: The Australasian Theory Symposium
Volume 51, page 20
Australian Computer Society, Inc. 2006
"""
if self.is_directed():
raise ValueError("Cannot compute an orientation of a DiGraph. "+\
"Please convert it to a Graph if you really mean it.")
if use_edge_labels:
from sage.rings.real_mpfr import RR
weight = lambda u,v : self.edge_label(u,v) if self.edge_label(u,v) in RR else 1
else:
weight = lambda u,v : 1
from sage.numerical.mip import MixedIntegerLinearProgram, Sum
p = MixedIntegerLinearProgram(maximization=False, solver=solver)
orientation = p.new_variable(dim=2)
degree = p.new_variable()
outgoing = lambda u,v,variable : (1-variable) if u>v else variable
for u in self:
p.add_constraint(Sum([weight(u,v)*outgoing(u,v,orientation[min(u,v)][max(u,v)]) for v in self.neighbors(u)])-degree['max'],max=0)
p.set_objective(degree['max'])
p.set_binary(orientation)
p.solve(log=verbose)
orientation = p.get_values(orientation)
from sage.graphs.digraph import DiGraph
O = DiGraph(self)
edges=[]
for u,v in self.edge_iterator(labels=None):
if u>v:
u,v=v,u
if orientation[min(u,v)][max(u,v)] == 1:
edges.append((max(u,v),min(u,v)))
else:
edges.append((min(u,v),max(u,v)))
O.delete_edges(edges)
return O
def is_planar(self, on_embedding=None, kuratowski=False, set_embedding=False, set_pos=False):
"""
Returns True if the graph is planar, and False otherwise. This
wraps the reference implementation provided by John Boyer of the
linear time planarity algorithm by edge addition due to Boyer
Myrvold. (See reference code in graphs.planarity).
Note - the argument on_embedding takes precedence over
set_embedding. This means that only the on_embedding
combinatorial embedding will be tested for planarity and no
_embedding attribute will be set as a result of this function
call, unless on_embedding is None.
REFERENCE:
- [1] John M. Boyer and Wendy J. Myrvold, On the Cutting Edge:
Simplified O(n) Planarity by Edge Addition. Journal of Graph
Algorithms and Applications, Vol. 8, No. 3, pp. 241-273,
2004.
INPUT:
- ``kuratowski`` - returns a tuple with boolean as
first entry. If the graph is nonplanar, will return the Kuratowski
subgraph or minor as the second tuple entry. If the graph is
planar, returns None as the second entry.
- ``on_embedding`` - the embedding dictionary to test
planarity on. (i.e.: will return True or False only for the given
embedding.)
- ``set_embedding`` - whether or not to set the
instance field variable that contains a combinatorial embedding
(clockwise ordering of neighbors at each vertex). This value will
only be set if a planar embedding is found. It is stored as a
Python dict: v1: [n1,n2,n3] where v1 is a vertex and n1,n2,n3 are
its neighbors.
- ``set_pos`` - whether or not to set the position
dictionary (for plotting) to reflect the combinatorial embedding.
Note that this value will default to False if set_emb is set to
False. Also, the position dictionary will only be updated if a
planar embedding is found.
EXAMPLES::
sage: g = graphs.CubeGraph(4)
sage: g.is_planar()
False
::
sage: g = graphs.CircularLadderGraph(4)
sage: g.is_planar(set_embedding=True)
True
sage: g.get_embedding()
{0: [1, 4, 3],
1: [2, 5, 0],
2: [3, 6, 1],
3: [0, 7, 2],
4: [0, 5, 7],
5: [1, 6, 4],
6: [2, 7, 5],
7: [4, 6, 3]}
::
sage: g = graphs.PetersenGraph()
sage: (g.is_planar(kuratowski=True))[1].adjacency_matrix()
[0 1 0 0 0 1 0 0 0]
[1 0 1 0 0 0 1 0 0]
[0 1 0 1 0 0 0 1 0]
[0 0 1 0 0 0 0 0 1]
[0 0 0 0 0 0 1 1 0]
[1 0 0 0 0 0 0 1 1]
[0 1 0 0 1 0 0 0 1]
[0 0 1 0 1 1 0 0 0]
[0 0 0 1 0 1 1 0 0]
::
sage: k43 = graphs.CompleteBipartiteGraph(4,3)
sage: result = k43.is_planar(kuratowski=True); result
(False, Graph on 6 vertices)
sage: result[1].is_isomorphic(graphs.CompleteBipartiteGraph(3,3))
True
Multi-edged and looped graphs are partially supported::
sage: G = Graph({0:[1,1]}, multiedges=True)
sage: G.is_planar()
True
sage: G.is_planar(on_embedding={})
Traceback (most recent call last):
...
NotImplementedError: Cannot compute with embeddings of multiple-edged or looped graphs.
sage: G.is_planar(set_pos=True)
Traceback (most recent call last):
...
NotImplementedError: Cannot compute with embeddings of multiple-edged or looped graphs.
sage: G.is_planar(set_embedding=True)
Traceback (most recent call last):
...
NotImplementedError: Cannot compute with embeddings of multiple-edged or looped graphs.
sage: G.is_planar(kuratowski=True)
(True, None)
::
sage: G = graphs.CompleteGraph(5)
sage: G = Graph(G, multiedges=True)
sage: G.add_edge(0,1)
sage: G.is_planar()
False
sage: b,k = G.is_planar(kuratowski=True)
sage: b
False
sage: k.vertices()
[0, 1, 2, 3, 4]
"""
if self.has_multiple_edges() or self.has_loops():
if set_embedding or (on_embedding is not None) or set_pos:
raise NotImplementedError("Cannot compute with embeddings of multiple-edged or looped graphs.")
else:
return self.to_simple().is_planar(kuratowski=kuratowski)
if on_embedding:
if self.check_embedding_validity(on_embedding):
return (0 == self.genus(minimal=False,set_embedding=False,on_embedding=on_embedding))
else:
raise Exception('on_embedding is not a valid embedding for %s.'%self)
else:
from sage.graphs.planarity import is_planar
G = self.to_undirected()
planar = is_planar(G,kuratowski=kuratowski,set_pos=set_pos,set_embedding=set_embedding)
if kuratowski:
bool_result = planar[0]
else:
bool_result = planar
if bool_result:
if set_pos:
self._pos = G._pos
if set_embedding:
self._embedding = G._embedding
return planar
def is_circular_planar(self, ordered=True, on_embedding=None, kuratowski=False, set_embedding=False, set_pos=False):
"""
Tests whether the graph is circular planar (outerplanar)
A graph (with nonempty boundary) is circular planar if it has a
planar embedding in which all boundary vertices can be drawn in
order on a disc boundary, with all the interior vertices drawn
inside the disc.
Returns True if the graph is circular planar, and False if it is
not. If kuratowski is set to True, then this function will return a
tuple, with boolean first entry and second entry the Kuratowski
subgraph or minor isolated by the Boyer-Myrvold algorithm. Note
that this graph might contain a vertex or edges that were not in
the initial graph. These would be elements referred to below as
parts of the wheel and the star, which were added to the graph to
require that the boundary can be drawn on the boundary of a disc,
with all other vertices drawn inside (and no edge crossings). For
more information, refer to reference [2].
This is a linear time algorithm to test for circular planarity. It
relies on the edge-addition planarity algorithm due to
Boyer-Myrvold. We accomplish linear time for circular planarity by
modifying the graph before running the general planarity
algorithm.
REFERENCE:
- [1] John M. Boyer and Wendy J. Myrvold, On the Cutting Edge:
Simplified O(n) Planarity by Edge Addition. Journal of Graph
Algorithms and Applications, Vol. 8, No. 3, pp. 241-273,
2004.
- [2] Kirkman, Emily A. O(n) Circular Planarity
Testing. [Online] Available: soon!
INPUT:
- ``ordered`` - whether or not to consider the order
of the boundary (set ordered=False to see if there is any possible
boundary order that will satisfy circular planarity)
- ``kuratowski`` - if set to True, returns a tuple
with boolean first entry and the Kuratowski subgraph or minor as
the second entry. See notes above.
- ``on_embedding`` - the embedding dictionary to test
planarity on. (i.e.: will return True or False only for the given
embedding.)
- ``set_embedding`` - whether or not to set the
instance field variable that contains a combinatorial embedding
(clockwise ordering of neighbors at each vertex). This value will
only be set if a circular planar embedding is found. It is stored
as a Python dict: v1: [n1,n2,n3] where v1 is a vertex and n1,n2,n3
are its neighbors.
- ``set_pos`` - whether or not to set the position
dictionary (for plotting) to reflect the combinatorial embedding.
Note that this value will default to False if set_emb is set to
False. Also, the position dictionary will only be updated if a
circular planar embedding is found.
EXAMPLES::
sage: g439 = Graph({1:[5,7], 2:[5,6], 3:[6,7], 4:[5,6,7]})
sage: g439.set_boundary([1,2,3,4])
sage: g439.show(figsize=[2,2], vertex_labels=True, vertex_size=175)
sage: g439.is_circular_planar()
False
sage: g439.is_circular_planar(kuratowski=True)
(False, Graph on 7 vertices)
sage: g439.set_boundary([1,2,3])
sage: g439.is_circular_planar(set_embedding=True, set_pos=False)
True
sage: g439.is_circular_planar(kuratowski=True)
(True, None)
sage: g439.get_embedding()
{1: [7, 5],
2: [5, 6],
3: [6, 7],
4: [7, 6, 5],
5: [4, 2, 1],
6: [4, 3, 2],
7: [3, 4, 1]}
Order matters::
sage: K23 = graphs.CompleteBipartiteGraph(2,3)
sage: K23.set_boundary([0,1,2,3])
sage: K23.is_circular_planar()
False
sage: K23.is_circular_planar(ordered=False)
True
sage: K23.set_boundary([0,2,1,3]) # Diff Order!
sage: K23.is_circular_planar(set_embedding=True)
True
For graphs without a boundary, circular planar is the same as planar::
sage: g = graphs.KrackhardtKiteGraph()
sage: g.is_circular_planar()
True
"""
boundary = self.get_boundary()
if not boundary:
return self.is_planar(on_embedding, kuratowski, set_embedding, set_pos)
from sage.graphs.planarity import is_planar
graph = self.to_undirected()
if hasattr(graph, '_embedding'):
del(graph._embedding)
extra = 0
while graph.has_vertex(extra):
extra=extra+1
graph.add_vertex(extra)
for vertex in boundary:
graph.add_edge(vertex,extra)
extra_edges = []
if ordered:
for i in range(len(boundary)-1):
if not graph.has_edge(boundary[i],boundary[i+1]):
graph.add_edge(boundary[i],boundary[i+1])
extra_edges.append((boundary[i],boundary[i+1]))
if not graph.has_edge(boundary[-1],boundary[0]):
graph.add_edge(boundary[-1],boundary[0])
extra_edges.append((boundary[-1],boundary[0]))
result = is_planar(graph,kuratowski=kuratowski,set_embedding=set_embedding,circular=True)
if kuratowski:
bool_result = result[0]
else:
bool_result = result
if bool_result:
graph.delete_vertex(extra)
graph.delete_edges(extra_edges)
if hasattr(graph,'_embedding'):
for u,v in extra_edges:
graph._embedding[u].pop(graph._embedding[u].index(v))
graph._embedding[v].pop(graph._embedding[v].index(u))
for w in boundary:
graph._embedding[w].pop(graph._embedding[w].index(extra))
if set_embedding:
self._embedding = graph._embedding
if (set_pos and set_embedding):
self.set_planar_positions()
return result
def set_planar_positions(self, test = False, **layout_options):
"""
Compute a planar layout for self using Schnyder's algorithm,
and save it as default layout.
EXAMPLES::
sage: g = graphs.CycleGraph(7)
sage: g.set_planar_positions(test=True)
True
This method is deprecated. Please use instead:
sage: g.layout(layout = "planar", save_pos = True)
{0: [1, 1], 1: [2, 2], 2: [3, 2], 3: [1, 4], 4: [5, 1], 5: [0, 5], 6: [1, 0]}
"""
self.layout(layout = "planar", save_pos = True, test = test, **layout_options)
if test:
return self.is_drawn_free_of_edge_crossings()
else:
return
def layout_planar(self, set_embedding=False, on_embedding=None, external_face=None, test=False, circular=False, **options):
"""
Uses Schnyder's algorithm to compute a planar layout for self,
raising an error if self is not planar.
INPUT:
- ``set_embedding`` - if True, sets the combinatorial
embedding used (see self.get_embedding())
- ``on_embedding`` - dict: provide a combinatorial
embedding
- ``external_face`` - ignored
- ``test`` - if True, perform sanity tests along the way
- ``circular`` - ignored
EXAMPLES::
sage: g = graphs.PathGraph(10)
sage: g.set_planar_positions(test=True)
True
sage: g = graphs.BalancedTree(3,4)
sage: g.set_planar_positions(test=True)
True
sage: g = graphs.CycleGraph(7)
sage: g.set_planar_positions(test=True)
True
sage: g = graphs.CompleteGraph(5)
sage: g.set_planar_positions(test=True,set_embedding=True)
Traceback (most recent call last):
...
Exception: Complete graph is not a planar graph.
"""
from sage.graphs.schnyder import _triangulate, _normal_label, _realizer, _compute_coordinates
G = self.to_undirected()
try:
G._embedding = self._embedding
except AttributeError:
pass
embedding_copy = None
if set_embedding:
if not (G.is_planar(set_embedding=True)):
raise Exception('%s is not a planar graph.'%self)
embedding_copy = G._embedding
else:
if on_embedding is not None:
if G.check_embedding_validity(on_embedding):
if not (G.is_planar(on_embedding=on_embedding)):
raise Exception( 'Provided embedding is not a planar embedding for %s.'%self )
else:
raise Exception('Provided embedding is not a valid embedding for %s. Try putting set_embedding=True.'%self)
else:
if hasattr(G,'_embedding'):
if G.check_embedding_validity():
if not (G.is_planar(on_embedding=G._embedding)):
raise Exception('%s has nonplanar _embedding attribute. Try putting set_embedding=True.'%self)
embedding_copy = G._embedding
else:
raise Exception('Provided embedding is not a valid embedding for %s. Try putting set_embedding=True.'%self)
else:
G.is_planar(set_embedding=True)
extra_edges = _triangulate( G, G._embedding)
if test:
G.is_planar(set_embedding=True)
test_faces = G.trace_faces(G._embedding)
for face in test_faces:
if len(face) != 3:
raise Exception('BUG: Triangulation returned face: %s'%face)
G.is_planar(set_embedding=True)
faces = G.trace_faces(G._embedding)
label = _normal_label( G, G._embedding, faces[0] )
tree_nodes = _realizer( G, label)
_compute_coordinates( G, tree_nodes )
if embedding_copy is not None:
self._embedding = embedding_copy
return G._pos
def is_drawn_free_of_edge_crossings(self):
"""
Returns True is the position dictionary for this graph is set and
that position dictionary gives a planar embedding.
This simply checks all pairs of edges that don't share a vertex to
make sure that they don't intersect.
.. note::
This function require that _pos attribute is set. (Returns
False otherwise.)
EXAMPLES::
sage: D = graphs.DodecahedralGraph()
sage: D.set_planar_positions()
sage: D.is_drawn_free_of_edge_crossings()
True
"""
if self._pos is None:
return False
G = self.to_undirected()
for edge1 in G.edges(labels = False):
for edge2 in G.edges(labels = False):
if edge1[0] == edge2[0] or edge1[0] == edge2[1] or edge1[1] == edge2[0] or edge1[1] == edge2[1]:
continue
p1, p2 = self._pos[edge1[0]], self._pos[edge1[1]]
dy = Rational(p2[1] - p1[1])
dx = Rational(p2[0] - p1[0])
q1, q2 = self._pos[edge2[0]], self._pos[edge2[1]]
db = Rational(q2[1] - q1[1])
da = Rational(q2[0] - q1[0])
if(da * dy == db * dx):
if dx != 0:
t1 = Rational(q1[0] - p1[0])/dx
t2 = Rational(q2[0] - p1[0])/dx
if (0 <= t1 and t1 <= 1) or (0 <= t2 and t2 <= 1):
if p1[1] + t1 * dy == q1[1] or p1[1] + t2 * dy == q2[1]:
return False
else:
t1 = Rational(q1[1] - p1[1])/dy
t2 = Rational(q2[1] - p1[1])/dy
if (0 <= t1 and t1 <= 1) or (0 <= t2 and t2 <= 1):
if p1[0] + t1 * dx == q1[0] or p1[0] + t2 * dx == q2[0]:
return False
else:
s = (dx * Rational(q1[1] - p1[1]) + dy * Rational(p1[0] - q1[0])) / (da * dy - db * dx)
t = (da * Rational(p1[1] - q1[1]) + db * Rational(q1[0] - p1[0])) / (db * dx - da * dy)
if s >= 0 and s <= 1 and t >= 0 and t <= 1:
print 'fail on', p1, p2, ' : ',q1, q2
print edge1, edge2
return False
return True
def genus(self, set_embedding=True, on_embedding=None, minimal=True, maximal=False, circular=False, ordered=True):
"""
Returns the minimal genus of the graph. The genus of a compact
surface is the number of handles it has. The genus of a graph is
the minimal genus of the surface it can be embedded into.
Note - This function uses Euler's formula and thus it is necessary
to consider only connected graphs.
INPUT:
- ``set_embedding (boolean)`` - whether or not to
store an embedding attribute of the computed (minimal) genus of the
graph. (Default is True).
- ``on_embedding (dict)`` - a combinatorial embedding
to compute the genus of the graph on. Note that this must be a
valid embedding for the graph. The dictionary structure is given
by: vertex1: [neighbor1, neighbor2, neighbor3], vertex2: [neighbor]
where there is a key for each vertex in the graph and a (clockwise)
ordered list of each vertex's neighbors as values. on_embedding
takes precedence over a stored _embedding attribute if minimal is
set to False. Note that as a shortcut, the user can enter
on_embedding=True to compute the genus on the current _embedding
attribute. (see eg's.)
- ``minimal (boolean)`` - whether or not to compute
the minimal genus of the graph (i.e., testing all embeddings). If
minimal is False, then either maximal must be True or on_embedding
must not be None. If on_embedding is not None, it will take
priority over minimal. Similarly, if maximal is True, it will take
priority over minimal.
- ``maximal (boolean)`` - whether or not to compute
the maximal genus of the graph (i.e., testing all embeddings). If
maximal is False, then either minimal must be True or on_embedding
must not be None. If on_embedding is not None, it will take
priority over maximal. However, maximal takes priority over the
default minimal.
- ``circular (boolean)`` - whether or not to compute
the genus preserving a planar embedding of the boundary. (Default
is False). If circular is True, on_embedding is not a valid
option.
- ``ordered (boolean)`` - if circular is True, then
whether or not the boundary order may be permuted. (Default is
True, which means the boundary order is preserved.)
EXAMPLES::
sage: g = graphs.PetersenGraph()
sage: g.genus() # tests for minimal genus by default
1
sage: g.genus(on_embedding=True, maximal=True) # on_embedding overrides minimal and maximal arguments
1
sage: g.genus(maximal=True) # setting maximal to True overrides default minimal=True
3
sage: g.genus(on_embedding=g.get_embedding()) # can also send a valid combinatorial embedding dict
3
sage: (graphs.CubeGraph(3)).genus()
0
sage: K23 = graphs.CompleteBipartiteGraph(2,3)
sage: K23.genus()
0
sage: K33 = graphs.CompleteBipartiteGraph(3,3)
sage: K33.genus()
1
Using the circular argument, we can compute the minimal genus
preserving a planar, ordered boundary::
sage: cube = graphs.CubeGraph(2)
sage: cube.set_boundary(['01','10'])
sage: cube.genus()
0
sage: cube.is_circular_planar()
True
sage: cube.genus(circular=True)
0
sage: cube.genus(circular=True, on_embedding=True)
0
sage: cube.genus(circular=True, maximal=True)
Traceback (most recent call last):
...
NotImplementedError: Cannot compute the maximal genus of a genus respecting a boundary.
Note: not everything works for multigraphs, looped graphs or digraphs. But the
minimal genus is ultimately computable for every connected graph -- but the
embedding we obtain for the simple graph can't be easily converted to an
embedding of a non-simple graph. Also, the maximal genus of a multigraph does
not trivially correspond to that of its simple graph.
sage: G = DiGraph({ 0 : [0,1,1,1], 1 : [2,2,3,3], 2 : [1,3,3], 3:[0,3]})
sage: G.genus()
Traceback (most recent call last):
...
NotImplementedError: Can't work with embeddings of non-simple graphs
sage: G.to_simple().genus()
0
sage: G.genus(set_embedding=False)
0
sage: G.genus(maximal=True, set_embedding=False)
Traceback (most recent call last):
...
NotImplementedError: Can't compute the maximal genus of a graph with loops or multiple edges
We break graphs with cut vertices into their blocks, which greatly speeds up
computation of minimal genus. This is not implemented for maximal genus.
sage: K5 = graphs.CompleteGraph(5)
sage: G = K5.copy()
sage: s = 4
sage: for i in range(1,100):
... k = K5.relabel(range(s,s+5),inplace=False)
... G.add_edges(k.edges())
... s += 4
...
sage: G.genus()
100
"""
if not self.is_connected():
raise TypeError("Graph must be connected to use Euler's Formula to compute minimal genus.")
G = self.to_simple()
verts = G.order()
edges = G.size()
if maximal:
minimal = False
if circular:
if maximal:
raise NotImplementedError, "Cannot compute the maximal genus of a genus respecting a boundary."
boundary = G.get_boundary()
if hasattr(G, '_embedding'):
del(G._embedding)
extra = 0
while G.has_vertex(extra):
extra=extra+1
G.add_vertex(extra)
verts += 1
for vertex in boundary:
G.add_edge(vertex,extra)
extra_edges = []
if ordered:
for i in range(len(boundary)-1):
if not G.has_edge(boundary[i],boundary[i+1]):
G.add_edge(boundary[i],boundary[i+1])
extra_edges.append((boundary[i],boundary[i+1]))
if not G.has_edge(boundary[-1],boundary[0]):
G.add_edge(boundary[-1],boundary[0])
extra_edges.append((boundary[-1],boundary[0]))
edges = G.size()
if on_embedding is not None:
if self.has_loops() or self.is_directed() or self.has_multiple_edges():
raise NotImplementedError, "Can't work with embeddings of non-simple graphs"
if on_embedding:
if not hasattr(self,'_embedding'):
raise Exception("Graph must have attribute _embedding set to compute current (embedded) genus.")
faces = len(self.trace_faces(self._embedding))
return (2-verts+edges-faces)/2
else:
faces = len(self.trace_faces(on_embedding))
return (2-verts+edges-faces)/2
else:
import genus
if set_embedding:
if self.has_loops() or self.is_directed() or self.has_multiple_edges():
raise NotImplementedError, "Can't work with embeddings of non-simple graphs"
if minimal:
B,C = G.blocks_and_cut_vertices()
embedding = {}
g = 0
for block in B:
H = G.subgraph(block)
g += genus.simple_connected_graph_genus(H, set_embedding = True, check = False, minimal = True)
emb = H.get_embedding()
for v in emb:
if embedding.has_key(v):
embedding[v] += emb[v]
else:
embedding[v] = emb[v]
self._embedding = embedding
else:
g = genus.simple_connected_graph_genus(G, set_embedding = True, check = False, minimal = minimal)
self._embedding = G._embedding
return g
else:
if maximal and (self.has_multiple_edges() or self.has_loops()):
raise NotImplementedError, "Can't compute the maximal genus of a graph with loops or multiple edges"
if minimal:
B,C = G.blocks_and_cut_vertices()
g = 0
for block in B:
H = G.subgraph(block)
g += genus.simple_connected_graph_genus(H, set_embedding = False, check = False, minimal = True)
return g
else:
return genus.simple_connected_graph_genus(G, set_embedding = False, check=False, minimal=minimal)
def trace_faces(self, comb_emb):
"""
A helper function for finding the genus of a graph. Given a graph
and a combinatorial embedding (rot_sys), this function will
compute the faces (returned as a list of lists of edges (tuples) of
the particular embedding.
Note - rot_sys is an ordered list based on the hash order of the
vertices of graph. To avoid confusion, it might be best to set the
rot_sys based on a 'nice_copy' of the graph.
INPUT:
- ``comb_emb`` - a combinatorial embedding
dictionary. Format: v1:[v2,v3], v2:[v1], v3:[v1] (clockwise
ordering of neighbors at each vertex.)
EXAMPLES::
sage: T = graphs.TetrahedralGraph()
sage: T.trace_faces({0: [1, 3, 2], 1: [0, 2, 3], 2: [0, 3, 1], 3: [0, 1, 2]})
[[(0, 1), (1, 2), (2, 0)],
[(3, 2), (2, 1), (1, 3)],
[(2, 3), (3, 0), (0, 2)],
[(0, 3), (3, 1), (1, 0)]]
"""
from sage.sets.set import Set
edgeset = Set([])
for edge in self.to_undirected().edges():
edgeset = edgeset.union(Set([(edge[0],edge[1]),(edge[1],edge[0])]))
faces = []
path = []
for edge in edgeset:
path.append(edge)
edgeset -= Set([edge])
break
while (len(edgeset) > 0):
neighbors = comb_emb[path[-1][-1]]
next_node = neighbors[(neighbors.index(path[-1][-2])+1)%(len(neighbors))]
tup = (path[-1][-1],next_node)
if tup == path[0]:
faces.append(path)
path = []
for edge in edgeset:
path.append(edge)
edgeset -= Set([edge])
break
else:
path.append(tup)
edgeset -= Set([tup])
if (len(path) != 0): faces.append(path)
return faces
def is_connected(self):
"""
Indicates whether the (di)graph is connected. Note that in a graph,
path connected is equivalent to connected.
EXAMPLES::
sage: G = Graph( { 0 : [1, 2], 1 : [2], 3 : [4, 5], 4 : [5] } )
sage: G.is_connected()
False
sage: G.add_edge(0,3)
sage: G.is_connected()
True
sage: D = DiGraph( { 0 : [1, 2], 1 : [2], 3 : [4, 5], 4 : [5] } )
sage: D.is_connected()
False
sage: D.add_edge(0,3)
sage: D.is_connected()
True
sage: D = DiGraph({1:[0], 2:[0]})
sage: D.is_connected()
True
"""
if self.order() == 0:
return True
try:
return self._backend.is_connected()
except AttributeError:
v = self.vertex_iterator().next()
conn_verts = list(self.depth_first_search(v, ignore_direction=True))
return len(conn_verts) == self.num_verts()
def connected_components(self):
"""
Returns the list of connected components.
Returns a list of lists of vertices, each list representing a
connected component. The list is ordered from largest to smallest
component.
EXAMPLES::
sage: G = Graph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: G.connected_components()
[[0, 1, 2, 3], [4, 5, 6]]
sage: D = DiGraph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: D.connected_components()
[[0, 1, 2, 3], [4, 5, 6]]
"""
seen = set()
components = []
for v in self:
if v not in seen:
c = self.connected_component_containing_vertex(v)
seen.update(c)
components.append(c)
components.sort(lambda comp1, comp2: cmp(len(comp2), len(comp1)))
return components
def connected_components_number(self):
"""
Returns the number of connected components.
EXAMPLES::
sage: G = Graph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: G.connected_components_number()
2
sage: D = DiGraph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: D.connected_components_number()
2
"""
return len(self.connected_components())
def connected_components_subgraphs(self):
"""
Returns a list of connected components as graph objects.
EXAMPLES::
sage: G = Graph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: L = G.connected_components_subgraphs()
sage: graphs_list.show_graphs(L)
sage: D = DiGraph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: L = D.connected_components_subgraphs()
sage: graphs_list.show_graphs(L)
"""
cc = self.connected_components()
list = []
for c in cc:
list.append(self.subgraph(c, inplace=False))
return list
def connected_component_containing_vertex(self, vertex):
"""
Returns a list of the vertices connected to vertex.
EXAMPLES::
sage: G = Graph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: G.connected_component_containing_vertex(0)
[0, 1, 2, 3]
sage: D = DiGraph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: D.connected_component_containing_vertex(0)
[0, 1, 2, 3]
"""
try:
c = list(self._backend.depth_first_search(vertex, ignore_direction=True))
except AttributeError:
c = list(self.depth_first_search(vertex, ignore_direction=True))
c.sort()
return c
def blocks_and_cut_vertices(self):
"""
Computes the blocks and cut vertices of the graph.
In the case of a digraph, this computation is done on the underlying
graph.
A cut vertex is one whose deletion increases the number of
connected components. A block is a maximal induced subgraph which
itself has no cut vertices. Two distinct blocks cannot overlap in
more than a single cut vertex.
OUTPUT: ``( B, C )``, where ``B`` is a list of blocks- each is
a list of vertices and the blocks are the corresponding induced
subgraphs-and ``C`` is a list of cut vertices.
EXAMPLES::
sage: graphs.PetersenGraph().blocks_and_cut_vertices()
([[6, 4, 9, 7, 5, 8, 3, 2, 1, 0]], [])
sage: graphs.PathGraph(6).blocks_and_cut_vertices()
([[5, 4], [4, 3], [3, 2], [2, 1], [1, 0]], [4, 3, 2, 1])
sage: graphs.CycleGraph(7).blocks_and_cut_vertices()
([[6, 5, 4, 3, 2, 1, 0]], [])
sage: graphs.KrackhardtKiteGraph().blocks_and_cut_vertices()
([[9, 8], [8, 7], [7, 4, 6, 5, 2, 3, 1, 0]], [8, 7])
sage: G=Graph() # make a bowtie graph where 0 is a cut vertex
sage: G.add_vertices(range(5))
sage: G.add_edges([(0,1),(0,2),(0,3),(0,4),(1,2),(3,4)])
sage: G.blocks_and_cut_vertices()
([[2, 1, 0], [4, 3, 0]], [0])
sage: graphs.StarGraph(3).blocks_and_cut_vertices()
([[1, 0], [2, 0], [3, 0]], [0])
TESTS::
sage: Graph(0).blocks_and_cut_vertices()
([], [])
sage: Graph(1).blocks_and_cut_vertices()
([0], [])
sage: Graph(2).blocks_and_cut_vertices()
Traceback (most recent call last):
...
NotImplementedError: ...
ALGORITHM: 8.3.8 in [Jungnickel05]_. Notice that the termination condition on
line (23) of the algorithm uses ``p[v] == 0`` which in the book
means that the parent is undefined; in this case, `v` must be the
root `s`. Since our vertex names start with `0`, we substitute instead
the condition ``v == s``. This is the terminating condition used
in the general Depth First Search tree in Algorithm 8.2.1.
REFERENCE:
.. [Jungnickel05] D. Jungnickel, Graphs, Networks and Algorithms,
Springer, 2005.
"""
if not self:
return [],[]
s = self.vertex_iterator().next()
if len(self) == 1:
return [s],[]
if not self.is_connected():
raise NotImplementedError("Blocks and cut vertices is currently only implemented for connected graphs.")
nr = {}
p = {}
L = {}
visited_edges = set()
i = 1
v = s
nr[s] = 1
L[s] = 1
C = []
B = []
S = [s]
its = {}
while True:
while True:
for u in self.neighbor_iterator(v):
if not (v,u) in visited_edges: break
else:
break
visited_edges.add((v,u))
visited_edges.add((u,v))
if u not in nr:
p[u] = v
i += 1
nr[u] = i
L[u] = i
S.append(u)
v = u
else:
L[v] = min( L[v], nr[u] )
if v is s:
break
pv = p[v]
if L[v] < nr[pv]:
L[pv] = min( L[pv], L[v] )
v = pv
continue
if pv not in C:
if pv is not s or\
not all([(s,u) in visited_edges for u in self.neighbor_iterator(s)]):
C.append(pv)
B_k = []
while True:
u = S.pop()
B_k.append(u)
if u == v: break
B_k.append(pv)
B.append(B_k)
v = pv
return B, C
def steiner_tree(self,vertices, weighted = False, solver = None, verbose = 0):
r"""
Returns a tree of minimum weight connecting the given
set of vertices.
Definition :
Computing a minimum spanning tree in a graph can be done in `n
\log(n)` time (and in linear time if all weights are equal) where
`n = V + E`. On the other hand, if one is given a large (possibly
weighted) graph and a subset of its vertices, it is NP-Hard to
find a tree of minimum weight connecting the given set of
vertices, which is then called a Steiner Tree.
`Wikipedia article on Steiner Trees
<http://en.wikipedia.org/wiki/Steiner_tree_problem>`_.
INPUT:
- ``vertices`` -- the vertices to be connected by the Steiner
Tree.
- ``weighted`` (boolean) -- Whether to consider the graph as
weighted, and use each edge's label as a weight, considering
``None`` as a weight of `1`. If ``weighted=False`` (default)
all edges are considered to have a weight of `1`.
- ``solver`` -- (default: ``None``) Specify a Linear Program (LP)
solver to be used. If set to ``None``, the default one is used. For
more information on LP solvers and which default solver is used, see
the method
:meth:`solve <sage.numerical.mip.MixedIntegerLinearProgram.solve>`
of the class
:class:`MixedIntegerLinearProgram <sage.numerical.mip.MixedIntegerLinearProgram>`.
- ``verbose`` -- integer (default: ``0``). Sets the level of
verbosity. Set to 0 by default, which means quiet.
.. NOTE::
* This problem being defined on undirected graphs, the
orientation is not considered if the current graph is
actually a digraph.
* The graph is assumed not to have multiple edges.
ALGORITHM:
Solved through Linear Programming.
COMPLEXITY:
NP-Hard.
Note that this algorithm first checks whether the given
set of vertices induces a connected graph, returning one of its
spanning trees if ``weighted`` is set to ``False``, and thus
answering very quickly in some cases
EXAMPLES:
The Steiner Tree of the first 5 vertices in a random graph is,
of course, always a tree ::
sage: g = graphs.RandomGNP(30,.5)
sage: st = g.steiner_tree(g.vertices()[:5])
sage: st.is_tree()
True
And all the 5 vertices are contained in this tree ::
sage: all([v in st for v in g.vertices()[:5] ])
True
An exception is raised when the problem is impossible, i.e.
if the given vertices are not all included in the same
connected component ::
sage: g = 2 * graphs.PetersenGraph()
sage: st = g.steiner_tree([5,15])
Traceback (most recent call last):
...
ValueError: The given vertices do not all belong to the same connected component. This problem has no solution !
"""
if self.is_directed():
g = Graph(self)
else:
g = self
if g.has_multiple_edges():
raise ValueError("The graph is expected not to have multiple edges.")
cc = g.connected_component_containing_vertex(vertices[0])
if not all([v in cc for v in vertices]):
raise ValueError("The given vertices do not all belong to the same connected component. This problem has no solution !")
if not weighted:
gg = g.subgraph(vertices)
if gg.is_connected():
st = g.subgraph(edges = gg.min_spanning_tree())
st.delete_vertices([v for v in g if st.degree(v) == 0])
return st
from sage.numerical.mip import MixedIntegerLinearProgram, Sum
p = MixedIntegerLinearProgram(maximization = False, solver = solver)
R = lambda (x,y) : (x,y) if x<y else (y,x)
edges = p.new_variable()
r_edges = p.new_variable()
vertex = p.new_variable()
for v in g:
for e in g.edges_incident(v, labels=False):
p.add_constraint(vertex[v] - edges[R(e)], min = 0)
for v in vertices:
p.add_constraint(Sum([edges[R(e)] for e in g.edges_incident(v,labels=False)]), min=1)
p.add_constraint(Sum([vertex[v] for v in g]) - Sum([edges[R(e)] for e in g.edges(labels=None)]), max = 1, min = 1)
for u,v in g.edges(labels = False):
p.add_constraint( r_edges[(u,v)]+ r_edges[(v,u)] - edges[R((u,v))] , min = 0 )
eps = 1/(5*Integer(g.order()))
for v in g:
p.add_constraint(Sum([r_edges[(u,v)] for u in g.neighbors(v)]), max = 1-eps)
if weighted:
w = lambda (x,y) : g.edge_label(x,y) if g.edge_label(x,y) is not None else 1
else:
w = lambda (x,y) : 1
p.set_objective(Sum([w(e)*edges[R(e)] for e in g.edges(labels = False)]))
p.set_binary(edges)
p.solve(log = verbose)
edges = p.get_values(edges)
st = g.subgraph(edges=[e for e in g.edges(labels = False) if edges[R(e)] == 1])
st.delete_vertices([v for v in g if st.degree(v) == 0])
return st
def edge_disjoint_spanning_trees(self,k, root=None, solver = None, verbose = 0):
r"""
Returns the desired number of edge-disjoint spanning
trees/arborescences.
INPUT:
- ``k`` (integer) -- the required number of edge-disjoint
spanning trees/arborescences
- ``root`` (vertex) -- root of the disjoint arborescences
when the graph is directed.
If set to ``None``, the first vertex in the graph is picked.
- ``solver`` -- (default: ``None``) Specify a Linear Program (LP)
solver to be used. If set to ``None``, the default one is used. For
more information on LP solvers and which default solver is used, see
the method
:meth:`solve <sage.numerical.mip.MixedIntegerLinearProgram.solve>`
of the class
:class:`MixedIntegerLinearProgram <sage.numerical.mip.MixedIntegerLinearProgram>`.
- ``verbose`` -- integer (default: ``0``). Sets the level of
verbosity. Set to 0 by default, which means quiet.
ALGORITHM:
Mixed Integer Linear Program. The formulation can be found
in [JVNC]_.
There are at least two possible rewritings of this method
which do not use Linear Programming:
* The algorithm presented in the paper entitled "A short
proof of the tree-packing theorem", by Thomas Kaiser
[KaisPacking]_.
* The implementation of a Matroid class and of the Matroid
Union Theorem (see section 42.3 of [SchrijverCombOpt]_),
applied to the cycle Matroid (see chapter 51 of
[SchrijverCombOpt]_).
EXAMPLES:
The Petersen Graph does have a spanning tree (it is connected)::
sage: g = graphs.PetersenGraph()
sage: [T] = g.edge_disjoint_spanning_trees(1)
sage: T.is_tree()
True
Though, it does not have 2 edge-disjoint trees (as it has less
than `2(|V|-1)` edges)::
sage: g.edge_disjoint_spanning_trees(2)
Traceback (most recent call last):
...
ValueError: This graph does not contain the required number of trees/arborescences !
By Edmond's theorem, a graph which is `k`-connected always has `k` edge-disjoint
arborescences, regardless of the root we pick::
sage: g = digraphs.RandomDirectedGNP(28,.3) # reduced from 30 to 28, cf. #9584
sage: k = Integer(g.edge_connectivity())
sage: arborescences = g.edge_disjoint_spanning_trees(k) # long time (up to 15s on sage.math, 2011)
sage: all([a.is_directed_acyclic() for a in arborescences]) # long time
True
sage: all([a.is_connected() for a in arborescences]) # long time
True
In the undirected case, we can only ensure half of it::
sage: g = graphs.RandomGNP(30,.3)
sage: k = floor(Integer(g.edge_connectivity())/2)
sage: trees = g.edge_disjoint_spanning_trees(k)
sage: all([t.is_tree() for t in trees])
True
REFERENCES:
.. [JVNC] David Joyner, Minh Van Nguyen, and Nathann Cohen,
Algorithmic Graph Theory,
http://code.google.com/p/graph-theory-algorithms-book/
.. [KaisPacking] Thomas Kaiser
A short proof of the tree-packing theorem
http://arxiv.org/abs/0911.2809
.. [SchrijverCombOpt] Alexander Schrijver
Combinatorial optimization: polyhedra and efficiency
2003
"""
from sage.numerical.mip import MixedIntegerLinearProgram, MIPSolverException, Sum
p = MixedIntegerLinearProgram(solver = solver)
p.set_objective(None)
colors = range(0,k)
edges = p.new_variable(dim=2)
if root == None:
root = self.vertex_iterator().next()
r_edges = p.new_variable(dim=2)
epsilon = 1/(3*(Integer(self.order())))
if self.is_directed():
S = lambda (x,y) : (x,y)
for e in self.edges(labels=False):
p.add_constraint(Sum([edges[j][e] for j in colors]), max=1)
for j in colors:
p.add_constraint(Sum([edges[j][e] for e in self.edges(labels=None)]), min=self.order()-1)
for v in self.vertices():
if v is not root:
p.add_constraint(Sum([edges[j][e] for e in self.incoming_edges(v, labels=None)]), max=1, min=1)
else:
p.add_constraint(Sum([edges[j][e] for e in self.incoming_edges(v, labels=None)]), max=0, min=0)
for u,v in self.edges(labels=None):
if self.has_edge(v,u):
if v<u:
p.add_constraint(r_edges[j][(u,v)] + r_edges[j][(v, u)] - edges[j][(u,v)] - edges[j][(v,u)], min=0)
else:
p.add_constraint(r_edges[j][(u,v)] + r_edges[j][(v, u)] - edges[j][(u,v)], min=0)
from sage.graphs.digraph import DiGraph
D = DiGraph()
D.add_vertices(self.vertices())
D.set_pos(self.get_pos())
classes = [D.copy() for j in colors]
else:
S = lambda (x,y) : (x,y) if x<y else (y,x)
for e in self.edges(labels=False):
p.add_constraint(Sum([edges[j][S(e)] for j in colors]), max=1)
for j in colors:
p.add_constraint(Sum([edges[j][S(e)] for e in self.edges(labels=None)]), min=self.order()-1)
for v in self.vertices():
p.add_constraint(Sum([edges[j][S(e)] for e in self.edges_incident(v, labels=None)]), min=1)
for u,v in self.edges(labels=None):
p.add_constraint(r_edges[j][(u,v)] + r_edges[j][(v, u)] - edges[j][S((u,v))], min=0)
from sage.graphs.graph import Graph
D = Graph()
D.add_vertices(self.vertices())
D.set_pos(self.get_pos())
classes = [D.copy() for j in colors]
for j in colors:
for v in self:
p.add_constraint(Sum(r_edges[j][(u,v)] for u in self.neighbors(v)), max=1-epsilon)
p.set_binary(edges)
try:
p.solve(log = verbose)
except MIPSolverException:
raise ValueError("This graph does not contain the required number of trees/arborescences !")
edges = p.get_values(edges)
for j,g in enumerate(classes):
for e in self.edges(labels=False):
if edges[j][S(e)] == 1:
g.add_edge(e)
if len(list(g.breadth_first_search(root))) != self.order():
raise RuntimeError("The computation seems to have gone wrong somewhere..."+
"This is probably because of the value of epsilon, but"+
" in any case please report this bug, with the graph "+
"that produced it ! ;-)")
return classes
def edge_cut(self, s, t, value_only=True, use_edge_labels=False, vertices=False, method="FF", solver=None, verbose=0):
r"""
Returns a minimum edge cut between vertices `s` and `t`
represented by a list of edges.
A minimum edge cut between two vertices `s` and `t` of self
is a set `A` of edges of minimum weight such that the graph
obtained by removing `A` from self is disconnected. For more
information, see the
`Wikipedia article on cuts
<http://en.wikipedia.org/wiki/Cut_%28graph_theory%29>`_.
INPUT:
- ``s`` -- source vertex
- ``t`` -- sink vertex
- ``value_only`` -- boolean (default: ``True``). When set to
``True``, only the weight of a minimum cut is returned.
Otherwise, a list of edges of a minimum cut is also returned.
- ``use_edge_labels`` -- boolean (default: ``False``). When set to
``True``, computes a weighted minimum cut where each edge has
a weight defined by its label (if an edge has no label, `1`
is assumed). Otherwise, each edge has weight `1`.
- ``vertices`` -- boolean (default: ``False``). When set to
``True``, returns a list of edges in the edge cut and the
two sets of vertices that are disconnected by the cut.
Note: ``vertices=True`` implies ``value_only=False``.
- ``method`` -- There are currently two different
implementations of this method :
* If ``method = "FF"`` (default), a Python
implementation of the Ford-Fulkerson algorithm is
used.
* If ``method = "LP"``, the flow problem is solved using
Linear Programming.
- ``solver`` -- (default: ``None``) Specify a Linear Program (LP)
solver to be used. If set to ``None``, the default one is used. For
more information on LP solvers and which default solver is used, see
the method
:meth:`solve <sage.numerical.mip.MixedIntegerLinearProgram.solve>`
of the class
:class:`MixedIntegerLinearProgram <sage.numerical.mip.MixedIntegerLinearProgram>`.
- ``verbose`` -- integer (default: ``0``). Sets the level of
verbosity. Set to 0 by default, which means quiet.
.. NOTE::
The use of Linear Programming for non-integer problems may
possibly mean the presence of a (slight) numerical noise.
OUTPUT:
Real number or tuple, depending on the given arguments
(examples are given below).
EXAMPLES:
A basic application in the Pappus graph::
sage: g = graphs.PappusGraph()
sage: g.edge_cut(1, 2, value_only=True)
3
Or on Petersen's graph, with the corresponding bipartition of
the vertex set::
sage: g = graphs.PetersenGraph()
sage: g.edge_cut(0, 3, vertices=True)
[3, [(0, 1, None), (0, 4, None), (0, 5, None)], [[0], [1, 2, 3, 4, 5, 6, 7, 8, 9]]]
If the graph is a path with randomly weighted edges::
sage: g = graphs.PathGraph(15)
sage: for (u,v) in g.edge_iterator(labels=None):
... g.set_edge_label(u,v,random())
The edge cut between the two ends is the edge of minimum weight::
sage: minimum = min([l for u,v,l in g.edge_iterator()])
sage: minimum == g.edge_cut(0, 14, use_edge_labels=True)
True
sage: [value,[e]] = g.edge_cut(0, 14, use_edge_labels=True, value_only=False)
sage: g.edge_label(e[0],e[1]) == minimum
True
The two sides of the edge cut are obviously shorter paths::
sage: value,edges,[set1,set2] = g.edge_cut(0, 14, use_edge_labels=True, vertices=True)
sage: g.subgraph(set1).is_isomorphic(graphs.PathGraph(len(set1)))
True
sage: g.subgraph(set2).is_isomorphic(graphs.PathGraph(len(set2)))
True
sage: len(set1) + len(set2) == g.order()
True
TESTS:
If method is set to an exotic value::
sage: g = graphs.PetersenGraph()
sage: g.edge_cut(0,1, method="Divination")
Traceback (most recent call last):
...
ValueError: The method argument has to be equal to either "FF" or "LP"
Same result for both methods::
sage: g = graphs.RandomGNP(20,.3)
sage: for u,v in g.edges(labels=False):
... g.set_edge_label(u,v,round(random(),5))
sage: g.edge_cut(0,1, method="FF") == g.edge_cut(0,1,method="LP")
True
Rounded return value when using the LP method::
sage: g = graphs.PappusGraph()
sage: g.edge_cut(1, 2, value_only=True, method = "LP")
3
"""
if vertices:
value_only = False
if use_edge_labels:
weight = lambda x: x if (x!={} and x is not None) else 1
else:
weight = lambda x: 1
if method == "FF":
if value_only:
return self.flow(s,t,value_only=value_only,use_edge_labels=use_edge_labels, method=method)
flow_value, flow_graph = self.flow(s,t,value_only=value_only,use_edge_labels=use_edge_labels, method=method)
g = self.copy()
for u,v,l in flow_graph.edge_iterator():
if (not use_edge_labels or
(weight(g.edge_label(u,v)) == weight(l))):
g.delete_edge(u,v)
return_value = [flow_value]
reachable_from_s = list(g.breadth_first_search(s))
return_value.append(self.edge_boundary(reachable_from_s))
if vertices:
return_value.append([reachable_from_s,list(set(self.vertices())-set(reachable_from_s))])
return return_value
if method != "LP":
raise ValueError("The method argument has to be equal to either \"FF\" or \"LP\"")
from sage.numerical.mip import MixedIntegerLinearProgram, Sum
g = self
p = MixedIntegerLinearProgram(maximization=False, solver=solver)
b = p.new_variable(dim=2)
v = p.new_variable()
p.add_constraint(v[s], min=0, max=0)
p.add_constraint(v[t], min=1, max=1)
if g.is_directed():
p.set_objective(Sum([weight(w) * b[x][y] for (x,y,w) in g.edges()]))
for (x,y) in g.edges(labels=None):
p.add_constraint(v[x] + b[x][y] - v[y], min=0)
else:
p.set_objective(Sum([weight(w) * b[min(x,y)][max(x,y)] for (x,y,w) in g.edges()]))
for (x,y) in g.edges(labels=None):
p.add_constraint(v[x] + b[min(x,y)][max(x,y)] - v[y], min=0)
p.add_constraint(v[y] + b[min(x,y)][max(x,y)] - v[x], min=0)
p.set_binary(v)
p.set_binary(b)
if value_only:
if use_edge_labels:
return p.solve(objective_only=True, log=verbose)
else:
return Integer(round(p.solve(objective_only=True, log=verbose)))
else:
obj = p.solve(log=verbose)
if use_edge_labels is False:
obj = Integer(round(obj))
b = p.get_values(b)
answer = [obj]
if g.is_directed():
answer.append([(x,y) for (x,y) in g.edges(labels=None) if b[x][y] == 1])
else:
answer.append([(x,y) for (x,y) in g.edges(labels=None) if b[min(x,y)][max(x,y)] == 1])
if vertices:
v = p.get_values(v)
l0 = []
l1 = []
for x in g.vertex_iterator():
if v.has_key(x) and v[x] == 1:
l1.append(x)
else:
l0.append(x)
answer.append([l0, l1])
return tuple(answer)
def vertex_cut(self, s, t, value_only=True, vertices=False, solver=None, verbose=0):
r"""
Returns a minimum vertex cut between non-adjacent vertices `s` and `t`
represented by a list of vertices.
A vertex cut between two non-adjacent vertices is a set `U`
of vertices of self such that the graph obtained by removing
`U` from self is disconnected. For more information, see the
`Wikipedia article on cuts
<http://en.wikipedia.org/wiki/Cut_%28graph_theory%29>`_.
INPUT:
- ``value_only`` -- boolean (default: ``True``). When set to
``True``, only the size of the minimum cut is returned.
- ``vertices`` -- boolean (default: ``False``). When set to
``True``, also returns the two sets of vertices that
are disconnected by the cut. Implies ``value_only``
set to False.
- ``solver`` -- (default: ``None``) Specify a Linear Program (LP)
solver to be used. If set to ``None``, the default one is used. For
more information on LP solvers and which default solver is used, see
the method
:meth:`solve <sage.numerical.mip.MixedIntegerLinearProgram.solve>`
of the class
:class:`MixedIntegerLinearProgram <sage.numerical.mip.MixedIntegerLinearProgram>`.
- ``verbose`` -- integer (default: ``0``). Sets the level of
verbosity. Set to 0 by default, which means quiet.
OUTPUT:
Real number or tuple, depending on the given arguments
(examples are given below).
EXAMPLE:
A basic application in the Pappus graph::
sage: g = graphs.PappusGraph()
sage: g.vertex_cut(1, 16, value_only=True)
3
In the bipartite complete graph `K_{2,8}`, a cut between the two
vertices in the size `2` part consists of the other `8` vertices::
sage: g = graphs.CompleteBipartiteGraph(2, 8)
sage: [value, vertices] = g.vertex_cut(0, 1, value_only=False)
sage: print value
8
sage: vertices == range(2,10)
True
Clearly, in this case the two sides of the cut are singletons ::
sage: [value, vertices, [set1, set2]] = g.vertex_cut(0,1, vertices=True)
sage: len(set1) == 1
True
sage: len(set2) == 1
True
"""
from sage.numerical.mip import MixedIntegerLinearProgram, Sum
g = self
if g.has_edge(s,t):
raise ValueError, "There can be no vertex cut between adjacent vertices !"
if vertices:
value_only = False
p = MixedIntegerLinearProgram(maximization=False, solver=solver)
b = p.new_variable()
v = p.new_variable()
p.add_constraint(v[s], min=0, max=0)
p.add_constraint(v[t], min=1, max=1)
p.add_constraint(b[s], min=0, max=0)
p.add_constraint(b[t], min=0, max=0)
if g.is_directed():
p.set_objective(Sum([b[x] for x in g.vertices()]))
for (x,y) in g.edges(labels=None):
p.add_constraint(v[x] + b[y] - v[y], min=0)
else:
p.set_objective(Sum([b[x] for x in g.vertices()]))
for (x,y) in g.edges(labels=None):
p.add_constraint(v[x] + b[y] - v[y],min=0)
p.add_constraint(v[y] + b[x] - v[x],min=0)
p.set_binary(b)
p.set_binary(v)
if value_only:
return Integer(round(p.solve(objective_only=True, log=verbose)))
else:
obj = Integer(round(p.solve(log=verbose)))
b = p.get_values(b)
answer = [obj,[x for x in g if b[x] == 1]]
if vertices:
v = p.get_values(v)
l0 = []
l1 = []
for x in g.vertex_iterator():
if not (b.has_key(x) and b[x] == 1):
if (v.has_key(x) and v[x] == 1):
l1.append(x)
else:
l0.append(x)
answer.append([l0, l1])
return tuple(answer)
def multiway_cut(self, vertices, value_only = False, use_edge_labels = False, solver = None, verbose = 0):
r"""
Returns a minimum edge multiway cut corresponding to the
given set of vertices
( cf. http://www.d.kth.se/~viggo/wwwcompendium/node92.html )
represented by a list of edges.
A multiway cut for a vertex set `S` in a graph or a digraph
`G` is a set `C` of edges such that any two vertices `u,v`
in `S` are disconnected when removing the edges from `C` from `G`.
Such a cut is said to be minimum when its cardinality
(or weight) is minimum.
INPUT:
- ``vertices`` (iterable)-- the set of vertices
- ``value_only`` (boolean)
- When set to ``True``, only the value of a minimum
multiway cut is returned.
- When set to ``False`` (default), the list of edges
is returned
- ``use_edge_labels`` (boolean)
- When set to ``True``, computes a weighted minimum cut
where each edge has a weight defined by its label. ( if
an edge has no label, `1` is assumed )
- when set to ``False`` (default), each edge has weight `1`.
- ``solver`` -- (default: ``None``) Specify a Linear Program (LP)
solver to be used. If set to ``None``, the default one is used. For
more information on LP solvers and which default solver is used, see
the method
:meth:`solve <sage.numerical.mip.MixedIntegerLinearProgram.solve>`
of the class
:class:`MixedIntegerLinearProgram <sage.numerical.mip.MixedIntegerLinearProgram>`.
- ``verbose`` -- integer (default: ``0``). Sets the level of
verbosity. Set to 0 by default, which means quiet.
EXAMPLES:
Of course, a multiway cut between two vertices correspond
to a minimum edge cut ::
sage: g = graphs.PetersenGraph()
sage: g.edge_cut(0,3) == g.multiway_cut([0,3], value_only = True)
True
As Petersen's graph is `3`-regular, a minimum multiway cut
between three vertices contains at most `2\times 3` edges
(which could correspond to the neighborhood of 2
vertices)::
sage: g.multiway_cut([0,3,9], value_only = True) == 2*3
True
In this case, though, the vertices are an independent set.
If we pick instead vertices `0,9,` and `7`, we can save `4`
edges in the multiway cut ::
sage: g.multiway_cut([0,7,9], value_only = True) == 2*3 - 1
True
This example, though, does not work in the directed case anymore,
as it is not possible in Petersen's graph to mutualise edges ::
sage: g = DiGraph(g)
sage: g.multiway_cut([0,7,9], value_only = True) == 3*3
True
Of course, a multiway cut between the whole vertex set
contains all the edges of the graph::
sage: C = g.multiway_cut(g.vertices())
sage: set(C) == set(g.edges())
True
"""
from sage.numerical.mip import MixedIntegerLinearProgram, Sum
from itertools import combinations, chain
p = MixedIntegerLinearProgram(maximization = False, solver= solver)
height = p.new_variable(dim = 2)
cut = p.new_variable()
R = lambda x,y : (x,y) if x<y else (y,x)
if use_edge_labels:
w = lambda l : l if l is not None else 1
else:
w = lambda l : 1
if self.is_directed():
p.set_objective( Sum([ w(l) * cut[u,v] for u,v,l in self.edge_iterator() ]) )
for s,t in chain( combinations(vertices,2), map(lambda (x,y) : (y,x), combinations(vertices,2))) :
p.add_constraint( height[(s,t)][s], min = 0, max = 0)
p.add_constraint( height[(s,t)][t], min = 1, max = 1)
for u,v in self.edges(labels = False):
p.add_constraint( height[(s,t)][u] - height[(s,t)][v] - cut[u,v], max = 0)
else:
p.set_objective( Sum([ w(l) * cut[R(u,v)] for u,v,l in self.edge_iterator() ]) )
for s,t in combinations(vertices,2):
p.add_constraint( height[(s,t)][s], min = 0, max = 0)
p.add_constraint( height[(s,t)][t], min = 1, max = 1)
for u,v in self.edges(labels = False):
p.add_constraint( height[(s,t)][u] - height[(s,t)][v] - cut[R(u,v)], max = 0)
p.add_constraint( height[(s,t)][v] - height[(s,t)][u] - cut[R(u,v)], max = 0)
p.set_binary(cut)
if value_only:
if use_edge_labels:
return p.solve(objective_only = True, log = verbose)
else:
return Integer(round(p.solve(objective_only = True, log = verbose)))
p.solve(log = verbose)
cut = p.get_values(cut)
if self.is_directed():
return filter(lambda (u,v,l) : cut[u,v] > .5, self.edge_iterator())
else:
return filter(lambda (u,v,l) : cut[R(u,v)] > .5, self.edge_iterator())
def max_cut(self, value_only=True, use_edge_labels=False, vertices=False, solver=None, verbose=0):
r"""
Returns a maximum edge cut of the graph. For more information, see the
`Wikipedia article on cuts
<http://en.wikipedia.org/wiki/Cut_%28graph_theory%29>`_.
INPUT:
- ``value_only`` -- boolean (default: ``True``)
- When set to ``True`` (default), only the value is returned.
- When set to ``False``, both the value and a maximum edge cut
are returned.
- ``use_edge_labels`` -- boolean (default: ``False``)
- When set to ``True``, computes a maximum weighted cut
where each edge has a weight defined by its label. (If
an edge has no label, `1` is assumed.)
- When set to ``False``, each edge has weight `1`.
- ``vertices`` -- boolean (default: ``False``)
- When set to ``True``, also returns the two sets of
vertices that are disconnected by the cut. This implies
``value_only=False``.
- ``solver`` -- (default: ``None``) Specify a Linear Program (LP)
solver to be used. If set to ``None``, the default one is used. For
more information on LP solvers and which default solver is used, see
the method
:meth:`solve <sage.numerical.mip.MixedIntegerLinearProgram.solve>`
of the class
:class:`MixedIntegerLinearProgram <sage.numerical.mip.MixedIntegerLinearProgram>`.
- ``verbose`` -- integer (default: ``0``). Sets the level of
verbosity. Set to 0 by default, which means quiet.
EXAMPLE:
Quite obviously, the max cut of a bipartite graph
is the number of edges, and the two sets of vertices
are the the two sides ::
sage: g = graphs.CompleteBipartiteGraph(5,6)
sage: [ value, edges, [ setA, setB ]] = g.max_cut(vertices=True)
sage: value == 5*6
True
sage: bsetA, bsetB = map(list,g.bipartite_sets())
sage: (bsetA == setA and bsetB == setB ) or ((bsetA == setB and bsetB == setA ))
True
The max cut of a Petersen graph::
sage: g=graphs.PetersenGraph()
sage: g.max_cut()
12
"""
g=self
if vertices:
value_only=False
if use_edge_labels:
from sage.rings.real_mpfr import RR
weight = lambda x: x if x in RR else 1
else:
weight = lambda x: 1
if g.is_directed():
reorder_edge = lambda x,y : (x,y)
else:
reorder_edge = lambda x,y : (x,y) if x<= y else (y,x)
from sage.numerical.mip import MixedIntegerLinearProgram, Sum
p = MixedIntegerLinearProgram(maximization=True, solver=solver)
in_set = p.new_variable(dim=2)
in_cut = p.new_variable(dim=1)
for v in g:
p.add_constraint(in_set[0][v]+in_set[1][v],max=1,min=1)
p.add_constraint(Sum([in_set[1][v] for v in g]),min=1)
p.add_constraint(Sum([in_set[0][v] for v in g]),min=1)
if g.is_directed():
for (u,v) in g.edge_iterator(labels=None):
p.add_constraint(in_set[0][u] + in_set[1][v] - in_cut[(u,v)], max = 1)
p.add_constraint(in_set[0][u] + in_set[0][v] + in_cut[(u,v)], max = 2)
p.add_constraint(in_set[1][u] + in_set[1][v] + in_cut[(u,v)], max = 2)
else:
for (u,v) in g.edge_iterator(labels=None):
p.add_constraint(in_set[0][u]+in_set[1][v]-in_cut[reorder_edge(u,v)],max=1)
p.add_constraint(in_set[1][u]+in_set[0][v]-in_cut[reorder_edge(u,v)],max=1)
p.add_constraint(in_set[0][u] + in_set[0][v] + in_cut[reorder_edge(u,v)], max = 2)
p.add_constraint(in_set[1][u] + in_set[1][v] + in_cut[reorder_edge(u,v)], max = 2)
p.set_binary(in_set)
p.set_binary(in_cut)
p.set_objective(Sum([weight(l ) * in_cut[reorder_edge(u,v)] for (u,v,l ) in g.edge_iterator()]))
if value_only:
obj = p.solve(objective_only=True, log=verbose)
return obj if use_edge_labels else Integer(round(obj))
else:
obj = p.solve(log=verbose)
if use_edge_labels:
obj = Integer(round(obj))
val = [obj]
in_cut = p.get_values(in_cut)
in_set = p.get_values(in_set)
edges = []
for (u,v,l) in g.edge_iterator():
if in_cut[reorder_edge(u,v)] == 1:
edges.append((u,v,l))
val.append(edges)
if vertices:
a = []
b = []
for v in g:
if in_set[0][v] == 1:
a.append(v)
else:
b.append(v)
val.append([a,b])
return val
def longest_path(self, s=None, t=None, use_edge_labels=False, algorithm="MILP", solver=None, verbose=0):
r"""
Returns a longest path of ``self``.
INPUT:
- ``s`` (vertex) -- forces the source of the path (the method then
returns the longest path starting at ``s``). The argument is set to
``None`` by default, which means that no constraint is set upon the
first vertex in the path.
- ``t`` (vertex) -- forces the destination of the path (the method then
returns the longest path ending at ``t``). The argument is set to
``None`` by default, which means that no constraint is set upon the
last vertex in the path.
- ``use_edge_labels`` (boolean) -- whether the labels on the edges are
to be considered as weights (a label set to ``None`` or ``{}`` being
considered as a weight of `1`). Set to ``False`` by default.
- ``algorithm`` -- one of ``"MILP"`` (default) or ``"backtrack"``. Two
remarks on this respect:
* While the MILP formulation returns an exact answer, the
backtrack algorithm is a randomized heuristic.
* As the backtrack algorithm does not support edge weighting,
setting ``use_edge_labels=True`` will force the use of the MILP
algorithm.
- ``solver`` -- (default: ``None``) Specify the Linear Program (LP)
solver to be used. If set to ``None``, the default one is used. For
more information on LP solvers and which default solver is used, see
the method
:meth:`solve <sage.numerical.mip.MixedIntegerLinearProgram.solve>`
of the class
:class:`MixedIntegerLinearProgram <sage.numerical.mip.MixedIntegerLinearProgram>`.
- ``verbose`` -- integer (default: ``0``). Sets the level of
verbosity. Set to 0 by default, which means quiet.
.. NOTE::
The length of a path is assumed to be the number of its edges, or
the sum of their labels.
OUTPUT:
A subgraph of ``self`` corresponding to a (directed if ``self`` is
directed) longest path. If ``use_edge_labels == True``, a pair ``weight,
path`` is returned.
ALGORITHM:
Mixed Integer Linear Programming. (This problem is known to be NP-Hard).
EXAMPLES:
Petersen's graph being hypohamiltonian, it has a longest path
of length `n-2`::
sage: g = graphs.PetersenGraph()
sage: lp = g.longest_path()
sage: lp.order() >= g.order() - 2
True
The heuristic totally agrees::
sage: g = graphs.PetersenGraph()
sage: g.longest_path(algorithm="backtrack").edges()
[(0, 1, None), (1, 2, None), (2, 3, None), (3, 4, None), (4, 9, None), (5, 7, None), (5, 8, None), (6, 8, None), (6, 9, None)]
Let us compute longest paths on random graphs with random weights. Each
time, we ensure the resulting graph is indeed a path::
sage: for i in range(20):
... g = graphs.RandomGNP(15, 0.3)
... for u, v in g.edges(labels=False):
... g.set_edge_label(u, v, random())
... lp = g.longest_path()
... if (not lp.is_forest() or
... not max(lp.degree()) <= 2 or
... not lp.is_connected()):
... print("Error!")
... break
TESTS:
The argument ``algorithm`` must be either ``'backtrack'`` or
``'MILP'``::
sage: graphs.PetersenGraph().longest_path(algorithm="abc")
Traceback (most recent call last):
...
ValueError: algorithm must be either 'backtrack' or 'MILP'
Disconnected graphs not weighted::
sage: g1 = graphs.PetersenGraph()
sage: g2 = 2 * g1
sage: lp1 = g1.longest_path()
sage: lp2 = g2.longest_path()
sage: len(lp1) == len(lp2)
True
Disconnected graphs weighted::
sage: g1 = graphs.PetersenGraph()
sage: for u,v in g.edges(labels=False):
... g.set_edge_label(u, v, random())
sage: g2 = 2 * g1
sage: lp1 = g1.longest_path(use_edge_labels=True)
sage: lp2 = g2.longest_path(use_edge_labels=True)
sage: lp1[0] == lp2[0]
True
Empty graphs::
sage: Graph().longest_path()
Graph on 0 vertices
sage: Graph().longest_path(use_edge_labels=True)
[0, Graph on 0 vertices]
sage: graphs.EmptyGraph().longest_path()
Graph on 0 vertices
sage: graphs.EmptyGraph().longest_path(use_edge_labels=True)
[0, Graph on 0 vertices]
Trivial graphs::
sage: G = Graph()
sage: G.add_vertex(0)
sage: G.longest_path()
Graph on 0 vertices
sage: G.longest_path(use_edge_labels=True)
[0, Graph on 0 vertices]
sage: graphs.CompleteGraph(1).longest_path()
Graph on 0 vertices
sage: graphs.CompleteGraph(1).longest_path(use_edge_labels=True)
[0, Graph on 0 vertices]
Random test for digraphs::
sage: for i in range(20):
... g = digraphs.RandomDirectedGNP(15, 0.3)
... for u, v in g.edges(labels=False):
... g.set_edge_label(u, v, random())
... lp = g.longest_path()
... if (not lp.is_directed_acyclic() or
... not max(lp.out_degree()) <= 1 or
... not max(lp.in_degree()) <= 1 or
... not lp.is_connected()):
... print("Error!")
... break
:trac:`13019`::
sage: g = graphs.CompleteGraph(5).to_directed()
sage: g.longest_path(s=1,t=2)
Subgraph of (Complete graph): Digraph on 5 vertices
"""
if use_edge_labels:
algorithm = "MILP"
if algorithm not in ("backtrack", "MILP"):
raise ValueError("algorithm must be either 'backtrack' or 'MILP'")
if not self.is_connected():
if use_edge_labels:
return max(g.longest_path(s=s, t=t,
use_edge_labels=use_edge_labels,
algorithm=algorithm)
for g in self.connected_components_subgraphs())
else:
return max((g.longest_path(s=s, t=t,
use_edge_labels=use_edge_labels,
algorithm=algorithm)
for g in self.connected_components_subgraphs()),
key=lambda x: x.order())
if (self.order() <= 1 or
(s is not None and (
(s not in self) or
(self._directed and self.out_degree(s) == 0) or
(not self._directed and self.degree(s) == 0))) or
(t is not None and (
(t not in self) or
(self._directed and self.in_degree(t) == 0) or
(not self._directed and self.degree(t) == 0))) or
(self._directed and (s is not None) and (t is not None) and
len(self.shortest_path(s, t)) == 0)):
if self._directed:
from sage.graphs.all import DiGraph
return [0, DiGraph()] if use_edge_labels else DiGraph()
from sage.graphs.all import Graph
return [0, Graph()] if use_edge_labels else Graph()
if algorithm == "backtrack":
from sage.graphs.generic_graph_pyx import find_hamiltonian as fh
x = fh(self, find_path=True)[1]
return self.subgraph(vertices=x, edges=zip(x[:-1], x[1:]))
epsilon = 1/(6*float(self.order()))
if use_edge_labels:
weight = lambda x: x if (x is not None and x != {}) else 1
else:
weight = lambda x: 1
from sage.numerical.mip import MixedIntegerLinearProgram, Sum
p = MixedIntegerLinearProgram()
edge_used = p.new_variable(binary=True)
r_edge_used = p.new_variable()
vertex_used = p.new_variable(binary=True)
if self._directed:
for u, v in self.edges(labels=False):
if self.has_edge(v, u):
p.add_constraint(edge_used[(u,v)] + edge_used[(v,u)], max=1)
for v in self:
for e in self.incoming_edges(labels=False):
p.add_constraint(vertex_used[v] - edge_used[e], min=0)
for e in self.outgoing_edges(labels=False):
p.add_constraint(vertex_used[v] - edge_used[e], min=0)
p.add_constraint(
Sum(vertex_used[v] for v in self)
- Sum(edge_used[e] for e in self.edges(labels=False)),
min=1, max=1)
for v in self:
p.add_constraint(
Sum(edge_used[(u,v)] for u in self.neighbors_in(v)),
max=1)
p.add_constraint(
Sum(edge_used[(v,u)] for u in self.neighbors_out(v)),
max=1)
for u, v in self.edges(labels=False):
p.add_constraint(r_edge_used[(u,v)]
+ r_edge_used[(v,u)]
- edge_used[(u,v)],
min=0)
for v in self:
p.add_constraint(
Sum(r_edge_used[(u,v)] for u in self.neighbors(v)),
max=1-epsilon)
if s is not None:
p.add_constraint(
Sum(edge_used[(u,s)] for u in self.neighbors_in(s)),
max=0, min=0)
p.add_constraint(
Sum(edge_used[(s,u)] for u in self.neighbors_out(s)),
min=1, max=1)
if t is not None:
p.add_constraint(
Sum(edge_used[(u,t)] for u in self.neighbors_in(t)),
min=1, max=1)
p.add_constraint(
Sum(edge_used[(t,u)] for u in self.neighbors_out(t)),
max=0, min=0)
p.set_objective(
Sum(weight(l) * edge_used[(u,v)] for u, v, l in self.edges()))
else:
f_edge_used = lambda u, v: edge_used[
(u,v) if hash(u) < hash(v) else (v,u)]
for v in self:
for u in self.neighbors(v):
p.add_constraint(vertex_used[v] - f_edge_used(u,v), min=0)
p.add_constraint(
Sum(vertex_used[v] for v in self)
- Sum(f_edge_used(u,v) for u, v in self.edges(labels=False)),
min=1, max=1)
for v in self:
p.add_constraint(
Sum(f_edge_used(u,v) for u in self.neighbors(v)), max=2)
for u, v in self.edges(labels=False):
p.add_constraint(r_edge_used[(u,v)]
+ r_edge_used[(v,u)]
- f_edge_used(u,v),
min=0)
for v in self:
p.add_constraint(
Sum(r_edge_used[(u,v)] for u in self.neighbors(v)),
max=1-epsilon)
if s is not None:
p.add_constraint(
Sum(f_edge_used(s,u) for u in self.neighbors(s)),
max=1, min=1)
if t is not None:
p.add_constraint(
Sum(f_edge_used(t,u) for u in self.neighbors(t)),
max=1, min=1)
p.set_objective(Sum(weight(l) * f_edge_used(u,v)
for u, v, l in self.edges()))
p.solve(solver=solver, log=verbose)
edge_used = p.get_values(edge_used)
vertex_used = p.get_values(vertex_used)
if self._directed:
g = self.subgraph(
vertices=(v for v in self if vertex_used[v] >= 0.5),
edges=((u,v,l) for u, v, l in self.edges()
if edge_used[(u,v)] >= 0.5))
else:
g = self.subgraph(
vertices=(v for v in self if vertex_used[v] >= 0.5),
edges=((u,v,l) for u, v, l in self.edges()
if f_edge_used(u,v) >= 0.5))
if use_edge_labels:
return sum(map(weight, g.edge_labels())), g
else:
return g
def traveling_salesman_problem(self, use_edge_labels = False, solver = None, constraint_generation = None, verbose = 0, verbose_constraints = False):
r"""
Solves the traveling salesman problem (TSP)
Given a graph (resp. a digraph) `G` with weighted edges, the traveling
salesman problem consists in finding a Hamiltonian cycle (resp. circuit)
of the graph of minimum cost.
This TSP is one of the most famous NP-Complete problems, this function
can thus be expected to take some time before returning its result.
INPUT:
- ``use_edge_labels`` (boolean) -- whether to consider the weights of
the edges.
- If set to ``False`` (default), all edges are assumed to weight
`1`
- If set to ``True``, the weights are taken into account, and the
circuit returned is the one minimizing the sum of the weights.
- ``solver`` -- (default: ``None``) Specify a Linear Program (LP)
solver to be used. If set to ``None``, the default one is used. For
more information on LP solvers and which default solver is used, see
the method
:meth:`solve <sage.numerical.mip.MixedIntegerLinearProgram.solve>`
of the class
:class:`MixedIntegerLinearProgram <sage.numerical.mip.MixedIntegerLinearProgram>`.
- ``constraint_generation`` (boolean) -- whether to use constraint
generation when solving the Mixed Integer Linear Program.
When ``constraint_generation = None``, constraint generation is used
whenever the graph has a density larger than 70%.
- ``verbose`` -- integer (default: ``0``). Sets the level of
verbosity. Set to 0 by default, which means quiet.
- ``verbose_constraints`` -- whether to display which constraints are
being generated.
OUTPUT:
A solution to the TSP, as a ``Graph`` object whose vertex set is `V(G)`,
and whose edges are only those of the solution.
ALGORITHM:
This optimization problem is solved through the use of Linear
Programming.
NOTE:
- This function is correctly defined for both graph and digraphs. In
the second case, the returned cycle is a circuit of optimal cost.
EXAMPLES:
The Heawood graph is known to be Hamiltonian::
sage: g = graphs.HeawoodGraph()
sage: tsp = g.traveling_salesman_problem()
sage: tsp
TSP from Heawood graph: Graph on 14 vertices
The solution to the TSP has to be connected ::
sage: tsp.is_connected()
True
It must also be a `2`-regular graph::
sage: tsp.is_regular(k=2)
True
And obviously it is a subgraph of the Heawood graph::
sage: all([ e in g.edges() for e in tsp.edges()])
True
On the other hand, the Petersen Graph is known not to
be Hamiltonian::
sage: g = graphs.PetersenGraph()
sage: tsp = g.traveling_salesman_problem()
Traceback (most recent call last):
...
ValueError: The given graph is not hamiltonian
One easy way to change is is obviously to add to this graph the edges
corresponding to a Hamiltonian cycle.
If we do this by setting the cost of these new edges to `2`, while the
others are set to `1`, we notice that not all the edges we added are
used in the optimal solution ::
sage: for u, v in g.edges(labels = None):
... g.set_edge_label(u,v,1)
sage: cycle = graphs.CycleGraph(10)
sage: for u,v in cycle.edges(labels = None):
... if not g.has_edge(u,v):
... g.add_edge(u,v)
... g.set_edge_label(u,v,2)
sage: tsp = g.traveling_salesman_problem(use_edge_labels = True)
sage: sum( tsp.edge_labels() ) < 2*10
True
If we pick `1/2` instead of `2` as a cost for these new edges, they
clearly become the optimal solution
sage: for u,v in cycle.edges(labels = None):
... g.set_edge_label(u,v,1/2)
sage: tsp = g.traveling_salesman_problem(use_edge_labels = True)
sage: sum( tsp.edge_labels() ) == (1/2)*10
True
TESTS:
Comparing the results returned according to the value of
``constraint_generation``. First, for graphs::
sage: from operator import itemgetter
sage: n = 20
sage: for i in range(20):
... g = Graph()
... g.allow_multiple_edges(False)
... for u,v in graphs.RandomGNP(n,.2).edges(labels = False):
... g.add_edge(u,v,round(random(),5))
... for u,v in graphs.CycleGraph(n).edges(labels = False):
... if not g.has_edge(u,v):
... g.add_edge(u,v,round(random(),5))
... v1 = g.traveling_salesman_problem(constraint_generation = False, use_edge_labels = True)
... v2 = g.traveling_salesman_problem(use_edge_labels = True)
... c1 = sum(map(itemgetter(2), v1.edges()))
... c2 = sum(map(itemgetter(2), v2.edges()))
... if c1 != c2:
... print "Error !",c1,c2
... break
Then for digraphs::
sage: from operator import itemgetter
sage: set_random_seed(0)
sage: n = 20
sage: for i in range(20):
... g = DiGraph()
... g.allow_multiple_edges(False)
... for u,v in digraphs.RandomDirectedGNP(n,.2).edges(labels = False):
... g.add_edge(u,v,round(random(),5))
... for u,v in digraphs.Circuit(n).edges(labels = False):
... if not g.has_edge(u,v):
... g.add_edge(u,v,round(random(),5))
... v2 = g.traveling_salesman_problem(use_edge_labels = True)
... v1 = g.traveling_salesman_problem(constraint_generation = False, use_edge_labels = True)
... c1 = sum(map(itemgetter(2), v1.edges()))
... c2 = sum(map(itemgetter(2), v2.edges()))
... if c1 != c2:
... print "Error !",c1,c2
... print "With constraint generation :",c2
... print "Without constraint generation :",c1
... break
"""
if constraint_generation is None:
if self.density() > .7:
constraint_generation = False
else:
constraint_generation = True
if self.is_directed():
if not self.is_strongly_connected():
raise ValueError("The given graph is not hamiltonian")
else:
if not self.strong_orientation().is_strongly_connected():
raise ValueError("The given graph is not hamiltonian")
if self.has_multiple_edges():
g = self.copy()
multi = self.multiple_edges()
g.delete_edges(multi)
g.allow_multiple_edges(False)
if use_edge_labels:
e = {}
for u,v,l in multi:
u,v = (u,v) if u<v else (v,u)
e[(u,v)] = l if (not e.has_key((u,v)) or ( (l is None or l == {}) and e[(u,v)] > 1 )) else e[(u,v)]
g.add_edges([(u,v) for (u,v),l in e.iteritems()])
else:
from sage.sets.set import Set
g.add_edges(Set([ (min(u,v),max(u,v)) for u,v,l in multi]))
else:
g = self
from sage.numerical.mip import MixedIntegerLinearProgram, Sum
from sage.numerical.mip import MIPSolverException
weight = lambda l : l if (l is not None and l) else 1
if constraint_generation:
p = MixedIntegerLinearProgram(maximization = False,
solver = solver,
constraint_generation = True)
if g.is_directed():
from sage.graphs.all import DiGraph
b = p.new_variable(binary = True, dim = 2)
if use_edge_labels:
p.set_objective(Sum([ weight(l)*b[u][v]
for u,v,l in g.edges()]))
for v in g:
p.add_constraint(Sum([b[u][v] for u in g.neighbors_in(v)]),
min = 1,
max = 1)
p.add_constraint(Sum([b[v][u] for u in g.neighbors_out(v)]),
min = 1,
max = 1)
try:
p.solve(log = verbose)
except MIPSolverException:
raise ValueError("The given graph is not hamiltonian")
while True:
h = DiGraph()
for u,v,l in g.edges():
if p.get_values(b[u][v]) > .5:
h.add_edge(u,v,l)
cc = h.connected_components()
if len(cc) == 1:
break
if verbose_constraints:
print "Adding a constraint on set",cc[0]
p.add_constraint(Sum(b[u][v] for u,v in
g.edge_boundary(cc[0], labels = False)),
min = 1)
try:
p.solve(log = verbose)
except MIPSolverException:
raise ValueError("The given graph is not hamiltonian")
else:
from sage.graphs.all import Graph
b = p.new_variable(binary = True)
B = lambda u,v : b[(u,v)] if u<v else b[(v,u)]
if use_edge_labels:
p.set_objective(Sum([ weight(l)*B(u,v)
for u,v,l in g.edges()]) )
for v in g:
p.add_constraint(Sum([ B(u,v) for u in g.neighbors(v)]),
min = 2,
max = 2)
try:
p.solve(log = verbose)
except MIPSolverException:
raise ValueError("The given graph is not hamiltonian")
while True:
h = Graph()
for u,v,l in g.edges():
if p.get_values(B(u,v)) > .5:
h.add_edge(u,v,l)
cc = h.connected_components()
if len(cc) == 1:
break
if verbose_constraints:
print "Adding a constraint on set",cc[0]
p.add_constraint(Sum(B(u,v) for u,v in
g.edge_boundary(cc[0], labels = False)),
min = 2)
try:
p.solve(log = verbose)
except MIPSolverException:
raise ValueError("The given graph is not hamiltonian")
answer = self.subgraph(edges = h.edges())
answer.set_pos(self.get_pos())
answer.name("TSP from "+g.name())
return answer
p = MixedIntegerLinearProgram(maximization = False, solver = solver)
f = p.new_variable()
r = p.new_variable()
eps = 1/(2*Integer(g.order()))
x = g.vertex_iterator().next()
if g.is_directed():
E = lambda u,v : f[(u,v)]
for v in g:
p.add_constraint(Sum([ f[(u,v)] for u in g.neighbors_in(v)]),
min = 1,
max = 1)
p.add_constraint(Sum([ f[(v,u)] for u in g.neighbors_out(v)]),
min = 1,
max = 1)
for u,v in g.edges(labels = None):
if g.has_edge(v,u):
if u < v:
p.add_constraint( r[(u,v)] + r[(v,u)]- f[(u,v)] - f[(v,u)], min = 0)
p.add_constraint( f[(u,v)] + f[(v,u)], max = 1)
else:
p.add_constraint( r[(u,v)] + r[(v,u)] - f[(u,v)], min = 0)
from sage.graphs.all import DiGraph
tsp = DiGraph()
else:
R = lambda x,y : (x,y) if x < y else (y,x)
E = lambda u,v : f[R(u,v)]
for v in g:
p.add_constraint(Sum([ f[R(u,v)] for u in g.neighbors(v)]),
min = 2,
max = 2)
for u,v in g.edges(labels = None):
p.add_constraint( r[(u,v)] + r[(v,u)] - f[R(u,v)], min = 0)
from sage.graphs.all import Graph
tsp = Graph()
for v in g:
if v != x:
p.add_constraint(Sum([ r[(u,v)] for u in g.neighbors(v)]),max = 1-eps)
if use_edge_labels:
p.set_objective(Sum([ weight(l)*E(u,v) for u,v,l in g.edges()]) )
else:
p.set_objective(None)
p.set_binary(f)
try:
obj = p.solve(log = verbose)
f = p.get_values(f)
tsp.add_vertices(g.vertices())
tsp.set_pos(g.get_pos())
tsp.name("TSP from "+g.name())
tsp.add_edges([(u,v,l) for u,v,l in g.edges() if E(u,v) == 1])
return tsp
except MIPSolverException:
raise ValueError("The given graph is not Hamiltonian")
def hamiltonian_cycle(self, algorithm='tsp' ):
r"""
Returns a Hamiltonian cycle/circuit of the current graph/digraph
A graph (resp. digraph) is said to be Hamiltonian
if it contains as a subgraph a cycle (resp. a circuit)
going through all the vertices.
Computing a Hamiltonian cycle/circuit being NP-Complete,
this algorithm could run for some time depending on
the instance.
ALGORITHM:
See ``Graph.traveling_salesman_problem`` for 'tsp' algorithm and
``find_hamiltonian`` from ``sage.graphs.generic_graph_pyx``
for 'backtrack' algorithm.
INPUT:
- ``algorithm`` - one of 'tsp' or 'backtrack'.
OUTPUT:
If using the 'tsp' algorithm, returns a Hamiltonian cycle/circuit if it
exists; otherwise, raises a ``ValueError`` exception. If using the
'backtrack' algorithm, returns a pair (B,P). If B is True then P is a
Hamiltonian cycle and if B is False, P is a longest path found by the
algorithm. Observe that if B is False, the graph may still be Hamiltonian.
The 'backtrack' algorithm is only implemented for undirected
graphs.
.. WARNING::
The 'backtrack' algorithm may loop endlessly on graphs
with vertices of degree 1.
NOTE:
This function, as ``is_hamiltonian``, computes a Hamiltonian
cycle if it exists : the user should *NOT* test for
Hamiltonicity using ``is_hamiltonian`` before calling this
function, as it would result in computing it twice.
The backtrack algorithm is only implemented for undirected graphs.
EXAMPLES:
The Heawood Graph is known to be Hamiltonian ::
sage: g = graphs.HeawoodGraph()
sage: g.hamiltonian_cycle()
TSP from Heawood graph: Graph on 14 vertices
The Petersen Graph, though, is not ::
sage: g = graphs.PetersenGraph()
sage: g.hamiltonian_cycle()
Traceback (most recent call last):
...
ValueError: The given graph is not hamiltonian
Now, using the backtrack algorithm in the Heawood graph ::
sage: G=graphs.HeawoodGraph()
sage: G.hamiltonian_cycle(algorithm='backtrack')
(True, [11, 10, 1, 2, 3, 4, 9, 8, 7, 6, 5, 0, 13, 12])
And now in the Petersen graph ::
sage: G=graphs.PetersenGraph()
sage: G.hamiltonian_cycle(algorithm='backtrack')
(False, [6, 8, 5, 0, 1, 2, 7, 9, 4, 3])
Finally, we test the algorithm in a cube graph, which is Hamiltonian ::
sage: G=graphs.CubeGraph(3)
sage: G.hamiltonian_cycle(algorithm='backtrack')
(True, ['010', '110', '100', '000', '001', '101', '111', '011'])
"""
if algorithm=='tsp':
from sage.numerical.mip import MIPSolverException
try:
return self.traveling_salesman_problem(use_edge_labels = False)
except MIPSolverException:
raise ValueError("The given graph is not Hamiltonian")
elif algorithm=='backtrack':
from sage.graphs.generic_graph_pyx import find_hamiltonian as fh
return fh( self )
else:
raise ValueError("``algorithm`` (%s) should be 'tsp' or 'backtrack'."%(algorithm))
def flow(self, x, y, value_only=True, integer=False, use_edge_labels=True, vertex_bound=False, method = None, solver=None, verbose=0):
r"""
Returns a maximum flow in the graph from ``x`` to ``y``
represented by an optimal valuation of the edges. For more
information, see the
`Wikipedia article on maximum flow
<http://en.wikipedia.org/wiki/Max_flow>`_.
As an optimization problem, is can be expressed this way :
.. MATH::
\mbox{Maximize : }&\sum_{e\in G.edges()} w_e b_e\\
\mbox{Such that : }&\forall v \in G, \sum_{(u,v)\in G.edges()} b_{(u,v)}\leq 1\\
&\forall x\in G, b_x\mbox{ is a binary variable}
INPUT:
- ``x`` -- Source vertex
- ``y`` -- Sink vertex
- ``value_only`` -- boolean (default: ``True``)
- When set to ``True``, only the value of a maximal
flow is returned.
- When set to ``False``, is returned a pair whose first element
is the value of the maximum flow, and whose second value is
a flow graph (a copy of the current graph, such that each edge
has the flow using it as a label, the edges without flow being
omitted).
- ``integer`` -- boolean (default: ``False``)
- When set to ``True``, computes an optimal solution under the
constraint that the flow going through an edge has to be an
integer.
- ``use_edge_labels`` -- boolean (default: ``True``)
- When set to ``True``, computes a maximum flow
where each edge has a capacity defined by its label. (If
an edge has no label, `1` is assumed.)
- When set to ``False``, each edge has capacity `1`.
- ``vertex_bound`` -- boolean (default: ``False``)
- When set to ``True``, sets the maximum flow leaving
a vertex different from `x` to `1` (useful for vertex
connectivity parameters).
- ``method`` -- There are currently two different
implementations of this method :
* If ``method = "FF"``, a Python implementation of the
Ford-Fulkerson algorithm is used (only available when
``vertex_bound = False``)
* If ``method = "LP"``, the flow problem is solved using
Linear Programming.
* If ``method = None`` (default), the Ford-Fulkerson
implementation is used iif ``vertex_bound = False``.
- ``solver`` -- Specify a Linear Program solver to be used.
If set to ``None``, the default one is used. function of
``MixedIntegerLinearProgram``. See the documentation of
``MixedIntegerLinearProgram.solve`` for more information.
Only useful when LP is used to solve the flow problem.
- ``verbose`` (integer) -- sets the level of verbosity. Set to 0
by default (quiet).
Only useful when LP is used to solve the flow problem.
.. NOTE::
Even though the two different implementations are meant to
return the same Flow values, they can not be expected to
return the same Flow graphs.
Besides, the use of Linear Programming may possibly mean a
(slight) numerical noise.
EXAMPLES:
Two basic applications of the flow method for the ``PappusGraph`` and the
``ButterflyGraph`` with parameter `2` ::
sage: g=graphs.PappusGraph()
sage: g.flow(1,2)
3
::
sage: b=digraphs.ButterflyGraph(2)
sage: b.flow(('00',1),('00',2))
1
The flow method can be used to compute a matching in a bipartite graph
by linking a source `s` to all the vertices of the first set and linking
a sink `t` to all the vertices of the second set, then computing
a maximum `s-t` flow ::
sage: g = DiGraph()
sage: g.add_edges([('s',i) for i in range(4)])
sage: g.add_edges([(i,4+j) for i in range(4) for j in range(4)])
sage: g.add_edges([(4+i,'t') for i in range(4)])
sage: [cardinal, flow_graph] = g.flow('s','t',integer=True,value_only=False)
sage: flow_graph.delete_vertices(['s','t'])
sage: len(flow_graph.edges())
4
TESTS:
An exception if raised when forcing "FF" with ``vertex_bound = True``::
sage: g = graphs.PetersenGraph()
sage: g.flow(0,1,vertex_bound = True, method = "FF")
Traceback (most recent call last):
...
ValueError: This method does not support both vertex_bound=True and method="FF".
Or if the method is different from the expected values::
sage: g.flow(0,1, method="Divination")
Traceback (most recent call last):
...
ValueError: The method argument has to be equal to either "FF", "LP" or None
The two methods are indeed returning the same results (possibly with
some numerical noise, cf. :trac:`12362`)::
sage: g = graphs.RandomGNP(20,.3)
sage: for u,v in g.edges(labels=False):
... g.set_edge_label(u,v,round(random(),5))
sage: flow_ff = g.flow(0,1, method="FF")
sage: flow_lp = g.flow(0,1,method="LP")
sage: abs(flow_ff-flow_lp) < 0.01
True
"""
if vertex_bound == True and method == "FF":
raise ValueError("This method does not support both vertex_bound=True and method=\"FF\".")
if (method == "FF" or
(method == None and vertex_bound == False)):
return self._ford_fulkerson(x,y, value_only=value_only, integer=integer, use_edge_labels=use_edge_labels)
if method != "LP" and method != None:
raise ValueError("The method argument has to be equal to either \"FF\", \"LP\" or None")
from sage.numerical.mip import MixedIntegerLinearProgram, Sum
g=self
p=MixedIntegerLinearProgram(maximization=True, solver = solver)
flow=p.new_variable(dim=1)
if use_edge_labels:
from sage.rings.real_mpfr import RR
capacity=lambda x: x if x in RR else 1
else:
capacity=lambda x: 1
if g.is_directed():
flow_sum=lambda X: Sum([flow[(X,v)] for (u,v) in g.outgoing_edges([X],labels=None)])-Sum([flow[(u,X)] for (u,v) in g.incoming_edges([X],labels=None)])
flow_leaving = lambda X : Sum([flow[(uu,vv)] for (uu,vv) in g.outgoing_edges([X],labels=None)])
capacity_sum = lambda u,v : flow[(u,v)]
else:
flow_sum=lambda X:Sum([flow[(X,v)]-flow[(v,X)] for v in g[X]])
flow_leaving = lambda X : Sum([flow[(X,vv)] for vv in g[X]])
capacity_sum = lambda u,v : flow[(u,v)] + flow[(v,u)]
p.set_objective(flow_sum(x))
for v in g:
if v!=x and v!=y:
p.add_constraint(flow_sum(v),min=0,max=0)
for (u,v,w) in g.edges():
p.add_constraint(capacity_sum(u,v),max=capacity(w))
if vertex_bound:
for v in g:
if v!=x and v!=y:
p.add_constraint(flow_leaving(v),max=1)
if integer:
p.set_integer(flow)
if value_only:
return p.solve(objective_only=True, log = verbose)
obj=p.solve(log = verbose)
if integer or use_edge_labels is False:
obj = Integer(round(obj))
flow=p.get_values(flow)
flow_graph = g._build_flow_graph(flow, integer=integer)
if not self.is_directed():
from sage.graphs.graph import Graph
flow_graph = Graph(flow_graph)
return [obj,flow_graph]
def _ford_fulkerson(self, s, t, use_edge_labels = False, integer = False, value_only = True):
r"""
Python implementation of the Ford-Fulkerson algorithm.
This method is a Python implementation of the Ford-Fulkerson
max-flow algorithm, which is (slightly) faster than the LP
implementation.
INPUT:
- ``s`` -- Source vertex
- ``t`` -- Sink vertex
- ``value_only`` -- boolean (default: ``True``)
- When set to ``True``, only the value of a maximal
flow is returned.
- When set to ``False``, is returned a pair whose first element
is the value of the maximum flow, and whose second value is
a flow graph (a copy of the current graph, such that each edge
has the flow using it as a label, the edges without flow being
omitted).
- ``integer`` -- boolean (default: ``False``)
- When set to ``True``, computes an optimal solution under the
constraint that the flow going through an edge has to be an
integer.
- ``use_edge_labels`` -- boolean (default: ``True``)
- When set to ``True``, computes a maximum flow
where each edge has a capacity defined by its label. (If
an edge has no label, `1` is assumed.)
- When set to ``False``, each edge has capacity `1`.
EXAMPLES:
Two basic applications of the flow method for the ``PappusGraph`` and the
``ButterflyGraph`` with parameter `2` ::
sage: g=graphs.PappusGraph()
sage: g._ford_fulkerson(1,2)
3
::
sage: b=digraphs.ButterflyGraph(2)
sage: b._ford_fulkerson(('00',1),('00',2))
1
The flow method can be used to compute a matching in a bipartite graph
by linking a source `s` to all the vertices of the first set and linking
a sink `t` to all the vertices of the second set, then computing
a maximum `s-t` flow ::
sage: g = DiGraph()
sage: g.add_edges([('s',i) for i in range(4)])
sage: g.add_edges([(i,4+j) for i in range(4) for j in range(4)])
sage: g.add_edges([(4+i,'t') for i in range(4)])
sage: [cardinal, flow_graph] = g._ford_fulkerson('s','t',integer=True,value_only=False)
sage: flow_graph.delete_vertices(['s','t'])
sage: len(flow_graph.edges(labels=None))
4
"""
from sage.graphs.digraph import DiGraph
from sage.functions.other import floor
if use_edge_labels:
l_capacity=lambda x: 1 if (x is None or x == {}) else (floor(x) if integer else x)
else:
l_capacity=lambda x: 1
directed = self.is_directed()
capacity = {}
flow = {}
residual = DiGraph()
if directed:
for u,v,l in self.edge_iterator():
if l_capacity(l) > 0:
capacity[(u,v)] = l_capacity(l) + capacity.get((u,v),0)
capacity[(v,u)] = capacity.get((v,u),0)
residual.add_edge(u,v)
flow[(u,v)] = 0
flow[(v,u)] = 0
else:
for u,v,l in self.edge_iterator():
if l_capacity(l) > 0:
capacity[(u,v)] = l_capacity(l) + capacity.get((u,v),0)
capacity[(v,u)] = l_capacity(l) + capacity.get((v,u),0)
residual.add_edge(u,v)
residual.add_edge(v,u)
flow[(u,v)] = 0
flow[(v,u)] = 0
path_to_edges = lambda P : zip(P[:-1],P[1:])
path_to_labelled_edges = lambda P : map(lambda (x,y) : (x,y,capacity[(x,y)]-flow[(x,y)] + flow[(y,x)]),path_to_edges(P))
flow_intensity = 0
while True:
path = residual.shortest_path(s,t)
if not path:
break
edges = path_to_labelled_edges(path)
epsilon = min(map( lambda x : x[2], edges))
flow_intensity = flow_intensity + epsilon
for uu,vv,ll in edges:
other = flow[(vv,uu)]
flow[(uu,vv)] = flow[(uu,vv)] + max(0,epsilon-other)
flow[(vv,uu)] = other - min(other, epsilon)
if capacity[(uu,vv)] - flow[(uu,vv)] + flow[(vv,uu)] == 0:
residual.delete_edge(uu,vv)
if not residual.has_edge(vv,uu):
residual.add_edge(vv,uu,epsilon)
if value_only:
return flow_intensity
g = DiGraph()
g.add_edges([(x,y,l) for ((x,y),l) in flow.iteritems() if l > 0])
g.set_pos(self.get_pos())
return flow_intensity, g
def multicommodity_flow(self, terminals, integer=True, use_edge_labels=False,vertex_bound=False, solver=None, verbose=0):
r"""
Solves a multicommodity flow problem.
In the multicommodity flow problem, we are given a set of pairs
`(s_i, t_i)`, called terminals meaning that `s_i` is willing
some flow to `t_i`.
Even though it is a natural generalisation of the flow problem
this version of it is NP-Complete to solve when the flows
are required to be integer.
For more information, see the
`Wikipedia page on multicommodity flows
<http://en.wikipedia.org/wiki/Multi-commodity_flow_problem>`.
INPUT:
- ``terminals`` -- a list of pairs `(s_i, t_i)` or triples
`(s_i, t_i, w_i)` representing a flow from `s_i` to `t_i`
of intensity `w_i`. When the pairs are of size `2`, a intensity
of `1` is assumed.
- ``integer`` (boolean) -- whether to require an integer multicommodity
flow
- ``use_edge_labels`` (boolean) -- whether to consider the label of edges
as numerical values representing a capacity. If set to ``False``, a capacity
of `1` is assumed
- ``vertex_bound`` (boolean) -- whether to require that a vertex can stand at most
`1` commodity of flow through it of intensity `1`. Terminals can obviously
still send or receive several units of flow even though vertex_bound is set
to ``True``, as this parameter is meant to represent topological properties.
- ``solver`` -- Specify a Linear Program solver to be used.
If set to ``None``, the default one is used.
function of ``MixedIntegerLinearProgram``. See the documentation of ``MixedIntegerLinearProgram.solve``
for more informations.
- ``verbose`` (integer) -- sets the level of verbosity. Set to 0
by default (quiet).
ALGORITHM:
(Mixed Integer) Linear Program, depending on the value of ``integer``.
EXAMPLE:
An easy way to obtain a satisfiable multiflow is to compute
a matching in a graph, and to consider the paired vertices
as terminals ::
sage: g = graphs.PetersenGraph()
sage: matching = [(u,v) for u,v,_ in g.matching()]
sage: h = g.multicommodity_flow(matching)
sage: len(h)
5
We could also have considered ``g`` as symmetric and computed
the multiflow in this version instead. In this case, however
edges can be used in both directions at the same time::
sage: h = DiGraph(g).multicommodity_flow(matching)
sage: len(h)
5
An exception is raised when the problem has no solution ::
sage: h = g.multicommodity_flow([(u,v,3) for u,v in matching])
Traceback (most recent call last):
...
ValueError: The multiflow problem has no solution
"""
from sage.numerical.mip import MixedIntegerLinearProgram , Sum
g=self
p=MixedIntegerLinearProgram(maximization=True, solver = solver)
terminals = [(x if len(x) == 3 else (x[0],x[1],1)) for x in terminals]
set_terminals = set([])
for s,t,_ in terminals:
set_terminals.add(s)
set_terminals.add(t)
flow=p.new_variable(dim=2)
if use_edge_labels:
from sage.rings.real_mpfr import RR
capacity=lambda x: x if x in RR else 1
else:
capacity=lambda x: 1
if g.is_directed():
flow_sum=lambda i,X: Sum([flow[i][(X,v)] for (u,v) in g.outgoing_edges([X],labels=None)])-Sum([flow[i][(u,X)] for (u,v) in g.incoming_edges([X],labels=None)])
flow_leaving = lambda i,X : Sum([flow[i][(uu,vv)] for (uu,vv) in g.outgoing_edges([X],labels=None)])
capacity_sum = lambda i,u,v : flow[i][(u,v)]
else:
flow_sum=lambda i,X:Sum([flow[i][(X,v)]-flow[i][(v,X)] for v in g[X]])
flow_leaving = lambda i, X : Sum([flow[i][(X,vv)] for vv in g[X]])
capacity_sum = lambda i,u,v : flow[i][(u,v)] + flow[i][(v,u)]
for i,(s,t,l) in enumerate(terminals):
for v in g:
if v == s:
p.add_constraint(flow_sum(i,v),min=l,max=l)
elif v == t:
p.add_constraint(flow_sum(i,v),min=-l,max=-l)
else:
p.add_constraint(flow_sum(i,v),min=0,max=0)
for (u,v,w) in g.edges():
p.add_constraint(Sum([capacity_sum(i,u,v) for i in range(len(terminals))]),max=capacity(w))
if vertex_bound:
for v in g.vertices():
if v in set_terminals:
for i,(s,t,_) in enumerate(terminals):
if not (v==s or v==t):
p.add_constraint(flow_leaving(i,v), max = 0)
else:
p.add_constraint(Sum([flow_leaving(i,v) for i in range(len(terminals))]), max = 1)
p.set_objective(None)
if integer:
p.set_integer(flow)
from sage.numerical.mip import MIPSolverException
try:
obj=p.solve(log = verbose)
except MIPSolverException:
raise ValueError("The multiflow problem has no solution")
flow=p.get_values(flow)
flow_graphs = [g._build_flow_graph(flow[i], integer=integer) for i in range(len(terminals))]
if not self.is_directed():
from sage.graphs.graph import Graph
flow_graphs = map(Graph, flow_graphs)
return flow_graphs
def _build_flow_graph(self, flow, integer):
r"""
Builds a "clean" flow graph
It build it, then looks for circuits and removes them
INPUT:
- ``flow`` -- a dictionary associating positive numerical values
to edges
- ``integer`` (boolean) -- whether the values from ``flow`` are the solution
of an integer flow. In this case, a value of less than .5 is assumed to be 0
EXAMPLE:
This method is tested in ``flow`` and ``multicommodity_flow``::
sage: g = Graph()
sage: g.add_edge(0,1)
sage: f = g._build_flow_graph({(0,1):1}, True)
"""
from sage.graphs.digraph import DiGraph
g = DiGraph()
for (u,v),l in flow.iteritems():
if l > 0 and not (integer and l<.5):
g.add_edge(u,v,l)
for v in g:
for u in g.neighbor_in_iterator(v):
if not g.has_edge(u,v):
break
sp = g.shortest_path(v,u)
if sp != []:
m = g.edge_label(u,v)
for i in range(len(sp)-1):
m = min(m,g.edge_label(sp[i],sp[i+1]))
sp.append(v)
for i in range(len(sp)-1):
l = g.edge_label(sp[i],sp[i+1]) - m
if l == 0:
g.delete_edge(sp[i],sp[i+1])
else:
g.set_edge_label(l)
if integer:
for (u,v,l) in g.edges():
if l<.5:
g.delete_edge(u,v)
else:
g.set_edge_label(u,v, round(l))
h = self.subgraph(edges=[])
h.delete_vertices([v for v in self if (v not in g) or g.degree(v)==0])
h.add_edges(g.edges())
return h
def disjoint_routed_paths(self,pairs, solver=None, verbose=0):
r"""
Returns a set of disjoint routed paths.
Given a set of pairs `(s_i,t_i)`, a set
of disjoint routed paths is a set of
`s_i-t_i` paths which can interset at their endpoints
and are vertex-disjoint otherwise.
INPUT:
- ``pairs`` -- list of pairs of vertices
- ``solver`` -- Specify a Linear Program solver to be used.
If set to ``None``, the default one is used.
function of ``MixedIntegerLinearProgram``. See the documentation of ``MixedIntegerLinearProgram.solve``
for more informations.
- ``verbose`` (integer) -- sets the level of verbosity. Set to `0`
by default (quiet).
EXAMPLE:
Given a grid, finding two vertex-disjoint
paths, the first one from the top-left corner
to the bottom-left corner, and the second from
the top-right corner to the bottom-right corner
is easy ::
sage: g = graphs.GridGraph([5,5])
sage: p1,p2 = g.disjoint_routed_paths( [((0,0), (0,4)), ((4,4), (4,0))])
Though there is obviously no solution to the problem
in which each corner is sending information to the opposite
one::
sage: g = graphs.GridGraph([5,5])
sage: p1,p2 = g.disjoint_routed_paths( [((0,0), (4,4)), ((0,4), (4,0))])
Traceback (most recent call last):
...
ValueError: The disjoint routed paths do not exist.
"""
try:
return self.multicommodity_flow(pairs, vertex_bound = True, solver=solver, verbose=verbose)
except ValueError:
raise ValueError("The disjoint routed paths do not exist.")
def edge_disjoint_paths(self, s, t, method = "FF"):
r"""
Returns a list of edge-disjoint paths between two
vertices as given by Menger's theorem.
The edge version of Menger's theorem asserts that the size
of the minimum edge cut between two vertices `s` and`t`
(the minimum number of edges whose removal disconnects `s`
and `t`) is equal to the maximum number of pairwise
edge-independent paths from `s` to `t`.
This function returns a list of such paths.
INPUT:
- ``method`` -- There are currently two different
implementations of this method :
* If ``method = "FF"`` (default), a Python implementation of the
Ford-Fulkerson algorithm is used.
* If ``method = "LP"``, the flow problem is solved using
Linear Programming.
.. NOTE::
This function is topological : it does not take the eventual
weights of the edges into account.
EXAMPLE:
In a complete bipartite graph ::
sage: g = graphs.CompleteBipartiteGraph(2,3)
sage: g.edge_disjoint_paths(0,1)
[[0, 2, 1], [0, 3, 1], [0, 4, 1]]
"""
[obj, flow_graph] = self.flow(s,t,value_only=False, integer=True, use_edge_labels=False, method=method)
paths = []
while True:
path = flow_graph.shortest_path(s,t)
if not path:
break
v = s
edges = []
for w in path:
edges.append((v,w))
v=w
flow_graph.delete_edges(edges)
paths.append(path)
return paths
def vertex_disjoint_paths(self, s, t):
r"""
Returns a list of vertex-disjoint paths between two
vertices as given by Menger's theorem.
The vertex version of Menger's theorem asserts that the size
of the minimum vertex cut between two vertices `s` and`t`
(the minimum number of vertices whose removal disconnects `s`
and `t`) is equal to the maximum number of pairwise
vertex-independent paths from `s` to `t`.
This function returns a list of such paths.
EXAMPLE:
In a complete bipartite graph ::
sage: g = graphs.CompleteBipartiteGraph(2,3)
sage: g.vertex_disjoint_paths(0,1)
[[0, 2, 1], [0, 3, 1], [0, 4, 1]]
"""
[obj, flow_graph] = self.flow(s,t,value_only=False, integer=True, use_edge_labels=False, vertex_bound=True)
paths = []
while True:
path = flow_graph.shortest_path(s,t)
if not path:
break
flow_graph.delete_vertices(path[1:-1])
paths.append(path)
return paths
def matching(self, value_only=False, algorithm="Edmonds", use_edge_labels=True, solver=None, verbose=0):
r"""
Returns a maximum weighted matching of the graph
represented by the list of its edges. For more information, see the
`Wikipedia article on matchings
<http://en.wikipedia.org/wiki/Matching_%28graph_theory%29>`_.
Given a graph `G` such that each edge `e` has a weight `w_e`,
a maximum matching is a subset `S` of the edges of `G` of
maximum weight such that no two edges of `S` are incident
with each other.
As an optimization problem, it can be expressed as:
.. math::
\mbox{Maximize : }&\sum_{e\in G.edges()} w_e b_e\\
\mbox{Such that : }&\forall v \in G, \sum_{(u,v)\in G.edges()} b_{(u,v)}\leq 1\\
&\forall x\in G, b_x\mbox{ is a binary variable}
INPUT:
- ``value_only`` -- boolean (default: ``False``). When set to
``True``, only the cardinal (or the weight) of the matching is
returned.
- ``algorithm`` -- string (default: ``"Edmonds"``)
- ``"Edmonds"`` selects Edmonds' algorithm as implemented in NetworkX
- ``"LP"`` uses a Linear Program formulation of the matching problem
- ``use_edge_labels`` -- boolean (default: ``False``)
- When set to ``True``, computes a weighted matching where each edge
is weighted by its label. (If an edge has no label, `1` is assumed.)
- When set to ``False``, each edge has weight `1`.
- ``solver`` -- (default: ``None``) Specify a Linear Program (LP)
solver to be used. If set to ``None``, the default one is used. For
more information on LP solvers and which default solver is used, see
the method
:meth:`solve <sage.numerical.mip.MixedIntegerLinearProgram.solve>`
of the class
:class:`MixedIntegerLinearProgram <sage.numerical.mip.MixedIntegerLinearProgram>`.
- ``verbose`` -- integer (default: ``0``). Sets the level of
verbosity. Set to 0 by default, which means quiet.
Only useful when ``algorithm == "LP"``.
ALGORITHM:
The problem is solved using Edmond's algorithm implemented in
NetworkX, or using Linear Programming depending on the value of
``algorithm``.
EXAMPLES:
Maximum matching in a Pappus Graph::
sage: g = graphs.PappusGraph()
sage: g.matching(value_only=True)
9.0
Same test with the Linear Program formulation::
sage: g = graphs.PappusGraph()
sage: g.matching(algorithm="LP", value_only=True)
9.0
TESTS:
If ``algorithm`` is set to anything different from ``"Edmonds"`` or
``"LP"``, an exception is raised::
sage: g = graphs.PappusGraph()
sage: g.matching(algorithm="somethingdifferent")
Traceback (most recent call last):
...
ValueError: Algorithm must be set to either "Edmonds" or "LP".
"""
from sage.rings.real_mpfr import RR
weight = lambda x: x if x in RR else 1
if algorithm == "Edmonds":
import networkx
if use_edge_labels:
g = networkx.Graph()
for u, v, l in self.edges():
g.add_edge(u, v, attr_dict={"weight": weight(l)})
else:
g = self.networkx_graph(copy=False)
d = networkx.max_weight_matching(g)
if value_only:
if use_edge_labels:
return sum([weight(self.edge_label(u, v))
for u, v in d.iteritems()]) * 0.5
else:
return Integer(len(d))
else:
return [(u, v, self.edge_label(u, v))
for u, v in d.iteritems() if u < v]
elif algorithm == "LP":
from sage.numerical.mip import MixedIntegerLinearProgram, Sum
g = self
p = MixedIntegerLinearProgram(maximization=True, solver=solver)
b = p.new_variable(dim=2)
p.set_objective(
Sum([weight(w) * b[min(u, v)][max(u, v)]
for u, v, w in g.edges()]))
for v in g.vertex_iterator():
p.add_constraint(
Sum([b[min(u, v)][max(u, v)]
for u in g.neighbors(v)]), max=1)
p.set_binary(b)
if value_only:
if use_edge_labels:
return p.solve(objective_only=True, log=verbose)
else:
return Integer(round(p.solve(objective_only=True, log=verbose)))
else:
p.solve(log=verbose)
b = p.get_values(b)
return [(u, v, w) for u, v, w in g.edges()
if b[min(u, v)][max(u, v)] == 1]
else:
raise ValueError(
'Algorithm must be set to either "Edmonds" or "LP".')
def dominating_set(self, independent=False, value_only=False, solver=None, verbose=0):
r"""
Returns a minimum dominating set of the graph
represented by the list of its vertices. For more information, see the
`Wikipedia article on dominating sets
<http://en.wikipedia.org/wiki/Dominating_set>`_.
A minimum dominating set `S` of a graph `G` is
a set of its vertices of minimal cardinality such
that any vertex of `G` is in `S` or has one of its neighbors
in `S`.
As an optimization problem, it can be expressed as:
.. MATH::
\mbox{Minimize : }&\sum_{v\in G} b_v\\
\mbox{Such that : }&\forall v \in G, b_v+\sum_{(u,v)\in G.edges()} b_u\geq 1\\
&\forall x\in G, b_x\mbox{ is a binary variable}
INPUT:
- ``independent`` -- boolean (default: ``False``). If
``independent=True``, computes a minimum independent dominating set.
- ``value_only`` -- boolean (default: ``False``)
- If ``True``, only the cardinality of a minimum
dominating set is returned.
- If ``False`` (default), a minimum dominating set
is returned as the list of its vertices.
- ``solver`` -- (default: ``None``) Specify a Linear Program (LP)
solver to be used. If set to ``None``, the default one is used. For
more information on LP solvers and which default solver is used, see
the method
:meth:`solve <sage.numerical.mip.MixedIntegerLinearProgram.solve>`
of the class
:class:`MixedIntegerLinearProgram <sage.numerical.mip.MixedIntegerLinearProgram>`.
- ``verbose`` -- integer (default: ``0``). Sets the level of
verbosity. Set to 0 by default, which means quiet.
EXAMPLES:
A basic illustration on a ``PappusGraph``::
sage: g=graphs.PappusGraph()
sage: g.dominating_set(value_only=True)
5
If we build a graph from two disjoint stars, then link their centers
we will find a difference between the cardinality of an independent set
and a stable independent set::
sage: g = 2 * graphs.StarGraph(5)
sage: g.add_edge(0,6)
sage: len(g.dominating_set())
2
sage: len(g.dominating_set(independent=True))
6
"""
from sage.numerical.mip import MixedIntegerLinearProgram, Sum
g=self
p=MixedIntegerLinearProgram(maximization=False, solver=solver)
b=p.new_variable()
for v in g.vertices():
p.add_constraint(b[v]+Sum([b[u] for u in g.neighbors(v)]),min=1)
if independent:
for (u,v) in g.edges(labels=None):
p.add_constraint(b[u]+b[v],max=1)
p.set_objective(Sum([b[v] for v in g.vertices()]))
p.set_integer(b)
if value_only:
return Integer(round(p.solve(objective_only=True, log=verbose)))
else:
p.solve(log=verbose)
b=p.get_values(b)
return [v for v in g.vertices() if b[v]==1]
def edge_connectivity(self, value_only=True, use_edge_labels=False, vertices=False, solver=None, verbose=0):
r"""
Returns the edge connectivity of the graph. For more information, see
the
`Wikipedia article on connectivity
<http://en.wikipedia.org/wiki/Connectivity_(graph_theory)>`_.
.. NOTE::
When the graph is a directed graph, this method actually computes
the *strong* connectivity, (i.e. a directed graph is strongly
`k`-connected if there are `k` disjoint paths between any two
vertices `u, v`). If you do not want to consider strong
connectivity, the best is probably to convert your ``DiGraph``
object to a ``Graph`` object, and compute the connectivity of this
other graph.
INPUT:
- ``value_only`` -- boolean (default: ``True``)
- When set to ``True`` (default), only the value is returned.
- When set to ``False``, both the value and a minimum edge cut
are returned.
- ``use_edge_labels`` -- boolean (default: ``False``)
- When set to ``True``, computes a weighted minimum cut
where each edge has a weight defined by its label. (If
an edge has no label, `1` is assumed.)
- When set to ``False``, each edge has weight `1`.
- ``vertices`` -- boolean (default: ``False``)
- When set to ``True``, also returns the two sets of
vertices that are disconnected by the cut. Implies
``value_only=False``.
- ``solver`` -- (default: ``None``) Specify a Linear Program (LP)
solver to be used. If set to ``None``, the default one is used. For
more information on LP solvers and which default solver is used, see
the method
:meth:`solve <sage.numerical.mip.MixedIntegerLinearProgram.solve>`
of the class
:class:`MixedIntegerLinearProgram <sage.numerical.mip.MixedIntegerLinearProgram>`.
- ``verbose`` -- integer (default: ``0``). Sets the level of
verbosity. Set to 0 by default, which means quiet.
EXAMPLES:
A basic application on the PappusGraph::
sage: g = graphs.PappusGraph()
sage: g.edge_connectivity()
3
The edge connectivity of a complete graph ( and of a random graph )
is its minimum degree, and one of the two parts of the bipartition
is reduced to only one vertex. The cutedges isomorphic to a
Star graph::
sage: g = graphs.CompleteGraph(5)
sage: [ value, edges, [ setA, setB ]] = g.edge_connectivity(vertices=True)
sage: print value
4
sage: len(setA) == 1 or len(setB) == 1
True
sage: cut = Graph()
sage: cut.add_edges(edges)
sage: cut.is_isomorphic(graphs.StarGraph(4))
True
Even if obviously in any graph we know that the edge connectivity
is less than the minimum degree of the graph::
sage: g = graphs.RandomGNP(10,.3)
sage: min(g.degree()) >= g.edge_connectivity()
True
If we build a tree then assign to its edges a random value, the
minimum cut will be the edge with minimum value::
sage: g = graphs.RandomGNP(15,.5)
sage: tree = Graph()
sage: tree.add_edges(g.min_spanning_tree())
sage: for u,v in tree.edge_iterator(labels=None):
... tree.set_edge_label(u,v,random())
sage: minimum = min([l for u,v,l in tree.edge_iterator()])
sage: [value, [(u,v,l)]] = tree.edge_connectivity(value_only=False, use_edge_labels=True)
sage: l == minimum
True
When ``value_only = True``, this function is optimized for small
connectivity values and does not need to build a linear program.
It is the case for connected graphs which are not
connected ::
sage: g = 2 * graphs.PetersenGraph()
sage: g.edge_connectivity()
0.0
Or if they are just 1-connected ::
sage: g = graphs.PathGraph(10)
sage: g.edge_connectivity()
1.0
For directed graphs, the strong connectivity is tested
through the dedicated function ::
sage: g = digraphs.ButterflyGraph(3)
sage: g.edge_connectivity()
0.0
"""
g=self
if vertices:
value_only=False
if use_edge_labels:
from sage.rings.real_mpfr import RR
weight=lambda x: x if x in RR else 1
else:
weight=lambda x: 1
if value_only and not use_edge_labels:
if self.is_directed():
if not self.is_strongly_connected():
return 0.0
else:
if not self.is_connected():
return 0.0
h = self.strong_orientation()
if not h.is_strongly_connected():
return 1.0
if g.is_directed():
reorder_edge = lambda x,y : (x,y)
else:
reorder_edge = lambda x,y : (x,y) if x<= y else (y,x)
from sage.numerical.mip import MixedIntegerLinearProgram, Sum
p = MixedIntegerLinearProgram(maximization=False, solver=solver)
in_set = p.new_variable(dim=2)
in_cut = p.new_variable(dim=1)
for v in g:
p.add_constraint(in_set[0][v]+in_set[1][v],max=1,min=1)
p.add_constraint(Sum([in_set[1][v] for v in g]),min=1)
p.add_constraint(Sum([in_set[0][v] for v in g]),min=1)
if g.is_directed():
for (u,v) in g.edge_iterator(labels=None):
p.add_constraint(in_set[0][u] + in_set[1][v] - in_cut[(u,v)], max = 1)
else:
for (u,v) in g.edge_iterator(labels=None):
p.add_constraint(in_set[0][u]+in_set[1][v]-in_cut[reorder_edge(u,v)],max=1)
p.add_constraint(in_set[1][u]+in_set[0][v]-in_cut[reorder_edge(u,v)],max=1)
p.set_binary(in_set)
p.set_binary(in_cut)
p.set_objective(Sum([weight(l ) * in_cut[reorder_edge(u,v)] for (u,v,l) in g.edge_iterator()]))
obj = p.solve(objective_only=value_only, log=verbose)
if use_edge_labels is False:
obj = Integer(round(obj))
if value_only:
return obj
else:
val = [obj]
in_cut = p.get_values(in_cut)
in_set = p.get_values(in_set)
edges = []
for (u,v,l) in g.edge_iterator():
if in_cut[reorder_edge(u,v)] == 1:
edges.append((u,v,l))
val.append(edges)
if vertices:
a = []
b = []
for v in g:
if in_set[0][v] == 1:
a.append(v)
else:
b.append(v)
val.append([a,b])
return val
def vertex_connectivity(self, value_only=True, sets=False, solver=None, verbose=0):
r"""
Returns the vertex connectivity of the graph. For more information,
see the
`Wikipedia article on connectivity
<http://en.wikipedia.org/wiki/Connectivity_(graph_theory)>`_.
.. NOTE::
* When the graph is a directed graph, this method actually computes
the *strong* connectivity, (i.e. a directed graph is strongly
`k`-connected if there are `k` disjoint paths between any two
vertices `u, v`). If you do not want to consider strong
connectivity, the best is probably to convert your ``DiGraph``
object to a ``Graph`` object, and compute the connectivity of this
other graph.
* By convention, a complete graph on `n` vertices is `n-1`
connected. In this case, no certificate can be given as there is
no pair of vertices split by a cut of size `k-1`. For this reason,
the certificates returned in this situation are empty.
INPUT:
- ``value_only`` -- boolean (default: ``True``)
- When set to ``True`` (default), only the value is returned.
- When set to ``False`` , both the value and a minimum vertex cut are
returned.
- ``sets`` -- boolean (default: ``False``)
- When set to ``True``, also returns the two sets of
vertices that are disconnected by the cut.
Implies ``value_only=False``
- ``solver`` -- (default: ``None``) Specify a Linear Program (LP)
solver to be used. If set to ``None``, the default one is used. For
more information on LP solvers and which default solver is used, see
the method
:meth:`solve <sage.numerical.mip.MixedIntegerLinearProgram.solve>`
of the class
:class:`MixedIntegerLinearProgram <sage.numerical.mip.MixedIntegerLinearProgram>`.
- ``verbose`` -- integer (default: ``0``). Sets the level of
verbosity. Set to 0 by default, which means quiet.
EXAMPLES:
A basic application on a ``PappusGraph``::
sage: g=graphs.PappusGraph()
sage: g.vertex_connectivity()
3
In a grid, the vertex connectivity is equal to the
minimum degree, in which case one of the two sets is
of cardinality `1`::
sage: g = graphs.GridGraph([ 3,3 ])
sage: [value, cut, [ setA, setB ]] = g.vertex_connectivity(sets=True)
sage: len(setA) == 1 or len(setB) == 1
True
A vertex cut in a tree is any internal vertex::
sage: g = graphs.RandomGNP(15,.5)
sage: tree = Graph()
sage: tree.add_edges(g.min_spanning_tree())
sage: [val, [cut_vertex]] = tree.vertex_connectivity(value_only=False)
sage: tree.degree(cut_vertex) > 1
True
When ``value_only = True``, this function is optimized for small
connectivity values and does not need to build a linear program.
It is the case for connected graphs which are not
connected::
sage: g = 2 * graphs.PetersenGraph()
sage: g.vertex_connectivity()
0.0
Or if they are just 1-connected::
sage: g = graphs.PathGraph(10)
sage: g.vertex_connectivity()
1.0
For directed graphs, the strong connectivity is tested
through the dedicated function::
sage: g = digraphs.ButterflyGraph(3)
sage: g.vertex_connectivity()
0.0
A complete graph on `10` vertices is `9`-connected::
sage: g = graphs.CompleteGraph(10)
sage: g.vertex_connectivity()
9
"""
g=self
if sets:
value_only=False
if g.is_clique():
if value_only:
return g.order()-1
elif not sets:
return g.order()-1, []
else:
return g.order()-1, [], [[],[]]
if value_only:
if self.is_directed():
if not self.is_strongly_connected():
return 0.0
else:
if not self.is_connected():
return 0.0
if len(self.blocks_and_cut_vertices()[0]) > 1:
return 1.0
if g.is_directed():
reorder_edge = lambda x,y : (x,y)
else:
reorder_edge = lambda x,y : (x,y) if x<= y else (y,x)
from sage.numerical.mip import MixedIntegerLinearProgram, Sum
p = MixedIntegerLinearProgram(maximization=False, solver=solver)
in_set = p.new_variable(dim=2)
for v in g:
p.add_constraint(in_set[0][v]+in_set[1][v]+in_set[2][v],max=1,min=1)
p.add_constraint(Sum([in_set[0][v] for v in g]),min=1)
p.add_constraint(Sum([in_set[2][v] for v in g]),min=1)
if g.is_directed():
for (u,v) in g.edge_iterator(labels=None):
p.add_constraint(in_set[0][u] + in_set[2][v], max = 1)
else:
for (u,v) in g.edge_iterator(labels=None):
p.add_constraint(in_set[0][u]+in_set[2][v],max=1)
p.add_constraint(in_set[2][u]+in_set[0][v],max=1)
p.set_binary(in_set)
p.set_objective(Sum([in_set[1][v] for v in g]))
if value_only:
return Integer(round(p.solve(objective_only=True, log=verbose)))
else:
val = [Integer(round(p.solve(log=verbose)))]
in_set = p.get_values(in_set)
cut = []
a = []
b = []
for v in g:
if in_set[0][v] == 1:
a.append(v)
elif in_set[1][v]==1:
cut.append(v)
else:
b.append(v)
val.append(cut)
if sets:
val.append([a,b])
return val
def add_vertex(self, name=None):
"""
Creates an isolated vertex. If the vertex already exists, then
nothing is done.
INPUT:
- ``name`` - Name of the new vertex. If no name is
specified, then the vertex will be represented by the least integer
not already representing a vertex. Name must be an immutable
object, and cannot be None.
As it is implemented now, if a graph `G` has a large number
of vertices with numeric labels, then G.add_vertex() could
potentially be slow, if name is None.
OUTPUT:
If ``name``=``None``, the new vertex name is returned. ``None`` otherwise.
EXAMPLES::
sage: G = Graph(); G.add_vertex(); G
0
Graph on 1 vertex
::
sage: D = DiGraph(); D.add_vertex(); D
0
Digraph on 1 vertex
"""
return self._backend.add_vertex(name)
def add_vertices(self, vertices):
"""
Add vertices to the (di)graph from an iterable container of
vertices. Vertices that already exist in the graph will not be
added again.
INPUT:
- ``vertices``: iterator of vertex labels. A new label is created, used and returned in
the output list for all ``None`` values in ``vertices``.
OUTPUT:
Generated names of new vertices if there is at least one ``None`` value
present in ``vertices``. ``None`` otherwise.
EXAMPLES::
sage: d = {0: [1,4,5], 1: [2,6], 2: [3,7], 3: [4,8], 4: [9], 5: [7,8], 6: [8,9], 7: [9]}
sage: G = Graph(d)
sage: G.add_vertices([10,11,12])
sage: G.vertices()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
sage: G.add_vertices(graphs.CycleGraph(25).vertices())
sage: G.vertices()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
::
sage: G = Graph()
sage: G.add_vertices([1,2,3])
sage: G.add_vertices([4,None,None,5])
[0, 6]
"""
return self._backend.add_vertices(vertices)
def delete_vertex(self, vertex, in_order=False):
"""
Deletes vertex, removing all incident edges. Deleting a
non-existent vertex will raise an exception.
INPUT:
- ``in_order`` - (default False) If True, this
deletes the ith vertex in the sorted list of vertices, i.e.
G.vertices()[i]
EXAMPLES::
sage: G = Graph(graphs.WheelGraph(9))
sage: G.delete_vertex(0); G.show()
::
sage: D = DiGraph({0:[1,2,3,4,5],1:[2],2:[3],3:[4],4:[5],5:[1]})
sage: D.delete_vertex(0); D
Digraph on 5 vertices
sage: D.vertices()
[1, 2, 3, 4, 5]
sage: D.delete_vertex(0)
Traceback (most recent call last):
...
RuntimeError: Vertex (0) not in the graph.
::
sage: G = graphs.CompleteGraph(4).line_graph(labels=False)
sage: G.vertices()
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
sage: G.delete_vertex(0, in_order=True)
sage: G.vertices()
[(0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
sage: G = graphs.PathGraph(5)
sage: G.set_vertices({0: 'no delete', 1: 'delete'})
sage: G.set_boundary([1,2])
sage: G.delete_vertex(1)
sage: G.get_vertices()
{0: 'no delete', 2: None, 3: None, 4: None}
sage: G.get_boundary()
[2]
sage: G.get_pos()
{0: (0, 0), 2: (2, 0), 3: (3, 0), 4: (4, 0)}
"""
if in_order:
vertex = self.vertices()[vertex]
if vertex not in self:
raise RuntimeError("Vertex (%s) not in the graph."%vertex)
attributes_to_update = ('_pos', '_assoc', '_embedding')
for attr in attributes_to_update:
if hasattr(self, attr) and getattr(self, attr) is not None:
getattr(self, attr).pop(vertex, None)
self._boundary = [v for v in self._boundary if v != vertex]
self._backend.del_vertex(vertex)
def delete_vertices(self, vertices):
"""
Remove vertices from the (di)graph taken from an iterable container
of vertices. Deleting a non-existent vertex will raise an
exception.
EXAMPLES::
sage: D = DiGraph({0:[1,2,3,4,5],1:[2],2:[3],3:[4],4:[5],5:[1]})
sage: D.delete_vertices([1,2,3,4,5]); D
Digraph on 1 vertex
sage: D.vertices()
[0]
sage: D.delete_vertices([1])
Traceback (most recent call last):
...
RuntimeError: Vertex (1) not in the graph.
"""
for vertex in vertices:
if vertex not in self:
raise RuntimeError("Vertex (%s) not in the graph."%vertex)
attributes_to_update = ('_pos', '_assoc', '_embedding')
for attr in attributes_to_update:
if hasattr(self, attr) and getattr(self, attr) is not None:
attr_dict = getattr(self, attr)
for vertex in vertices:
attr_dict.pop(vertex, None)
self._boundary = [v for v in self._boundary if v not in vertices]
self._backend.del_vertices(vertices)
def has_vertex(self, vertex):
"""
Return True if vertex is one of the vertices of this graph.
INPUT:
- ``vertex`` - an integer
OUTPUT:
- ``bool`` - True or False
EXAMPLES::
sage: g = Graph({0:[1,2,3], 2:[4]}); g
Graph on 5 vertices
sage: 2 in g
True
sage: 10 in g
False
sage: graphs.PetersenGraph().has_vertex(99)
False
"""
try:
hash(vertex)
except:
return False
return self._backend.has_vertex(vertex)
__contains__ = has_vertex
def random_vertex(self, **kwds):
r"""
Returns a random vertex of self.
INPUT:
- ``**kwds`` - arguments to be passed down to the
``vertex_iterator`` method.
EXAMPLE:
The returned value is a vertex of self::
sage: g = graphs.PetersenGraph()
sage: v = g.random_vertex()
sage: v in g
True
"""
from sage.misc.prandom import randint
it = self.vertex_iterator(**kwds)
for i in xrange(0, randint(0, self.order() - 1)):
it.next()
return it.next()
def random_edge(self,**kwds):
r"""
Returns a random edge of self.
INPUT:
- ``**kwds`` - arguments to be passed down to the
``edge_iterator`` method.
EXAMPLE:
The returned value is an edge of self::
sage: g = graphs.PetersenGraph()
sage: u,v = g.random_edge(labels=False)
sage: g.has_edge(u,v)
True
As the ``edges()`` method would, this function returns
by default a triple ``(u,v,l)`` of values, in which
``l`` is the label of edge `(u,v)`::
sage: g.random_edge()
(3, 4, None)
"""
from sage.misc.prandom import randint
it = self.edge_iterator(**kwds)
for i in xrange(0, randint(0, self.size() - 1)):
it.next()
return it.next()
def vertex_boundary(self, vertices1, vertices2=None):
"""
Returns a list of all vertices in the external boundary of
vertices1, intersected with vertices2. If vertices2 is None, then
vertices2 is the complement of vertices1. This is much faster if
vertices1 is smaller than vertices2.
The external boundary of a set of vertices is the union of the
neighborhoods of each vertex in the set. Note that in this
implementation, since vertices2 defaults to the complement of
vertices1, if a vertex `v` has a loop, then
vertex_boundary(v) will not contain `v`.
In a digraph, the external boundary of a vertex v are those
vertices u with an arc (v, u).
EXAMPLES::
sage: G = graphs.CubeGraph(4)
sage: l = ['0111', '0000', '0001', '0011', '0010', '0101', '0100', '1111', '1101', '1011', '1001']
sage: G.vertex_boundary(['0000', '1111'], l)
['0111', '0001', '0010', '0100', '1101', '1011']
::
sage: D = DiGraph({0:[1,2], 3:[0]})
sage: D.vertex_boundary([0])
[1, 2]
"""
vertices1 = [v for v in vertices1 if v in self]
output = set()
if self._directed:
for v in vertices1:
output.update(self.neighbor_out_iterator(v))
else:
for v in vertices1:
output.update(self.neighbor_iterator(v))
if vertices2 is not None:
output.intersection_update(vertices2)
return list(output)
def set_vertices(self, vertex_dict):
"""
Associate arbitrary objects with each vertex, via an association
dictionary.
INPUT:
- ``vertex_dict`` - the association dictionary
EXAMPLES::
sage: d = {0 : graphs.DodecahedralGraph(), 1 : graphs.FlowerSnark(), 2 : graphs.MoebiusKantorGraph(), 3 : graphs.PetersenGraph() }
sage: d[2]
Moebius-Kantor Graph: Graph on 16 vertices
sage: T = graphs.TetrahedralGraph()
sage: T.vertices()
[0, 1, 2, 3]
sage: T.set_vertices(d)
sage: T.get_vertex(1)
Flower Snark: Graph on 20 vertices
"""
if hasattr(self, '_assoc') is False:
self._assoc = {}
self._assoc.update(vertex_dict)
def set_vertex(self, vertex, object):
"""
Associate an arbitrary object with a vertex.
INPUT:
- ``vertex`` - which vertex
- ``object`` - object to associate to vertex
EXAMPLES::
sage: T = graphs.TetrahedralGraph()
sage: T.vertices()
[0, 1, 2, 3]
sage: T.set_vertex(1, graphs.FlowerSnark())
sage: T.get_vertex(1)
Flower Snark: Graph on 20 vertices
"""
if hasattr(self, '_assoc') is False:
self._assoc = {}
self._assoc[vertex] = object
def get_vertex(self, vertex):
"""
Retrieve the object associated with a given vertex.
INPUT:
- ``vertex`` - the given vertex
EXAMPLES::
sage: d = {0 : graphs.DodecahedralGraph(), 1 : graphs.FlowerSnark(), 2 : graphs.MoebiusKantorGraph(), 3 : graphs.PetersenGraph() }
sage: d[2]
Moebius-Kantor Graph: Graph on 16 vertices
sage: T = graphs.TetrahedralGraph()
sage: T.vertices()
[0, 1, 2, 3]
sage: T.set_vertices(d)
sage: T.get_vertex(1)
Flower Snark: Graph on 20 vertices
"""
if hasattr(self, '_assoc') is False:
return None
return self._assoc.get(vertex, None)
def get_vertices(self, verts=None):
"""
Return a dictionary of the objects associated to each vertex.
INPUT:
- ``verts`` - iterable container of vertices
EXAMPLES::
sage: d = {0 : graphs.DodecahedralGraph(), 1 : graphs.FlowerSnark(), 2 : graphs.MoebiusKantorGraph(), 3 : graphs.PetersenGraph() }
sage: T = graphs.TetrahedralGraph()
sage: T.set_vertices(d)
sage: T.get_vertices([1,2])
{1: Flower Snark: Graph on 20 vertices,
2: Moebius-Kantor Graph: Graph on 16 vertices}
"""
if verts is None:
verts = self.vertices()
if hasattr(self, '_assoc') is False:
return dict.fromkeys(verts, None)
output = {}
for v in verts:
output[v] = self._assoc.get(v, None)
return output
def loop_vertices(self):
"""
Returns a list of vertices with loops.
EXAMPLES::
sage: G = Graph({0 : [0], 1: [1,2,3], 2: [3]}, loops=True)
sage: G.loop_vertices()
[0, 1]
"""
if self.allows_loops():
return [v for v in self if self.has_edge(v,v)]
else:
return []
def vertex_iterator(self, vertices=None):
"""
Returns an iterator over the given vertices.
Returns False if not given a vertex, sequence, iterator or None. None is
equivalent to a list of every vertex. Note that ``for v in G`` syntax is
allowed.
INPUT:
- ``vertices`` - iterated vertices are these
intersected with the vertices of the (di)graph
EXAMPLES::
sage: P = graphs.PetersenGraph()
sage: for v in P.vertex_iterator():
... print v
...
0
1
2
...
8
9
::
sage: G = graphs.TetrahedralGraph()
sage: for i in G:
... print i
0
1
2
3
Note that since the intersection option is available, the
vertex_iterator() function is sub-optimal, speed-wise, but note the
following optimization::
sage: timeit V = P.vertices() # not tested
100000 loops, best of 3: 8.85 [micro]s per loop
sage: timeit V = list(P.vertex_iterator()) # not tested
100000 loops, best of 3: 5.74 [micro]s per loop
sage: timeit V = list(P._nxg.adj.iterkeys()) # not tested
100000 loops, best of 3: 3.45 [micro]s per loop
In other words, if you want a fast vertex iterator, call the
dictionary directly.
"""
return self._backend.iterator_verts(vertices)
__iter__ = vertex_iterator
def neighbor_iterator(self, vertex):
"""
Return an iterator over neighbors of vertex.
EXAMPLES::
sage: G = graphs.CubeGraph(3)
sage: for i in G.neighbor_iterator('010'):
... print i
011
000
110
sage: D = G.to_directed()
sage: for i in D.neighbor_iterator('010'):
... print i
011
000
110
::
sage: D = DiGraph({0:[1,2], 3:[0]})
sage: list(D.neighbor_iterator(0))
[1, 2, 3]
"""
if self._directed:
return iter(set(self.neighbor_out_iterator(vertex)) \
| set(self.neighbor_in_iterator(vertex)))
else:
return iter(set(self._backend.iterator_nbrs(vertex)))
def vertices(self, key=None, boundary_first=False):
r"""
Return a list of the vertices.
INPUT:
- ``key`` - default: ``None`` - a function that takes
a vertex as its one argument and returns a value that
can be used for comparisons in the sorting algorithm.
- ``boundary_first`` - default: ``False`` - if ``True``,
return the boundary vertices first.
OUTPUT:
The vertices of the list.
.. warning::
There is always an attempt to sort the list before
returning the result. However, since any object may
be a vertex, there is no guarantee that any two
vertices will be comparable. With default objects
for vertices (all integers), or when all the vertices
are of the same simple type, then there should not be
a problem with how the vertices will be sorted. However,
if you need to guarantee a total order for the sort,
use the ``key`` argument, as illustrated in the
examples below.
EXAMPLES::
sage: P = graphs.PetersenGraph()
sage: P.vertices()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
If you do not care about sorted output and you are
concerned about the time taken to sort, consider the
following alternatives. The moral is: if you want a
fast vertex iterator, call the dictionary directly. ::
sage: timeit V = P.vertices() # not tested
100000 loops, best of 3: 8.85 [micro]s per loop
sage: timeit V = list(P.vertex_iterator()) # not tested
100000 loops, best of 3: 5.74 [micro]s per loop
sage: timeit V = list(P._nxg.adj.iterkeys()) # not tested
100000 loops, best of 3: 3.45 [micro]s per loop
We illustrate various ways to use a ``key`` to sort the list::
sage: H=graphs.HanoiTowerGraph(3,3,labels=False)
sage: H.vertices()
[0, 1, 2, 3, 4, ... 22, 23, 24, 25, 26]
sage: H.vertices(key=lambda x: -x)
[26, 25, 24, 23, 22, ... 4, 3, 2, 1, 0]
::
sage: G=graphs.HanoiTowerGraph(3,3)
sage: G.vertices()
[(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), ... (2, 2, 1), (2, 2, 2)]
sage: G.vertices(key = lambda x: (x[1], x[2], x[0]))
[(0, 0, 0), (1, 0, 0), (2, 0, 0), (0, 0, 1), ... (1, 2, 2), (2, 2, 2)]
The discriminant of a polynomial is a function that returns an integer.
We build a graph whose vertices are polynomials, and use the discriminant
function to provide an ordering. Note that since functions are first-class
objects in Python, we can specify precisely the function from the Sage library
that we wish to use as the key. ::
sage: t = polygen(QQ, 't')
sage: K = Graph({5*t:[t^2], t^2:[t^2+2], t^2+2:[4*t^2-6], 4*t^2-6:[5*t]})
sage: dsc = sage.rings.polynomial.polynomial_rational_flint.Polynomial_rational_flint.discriminant
sage: verts = K.vertices(key=dsc)
sage: verts
[t^2 + 2, t^2, 5*t, 4*t^2 - 6]
sage: [x.discriminant() for x in verts]
[-8, 0, 1, 96]
If boundary vertices are requested first, then they are sorted
separately from the remainder (which are also sorted). ::
sage: P = graphs.PetersenGraph()
sage: P.set_boundary((5..9))
sage: P.vertices(boundary_first=True)
[5, 6, 7, 8, 9, 0, 1, 2, 3, 4]
sage: P.vertices(boundary_first=True, key=lambda x: -x)
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
"""
if not boundary_first:
return sorted(list(self.vertex_iterator()), key=key)
bdy_verts = []
int_verts = []
for v in self.vertex_iterator():
if v in self._boundary:
bdy_verts.append(v)
else:
int_verts.append(v)
return sorted(bdy_verts, key=key) + sorted(int_verts, key=key)
def neighbors(self, vertex):
"""
Return a list of neighbors (in and out if directed) of vertex.
G[vertex] also works.
EXAMPLES::
sage: P = graphs.PetersenGraph()
sage: sorted(P.neighbors(3))
[2, 4, 8]
sage: sorted(P[4])
[0, 3, 9]
"""
return list(self.neighbor_iterator(vertex))
__getitem__ = neighbors
def merge_vertices(self,vertices):
r"""
Merge vertices.
This function replaces a set `S` of vertices by a single vertex
`v_{new}`, such that the edge `uv_{new}` exists if and only if
`\exists v'\in S: (u,v')\in G`.
The new vertex is named after the first vertex in the list
given in argument. If this first name is None, a new vertex
is created.
In the case of multigraphs, the multiplicity is preserved.
INPUT:
- ``vertices`` -- the set of vertices to be merged
EXAMPLE::
sage: g=graphs.CycleGraph(3)
sage: g.merge_vertices([0,1])
sage: g.edges()
[(0, 2, None)]
sage: # With a Multigraph :
sage: g=graphs.CycleGraph(3)
sage: g.allow_multiple_edges(True)
sage: g.merge_vertices([0,1])
sage: g.edges(labels=False)
[(0, 2), (0, 2)]
sage: P=graphs.PetersenGraph()
sage: P.merge_vertices([5,7])
sage: P.vertices()
[0, 1, 2, 3, 4, 5, 6, 8, 9]
sage: g=graphs.CycleGraph(5)
sage: g.vertices()
[0, 1, 2, 3, 4]
sage: g.merge_vertices([None, 1, 3])
sage: g.edges(labels=False)
[(0, 4), (0, 5), (2, 5), (4, 5)]
"""
if len(vertices) > 0 and vertices[0] is None:
vertices[0] = self.add_vertex()
if self.is_directed():
out_edges=self.edge_boundary(vertices)
in_edges=self.edge_boundary([v for v in self if not v in vertices])
self.delete_vertices(vertices[1:])
self.add_edges([(vertices[0],v,l) for (u,v,l) in out_edges if u!=vertices[0]])
self.add_edges([(v,vertices[0],l) for (v,u,l) in in_edges if u!=vertices[0]])
else:
edges=self.edge_boundary(vertices)
self.delete_vertices(vertices[1:])
add_edges=[]
for (u,v,l) in edges:
if v in vertices and v != vertices[0]:
add_edges.append((vertices[0],u,l))
if u in vertices and u!=vertices[0]:
add_edges.append((vertices[0],v,l))
self.add_edges(add_edges)
def add_edge(self, u, v=None, label=None):
"""
Adds an edge from u and v.
INPUT: The following forms are all accepted:
- G.add_edge( 1, 2 )
- G.add_edge( (1, 2) )
- G.add_edges( [ (1, 2) ])
- G.add_edge( 1, 2, 'label' )
- G.add_edge( (1, 2, 'label') )
- G.add_edges( [ (1, 2, 'label') ] )
WARNING: The following intuitive input results in nonintuitive
output::
sage: G = Graph()
sage: G.add_edge((1,2), 'label')
sage: G.networkx_graph().adj # random output order
{'label': {(1, 2): None}, (1, 2): {'label': None}}
Use one of these instead::
sage: G = Graph()
sage: G.add_edge((1,2), label="label")
sage: G.networkx_graph().adj # random output order
{1: {2: 'label'}, 2: {1: 'label'}}
::
sage: G = Graph()
sage: G.add_edge(1,2,'label')
sage: G.networkx_graph().adj # random output order
{1: {2: 'label'}, 2: {1: 'label'}}
The following syntax is supported, but note that you must use
the ``label`` keyword::
sage: G = Graph()
sage: G.add_edge((1,2), label='label')
sage: G.edges()
[(1, 2, 'label')]
sage: G = Graph()
sage: G.add_edge((1,2), 'label')
sage: G.edges()
[('label', (1, 2), None)]
Vertex name cannot be None, so::
sage: G = Graph()
sage: G.add_edge(None, 4)
sage: G.vertices()
[0, 4]
"""
if label is None:
if v is None:
try:
u, v, label = u
except:
try:
u, v = u
except:
pass
else:
if v is None:
try:
u, v = u
except:
pass
if not self.allows_loops() and u==v:
return
self._backend.add_edge(u, v, label, self._directed)
def add_edges(self, edges):
"""
Add edges from an iterable container.
EXAMPLES::
sage: G = graphs.DodecahedralGraph()
sage: H = Graph()
sage: H.add_edges( G.edge_iterator() ); H
Graph on 20 vertices
sage: G = graphs.DodecahedralGraph().to_directed()
sage: H = DiGraph()
sage: H.add_edges( G.edge_iterator() ); H
Digraph on 20 vertices
"""
for e in edges:
self.add_edge(e)
def subdivide_edge(self, *args):
"""
Subdivides an edge `k` times.
INPUT:
The following forms are all accepted to subdivide `8` times
the edge between vertices `1` and `2` labeled with
``"my_label"``.
- ``G.subdivide_edge( 1, 2, 8 )``
- ``G.subdivide_edge( (1, 2), 8 )``
- ``G.subdivide_edge( (1, 2, "my_label"), 8 )``
.. NOTE::
* If the given edge is labelled with `l`, all the edges
created by the subdivision will have the same label.
* If no label is given, the label used will be the one
returned by the method :meth:`edge_label` on the pair
``u,v``
EXAMPLE:
Subdividing `5` times an edge in a path of length
`3` makes it a path of length `8`::
sage: g = graphs.PathGraph(3)
sage: edge = g.edges()[0]
sage: g.subdivide_edge(edge, 5)
sage: g.is_isomorphic(graphs.PathGraph(8))
True
Subdividing a labelled edge in two ways ::
sage: g = Graph()
sage: g.add_edge(0,1,"label1")
sage: g.add_edge(1,2,"label2")
sage: print sorted(g.edges())
[(0, 1, 'label1'), (1, 2, 'label2')]
Specifying the label::
sage: g.subdivide_edge(0,1,"label1", 3)
sage: print sorted(g.edges())
[(0, 3, 'label1'), (1, 2, 'label2'), (1, 5, 'label1'), (3, 4, 'label1'), (4, 5, 'label1')]
The lazy way::
sage: g.subdivide_edge(1,2,"label2", 5)
sage: print sorted(g.edges())
[(0, 3, 'label1'), (1, 5, 'label1'), (1, 6, 'label2'), (2, 10, 'label2'), (3, 4, 'label1'), (4, 5, 'label1'), (6, 7, 'label2'), (7, 8, 'label2'), (8, 9, 'label2'), (9, 10, 'label2')]
If too many arguments are given, an exception is raised ::
sage: g.subdivide_edge(0,1,1,1,1,1,1,1,1,1,1)
Traceback (most recent call last):
...
ValueError: This method takes at most 4 arguments !
The same goes when the given edge does not exist::
sage: g.subdivide_edge(0,1,"fake_label",5)
Traceback (most recent call last):
...
ValueError: The given edge does not exist.
.. SEEALSO::
- :meth:`subdivide_edges` -- subdivides multiples edges at a time
"""
if len(args) == 2:
edge, k = args
if len(edge) == 2:
u,v = edge
l = self.edge_label(u,v)
elif len(edge) == 3:
u,v,l = edge
elif len(args) == 3:
u, v, k = args
l = self.edge_label(u,v)
elif len(args) == 4:
u, v, l, k = args
else:
raise ValueError("This method takes at most 4 arguments !")
if not self.has_edge(u,v,l):
raise ValueError("The given edge does not exist.")
for i in xrange(k):
self.add_vertex()
self.delete_edge(u,v,l)
edges = []
for uu in self.vertices()[-k:] + [v]:
edges.append((u,uu,l))
u = uu
self.add_edges(edges)
def subdivide_edges(self, edges, k):
"""
Subdivides k times edges from an iterable container.
For more information on the behaviour of this method, please
refer to the documentation of :meth:`subdivide_edge`.
INPUT:
- ``edges`` -- a list of edges
- ``k`` (integer) -- common length of the subdivisions
.. NOTE::
If a given edge is labelled with `l`, all the edges
created by its subdivision will have the same label.
EXAMPLE:
If we are given the disjoint union of several paths::
sage: paths = [2,5,9]
sage: paths = map(graphs.PathGraph, paths)
sage: g = Graph()
sage: for P in paths:
... g = g + P
... subdividing edges in each of them will only change their
lengths::
sage: edges = [P.edges()[0] for P in g.connected_components_subgraphs()]
sage: k = 6
sage: g.subdivide_edges(edges, k)
Let us check this by creating the graph we expect to have built
through subdivision::
sage: paths2 = [2+k, 5+k, 9+k]
sage: paths2 = map(graphs.PathGraph, paths2)
sage: g2 = Graph()
sage: for P in paths2:
... g2 = g2 + P
sage: g.is_isomorphic(g2)
True
.. SEEALSO::
- :meth:`subdivide_edge` -- subdivides one edge
"""
for e in edges:
self.subdivide_edge(e, k)
def delete_edge(self, u, v=None, label=None):
r"""
Delete the edge from u to v, returning silently if vertices or edge
does not exist.
INPUT: The following forms are all accepted:
- G.delete_edge( 1, 2 )
- G.delete_edge( (1, 2) )
- G.delete_edges( [ (1, 2) ] )
- G.delete_edge( 1, 2, 'label' )
- G.delete_edge( (1, 2, 'label') )
- G.delete_edges( [ (1, 2, 'label') ] )
EXAMPLES::
sage: G = graphs.CompleteGraph(19).copy(implementation='c_graph')
sage: G.size()
171
sage: G.delete_edge( 1, 2 )
sage: G.delete_edge( (3, 4) )
sage: G.delete_edges( [ (5, 6), (7, 8) ] )
sage: G.size()
167
Note that NetworkX accidentally deletes these edges, even though the
labels do not match up::
sage: N = graphs.CompleteGraph(19).copy(implementation='networkx')
sage: N.size()
171
sage: N.delete_edge( 1, 2 )
sage: N.delete_edge( (3, 4) )
sage: N.delete_edges( [ (5, 6), (7, 8) ] )
sage: N.size()
167
sage: N.delete_edge( 9, 10, 'label' )
sage: N.delete_edge( (11, 12, 'label') )
sage: N.delete_edges( [ (13, 14, 'label') ] )
sage: N.size()
167
sage: N.has_edge( (11, 12) )
True
However, CGraph backends handle things properly::
sage: G.delete_edge( 9, 10, 'label' )
sage: G.delete_edge( (11, 12, 'label') )
sage: G.delete_edges( [ (13, 14, 'label') ] )
sage: G.size()
167
::
sage: C = graphs.CompleteGraph(19).to_directed(sparse=True)
sage: C.size()
342
sage: C.delete_edge( 1, 2 )
sage: C.delete_edge( (3, 4) )
sage: C.delete_edges( [ (5, 6), (7, 8) ] )
sage: D = graphs.CompleteGraph(19).to_directed(sparse=True, implementation='networkx')
sage: D.size()
342
sage: D.delete_edge( 1, 2 )
sage: D.delete_edge( (3, 4) )
sage: D.delete_edges( [ (5, 6), (7, 8) ] )
sage: D.delete_edge( 9, 10, 'label' )
sage: D.delete_edge( (11, 12, 'label') )
sage: D.delete_edges( [ (13, 14, 'label') ] )
sage: D.size()
338
sage: D.has_edge( (11, 12) )
True
::
sage: C.delete_edge( 9, 10, 'label' )
sage: C.delete_edge( (11, 12, 'label') )
sage: C.delete_edges( [ (13, 14, 'label') ] )
sage: C.size() # correct!
338
sage: C.has_edge( (11, 12) ) # correct!
True
"""
if label is None:
if v is None:
try:
u, v, label = u
except:
u, v = u
label = None
self._backend.del_edge(u, v, label, self._directed)
def delete_edges(self, edges):
"""
Delete edges from an iterable container.
EXAMPLES::
sage: K12 = graphs.CompleteGraph(12)
sage: K4 = graphs.CompleteGraph(4)
sage: K12.size()
66
sage: K12.delete_edges(K4.edge_iterator())
sage: K12.size()
60
::
sage: K12 = graphs.CompleteGraph(12).to_directed()
sage: K4 = graphs.CompleteGraph(4).to_directed()
sage: K12.size()
132
sage: K12.delete_edges(K4.edge_iterator())
sage: K12.size()
120
"""
for e in edges:
self.delete_edge(e)
def delete_multiedge(self, u, v):
"""
Deletes all edges from u and v.
EXAMPLES::
sage: G = Graph(multiedges=True,sparse=True)
sage: G.add_edges([(0,1), (0,1), (0,1), (1,2), (2,3)])
sage: G.edges()
[(0, 1, None), (0, 1, None), (0, 1, None), (1, 2, None), (2, 3, None)]
sage: G.delete_multiedge( 0, 1 )
sage: G.edges()
[(1, 2, None), (2, 3, None)]
::
sage: D = DiGraph(multiedges=True,sparse=True)
sage: D.add_edges([(0,1,1), (0,1,2), (0,1,3), (1,0), (1,2), (2,3)])
sage: D.edges()
[(0, 1, 1), (0, 1, 2), (0, 1, 3), (1, 0, None), (1, 2, None), (2, 3, None)]
sage: D.delete_multiedge( 0, 1 )
sage: D.edges()
[(1, 0, None), (1, 2, None), (2, 3, None)]
"""
if self.allows_multiple_edges():
for l in self.edge_label(u, v):
self.delete_edge(u, v, l)
else:
self.delete_edge(u, v)
def set_edge_label(self, u, v, l):
"""
Set the edge label of a given edge.
.. note::
There can be only one edge from u to v for this to make
sense. Otherwise, an error is raised.
INPUT:
- ``u, v`` - the vertices (and direction if digraph)
of the edge
- ``l`` - the new label
EXAMPLES::
sage: SD = DiGraph( { 1:[18,2], 2:[5,3], 3:[4,6], 4:[7,2], 5:[4], 6:[13,12], 7:[18,8,10], 8:[6,9,10], 9:[6], 10:[11,13], 11:[12], 12:[13], 13:[17,14], 14:[16,15], 15:[2], 16:[13], 17:[15,13], 18:[13] }, sparse=True)
sage: SD.set_edge_label(1, 18, 'discrete')
sage: SD.set_edge_label(4, 7, 'discrete')
sage: SD.set_edge_label(2, 5, 'h = 0')
sage: SD.set_edge_label(7, 18, 'h = 0')
sage: SD.set_edge_label(7, 10, 'aut')
sage: SD.set_edge_label(8, 10, 'aut')
sage: SD.set_edge_label(8, 9, 'label')
sage: SD.set_edge_label(8, 6, 'no label')
sage: SD.set_edge_label(13, 17, 'k > h')
sage: SD.set_edge_label(13, 14, 'k = h')
sage: SD.set_edge_label(17, 15, 'v_k finite')
sage: SD.set_edge_label(14, 15, 'v_k m.c.r.')
sage: posn = {1:[ 3,-3], 2:[0,2], 3:[0, 13], 4:[3,9], 5:[3,3], 6:[16, 13], 7:[6,1], 8:[6,6], 9:[6,11], 10:[9,1], 11:[10,6], 12:[13,6], 13:[16,2], 14:[10,-6], 15:[0,-10], 16:[14,-6], 17:[16,-10], 18:[6,-4]}
sage: SD.plot(pos=posn, vertex_size=400, vertex_colors={'#FFFFFF':range(1,19)}, edge_labels=True).show() # long time
::
sage: G = graphs.HeawoodGraph()
sage: for u,v,l in G.edges():
... G.set_edge_label(u,v,'(' + str(u) + ',' + str(v) + ')')
sage: G.edges()
[(0, 1, '(0,1)'),
(0, 5, '(0,5)'),
(0, 13, '(0,13)'),
...
(11, 12, '(11,12)'),
(12, 13, '(12,13)')]
::
sage: g = Graph({0: [0,1,1,2]}, loops=True, multiedges=True, sparse=True)
sage: g.set_edge_label(0,0,'test')
sage: g.edges()
[(0, 0, 'test'), (0, 1, None), (0, 1, None), (0, 2, None)]
sage: g.add_edge(0,0,'test2')
sage: g.set_edge_label(0,0,'test3')
Traceback (most recent call last):
...
RuntimeError: Cannot set edge label, since there are multiple edges from 0 to 0.
::
sage: dg = DiGraph({0 : [1], 1 : [0]}, sparse=True)
sage: dg.set_edge_label(0,1,5)
sage: dg.set_edge_label(1,0,9)
sage: dg.outgoing_edges(1)
[(1, 0, 9)]
sage: dg.incoming_edges(1)
[(0, 1, 5)]
sage: dg.outgoing_edges(0)
[(0, 1, 5)]
sage: dg.incoming_edges(0)
[(1, 0, 9)]
::
sage: G = Graph({0:{1:1}}, sparse=True)
sage: G.num_edges()
1
sage: G.set_edge_label(0,1,1)
sage: G.num_edges()
1
"""
if self.allows_multiple_edges():
if len(self.edge_label(u, v)) > 1:
raise RuntimeError("Cannot set edge label, since there are multiple edges from %s to %s."%(u,v))
self._backend.set_edge_label(u, v, l, self._directed)
def has_edge(self, u, v=None, label=None):
r"""
Returns True if (u, v) is an edge, False otherwise.
INPUT: The following forms are accepted by NetworkX:
- G.has_edge( 1, 2 )
- G.has_edge( (1, 2) )
- G.has_edge( 1, 2, 'label' )
EXAMPLES::
sage: graphs.EmptyGraph().has_edge(9,2)
False
sage: DiGraph().has_edge(9,2)
False
sage: G = Graph(sparse=True)
sage: G.add_edge(0,1,"label")
sage: G.has_edge(0,1,"different label")
False
sage: G.has_edge(0,1,"label")
True
"""
if label is None:
if v is None:
try:
u, v, label = u
except:
u, v = u
label = None
return self._backend.has_edge(u, v, label)
def edges(self, labels=True, sort=True, key=None):
r"""
Return a list of edges.
Each edge is a triple (u,v,l) where u and v are vertices and l is a
label. If the parameter ``labels`` is False then a list of couple (u,v)
is returned where u and v are vertices.
INPUT:
- ``labels`` - default: ``True`` - if ``False``, each
edge is simply a pair (u,v) of vertices.
- ``sort`` - default: ``True`` - if ``True``, edges are
sorted according to the default ordering.
- ``key`` - default: ``None`` - a function takes an edge
(a pair or a triple, according to the ``labels`` keyword)
as its one argument and returns a value that can be used
for comparisons in the sorting algorithm.
OUTPUT: A list of tuples. It is safe to change the returned list.
.. warning::
Since any object may be a vertex, there is no guarantee
that any two vertices will be comparable, and thus no
guarantee how two edges may compare. With default
objects for vertices (all integers), or when all the
vertices are of the same simple type, then there should
not be a problem with how the vertices will be sorted.
However, if you need to guarantee a total order for
the sorting of the edges, use the ``key`` argument,
as illustrated in the examples below.
EXAMPLES::
sage: graphs.DodecahedralGraph().edges()
[(0, 1, None), (0, 10, None), (0, 19, None), (1, 2, None), (1, 8, None), (2, 3, None), (2, 6, None), (3, 4, None), (3, 19, None), (4, 5, None), (4, 17, None), (5, 6, None), (5, 15, None), (6, 7, None), (7, 8, None), (7, 14, None), (8, 9, None), (9, 10, None), (9, 13, None), (10, 11, None), (11, 12, None), (11, 18, None), (12, 13, None), (12, 16, None), (13, 14, None), (14, 15, None), (15, 16, None), (16, 17, None), (17, 18, None), (18, 19, None)]
::
sage: graphs.DodecahedralGraph().edges(labels=False)
[(0, 1), (0, 10), (0, 19), (1, 2), (1, 8), (2, 3), (2, 6), (3, 4), (3, 19), (4, 5), (4, 17), (5, 6), (5, 15), (6, 7), (7, 8), (7, 14), (8, 9), (9, 10), (9, 13), (10, 11), (11, 12), (11, 18), (12, 13), (12, 16), (13, 14), (14, 15), (15, 16), (16, 17), (17, 18), (18, 19)]
::
sage: D = graphs.DodecahedralGraph().to_directed()
sage: D.edges()
[(0, 1, None), (0, 10, None), (0, 19, None), (1, 0, None), (1, 2, None), (1, 8, None), (2, 1, None), (2, 3, None), (2, 6, None), (3, 2, None), (3, 4, None), (3, 19, None), (4, 3, None), (4, 5, None), (4, 17, None), (5, 4, None), (5, 6, None), (5, 15, None), (6, 2, None), (6, 5, None), (6, 7, None), (7, 6, None), (7, 8, None), (7, 14, None), (8, 1, None), (8, 7, None), (8, 9, None), (9, 8, None), (9, 10, None), (9, 13, None), (10, 0, None), (10, 9, None), (10, 11, None), (11, 10, None), (11, 12, None), (11, 18, None), (12, 11, None), (12, 13, None), (12, 16, None), (13, 9, None), (13, 12, None), (13, 14, None), (14, 7, None), (14, 13, None), (14, 15, None), (15, 5, None), (15, 14, None), (15, 16, None), (16, 12, None), (16, 15, None), (16, 17, None), (17, 4, None), (17, 16, None), (17, 18, None), (18, 11, None), (18, 17, None), (18, 19, None), (19, 0, None), (19, 3, None), (19, 18, None)]
sage: D.edges(labels = False)
[(0, 1), (0, 10), (0, 19), (1, 0), (1, 2), (1, 8), (2, 1), (2, 3), (2, 6), (3, 2), (3, 4), (3, 19), (4, 3), (4, 5), (4, 17), (5, 4), (5, 6), (5, 15), (6, 2), (6, 5), (6, 7), (7, 6), (7, 8), (7, 14), (8, 1), (8, 7), (8, 9), (9, 8), (9, 10), (9, 13), (10, 0), (10, 9), (10, 11), (11, 10), (11, 12), (11, 18), (12, 11), (12, 13), (12, 16), (13, 9), (13, 12), (13, 14), (14, 7), (14, 13), (14, 15), (15, 5), (15, 14), (15, 16), (16, 12), (16, 15), (16, 17), (17, 4), (17, 16), (17, 18), (18, 11), (18, 17), (18, 19), (19, 0), (19, 3), (19, 18)]
The default is to sort the returned list in the default fashion, as in the above examples.
this can be overridden by specifying a key function. This first example just ignores
the labels in the third component of the triple. ::
sage: G=graphs.CycleGraph(5)
sage: G.edges(key = lambda x: (x[1],-x[0]))
[(0, 1, None), (1, 2, None), (2, 3, None), (3, 4, None), (0, 4, None)]
We set the labels to characters and then perform a default sort
followed by a sort according to the labels. ::
sage: G=graphs.CycleGraph(5)
sage: for e in G.edges():
... G.set_edge_label(e[0], e[1], chr(ord('A')+e[0]+5*e[1]))
sage: G.edges(sort=True)
[(0, 1, 'F'), (0, 4, 'U'), (1, 2, 'L'), (2, 3, 'R'), (3, 4, 'X')]
sage: G.edges(key=lambda x: x[2])
[(0, 1, 'F'), (1, 2, 'L'), (2, 3, 'R'), (0, 4, 'U'), (3, 4, 'X')]
TESTS:
It is an error to turn off sorting while providing a key function for sorting. ::
sage: P=graphs.PetersenGraph()
sage: P.edges(sort=False, key=lambda x: x)
Traceback (most recent call last):
...
ValueError: sort keyword is False, yet a key function is given
"""
if not(sort) and key:
raise ValueError('sort keyword is False, yet a key function is given')
L = list(self.edge_iterator(labels=labels))
if sort:
L.sort(key=key)
return L
def edge_boundary(self, vertices1, vertices2=None, labels=True, sort=True):
"""
Returns a list of edges `(u,v,l)` with `u` in ``vertices1``
and `v` in ``vertices2``. If ``vertices2`` is ``None``, then
it is set to the complement of ``vertices1``.
In a digraph, the external boundary of a vertex `v` are those
vertices `u` with an arc `(v, u)`.
INPUT:
- ``labels`` - if ``False``, each edge is a tuple `(u,v)` of
vertices.
EXAMPLES::
sage: K = graphs.CompleteBipartiteGraph(9,3)
sage: len(K.edge_boundary( [0,1,2,3,4,5,6,7,8], [9,10,11] ))
27
sage: K.size()
27
Note that the edge boundary preserves direction::
sage: K = graphs.CompleteBipartiteGraph(9,3).to_directed()
sage: len(K.edge_boundary( [0,1,2,3,4,5,6,7,8], [9,10,11] ))
27
sage: K.size()
54
::
sage: D = DiGraph({0:[1,2], 3:[0]})
sage: D.edge_boundary([0])
[(0, 1, None), (0, 2, None)]
sage: D.edge_boundary([0], labels=False)
[(0, 1), (0, 2)]
TESTS::
sage: G = graphs.DiamondGraph()
sage: G.edge_boundary([0,1])
[(0, 2, None), (1, 2, None), (1, 3, None)]
sage: G.edge_boundary([0], [0])
[]
sage: G.edge_boundary([2], [0])
[(0, 2, None)]
"""
vertices1 = set([v for v in vertices1 if v in self])
if self._directed:
if vertices2 is not None:
vertices2 = set([v for v in vertices2 if v in self])
output = [e for e in self.outgoing_edge_iterator(vertices1,labels=labels)
if e[1] in vertices2]
else:
output = [e for e in self.outgoing_edge_iterator(vertices1,labels=labels)
if e[1] not in vertices1]
else:
if vertices2 is not None:
vertices2 = set([v for v in vertices2 if v in self])
output = [e for e in self.edge_iterator(vertices1,labels=labels)
if (e[0] in vertices1 and e[1] in vertices2) or
(e[1] in vertices1 and e[0] in vertices2)]
else:
output = [e for e in self.edge_iterator(vertices1,labels=labels)
if e[1] not in vertices1 or e[0] not in vertices1]
if sort:
output.sort()
return output
def edge_iterator(self, vertices=None, labels=True, ignore_direction=False):
"""
Returns an iterator over edges.
The iterator returned is over the edges incident with any vertex given
in the parameter ``vertices``. If the graph is directed, iterates over
edges going out only. If vertices is None, then returns an iterator over
all edges. If self is directed, returns outgoing edges only.
INPUT:
- ``vertices`` - (default: None) a vertex, a list of vertices or None
- ``labels`` - if False, each edge is a tuple (u,v) of
vertices.
- ``ignore_direction`` - bool (default: False) - only applies
to directed graphs. If True, searches across edges in either
direction.
EXAMPLES::
sage: for i in graphs.PetersenGraph().edge_iterator([0]):
... print i
(0, 1, None)
(0, 4, None)
(0, 5, None)
sage: D = DiGraph( { 0 : [1,2], 1: [0] } )
sage: for i in D.edge_iterator([0]):
... print i
(0, 1, None)
(0, 2, None)
::
sage: G = graphs.TetrahedralGraph()
sage: list(G.edge_iterator(labels=False))
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
::
sage: D = DiGraph({1:[0], 2:[0]})
sage: list(D.edge_iterator(0))
[]
sage: list(D.edge_iterator(0, ignore_direction=True))
[(1, 0, None), (2, 0, None)]
"""
if vertices is None:
vertices = self
elif vertices in self:
vertices = [vertices]
else:
vertices = [v for v in vertices if v in self]
if ignore_direction and self._directed:
from itertools import chain
return chain(self._backend.iterator_out_edges(vertices, labels),
self._backend.iterator_in_edges(vertices, labels))
elif self._directed:
return self._backend.iterator_out_edges(vertices, labels)
else:
return self._backend.iterator_edges(vertices, labels)
def edges_incident(self, vertices=None, labels=True, sort=True):
"""
Returns incident edges to some vertices.
If ``vertices` is a vertex, then it returns the list of edges incident to
that vertex. If ``vertices`` is a list of vertices then it returns the
list of all edges adjacent to those vertices. If ``vertices``
is None, returns a list of all edges in graph. For digraphs, only
lists outward edges.
INPUT:
- ``vertices`` - object (default: None) - a vertex, a list of vertices
or None.
- ``labels`` - bool (default: True) - if False, each edge is a tuple
(u,v) of vertices.
- ``sort`` - bool (default: True) - if True the returned list is sorted.
EXAMPLES::
sage: graphs.PetersenGraph().edges_incident([0,9], labels=False)
[(0, 1), (0, 4), (0, 5), (4, 9), (6, 9), (7, 9)]
sage: D = DiGraph({0:[1]})
sage: D.edges_incident([0])
[(0, 1, None)]
sage: D.edges_incident([1])
[]
TESTS::
sage: G = Graph({0:[0]}, loops=True) # ticket 9581
sage: G.edges_incident(0)
[(0, 0, None)]
"""
if vertices in self:
vertices = [vertices]
if sort:
return sorted(self.edge_iterator(vertices=vertices,labels=labels))
return list(self.edge_iterator(vertices=vertices,labels=labels))
def edge_label(self, u, v=None):
"""
Returns the label of an edge. Note that if the graph allows
multiple edges, then a list of labels on the edge is returned.
EXAMPLES::
sage: G = Graph({0 : {1 : 'edgelabel'}}, sparse=True)
sage: G.edges(labels=False)
[(0, 1)]
sage: G.edge_label( 0, 1 )
'edgelabel'
sage: D = DiGraph({0 : {1 : 'edgelabel'}}, sparse=True)
sage: D.edges(labels=False)
[(0, 1)]
sage: D.edge_label( 0, 1 )
'edgelabel'
::
sage: G = Graph(multiedges=True, sparse=True)
sage: [G.add_edge(0,1,i) for i in range(1,6)]
[None, None, None, None, None]
sage: sorted(G.edge_label(0,1))
[1, 2, 3, 4, 5]
TESTS::
sage: G = Graph()
sage: G.add_edge(0,1,[7])
sage: G.add_edge(0,2,[7])
sage: G.edge_label(0,1)[0] += 1
sage: G.edges()
[(0, 1, [8]), (0, 2, [7])]
"""
return self._backend.get_edge_label(u,v)
def edge_labels(self):
"""
Returns a list of edge labels.
EXAMPLES::
sage: G = Graph({0:{1:'x',2:'z',3:'a'}, 2:{5:'out'}}, sparse=True)
sage: G.edge_labels()
['x', 'z', 'a', 'out']
sage: G = DiGraph({0:{1:'x',2:'z',3:'a'}, 2:{5:'out'}}, sparse=True)
sage: G.edge_labels()
['x', 'z', 'a', 'out']
"""
labels = []
for u,v,l in self.edges():
labels.append(l)
return labels
def remove_multiple_edges(self):
"""
Removes all multiple edges, retaining one edge for each.
EXAMPLES::
sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edges( [ (0,1), (0,1), (0,1), (0,1), (1,2) ] )
sage: G.edges(labels=False)
[(0, 1), (0, 1), (0, 1), (0, 1), (1, 2)]
::
sage: G.remove_multiple_edges()
sage: G.edges(labels=False)
[(0, 1), (1, 2)]
::
sage: D = DiGraph(multiedges=True, sparse=True)
sage: D.add_edges( [ (0,1,1), (0,1,2), (0,1,3), (0,1,4), (1,2) ] )
sage: D.edges(labels=False)
[(0, 1), (0, 1), (0, 1), (0, 1), (1, 2)]
sage: D.remove_multiple_edges()
sage: D.edges(labels=False)
[(0, 1), (1, 2)]
"""
if self.allows_multiple_edges():
if self._directed:
for v in self:
for u in self.neighbor_in_iterator(v):
edges = self.edge_boundary([u], [v])
if len(edges) > 1:
self.delete_edges(edges[1:])
else:
for v in self:
for u in self.neighbor_iterator(v):
edges = self.edge_boundary([v], [u])
if len(edges) > 1:
self.delete_edges(edges[1:])
def remove_loops(self, vertices=None):
"""
Removes loops on vertices in vertices. If vertices is None, removes
all loops.
EXAMPLE
::
sage: G = Graph(4, loops=True)
sage: G.add_edges( [ (0,0), (1,1), (2,2), (3,3), (2,3) ] )
sage: G.edges(labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]
sage: G.remove_loops()
sage: G.edges(labels=False)
[(2, 3)]
sage: G.allows_loops()
True
sage: G.has_loops()
False
sage: D = DiGraph(4, loops=True)
sage: D.add_edges( [ (0,0), (1,1), (2,2), (3,3), (2,3) ] )
sage: D.edges(labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]
sage: D.remove_loops()
sage: D.edges(labels=False)
[(2, 3)]
sage: D.allows_loops()
True
sage: D.has_loops()
False
"""
if vertices is None:
vertices = self
for v in vertices:
if self.has_edge(v,v):
self.delete_multiedge(v,v)
def loop_edges(self):
"""
Returns a list of all loops in the graph.
EXAMPLES::
sage: G = Graph(4, loops=True)
sage: G.add_edges( [ (0,0), (1,1), (2,2), (3,3), (2,3) ] )
sage: G.loop_edges()
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None)]
::
sage: D = DiGraph(4, loops=True)
sage: D.add_edges( [ (0,0), (1,1), (2,2), (3,3), (2,3) ] )
sage: D.loop_edges()
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None)]
::
sage: G = Graph(4, loops=True, multiedges=True, sparse=True)
sage: G.add_edges([(i,i) for i in range(4)])
sage: G.loop_edges()
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None)]
"""
if self.allows_multiple_edges():
return [(v,v,l) for v in self.loop_vertices() for l in self.edge_label(v,v)]
else:
return [(v,v,self.edge_label(v,v)) for v in self.loop_vertices()]
def number_of_loops(self):
"""
Returns the number of edges that are loops.
EXAMPLES::
sage: G = Graph(4, loops=True)
sage: G.add_edges( [ (0,0), (1,1), (2,2), (3,3), (2,3) ] )
sage: G.edges(labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]
sage: G.number_of_loops()
4
::
sage: D = DiGraph(4, loops=True)
sage: D.add_edges( [ (0,0), (1,1), (2,2), (3,3), (2,3) ] )
sage: D.edges(labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]
sage: D.number_of_loops()
4
"""
return len(self.loop_edges())
def clear(self):
"""
Empties the graph of vertices and edges and removes name, boundary,
associated objects, and position information.
EXAMPLES::
sage: G=graphs.CycleGraph(4); G.set_vertices({0:'vertex0'})
sage: G.order(); G.size()
4
4
sage: len(G._pos)
4
sage: G.name()
'Cycle graph'
sage: G.get_vertex(0)
'vertex0'
sage: H = G.copy(implementation='c_graph', sparse=True)
sage: H.clear()
sage: H.order(); H.size()
0
0
sage: len(H._pos)
0
sage: H.name()
''
sage: H.get_vertex(0)
sage: H = G.copy(implementation='c_graph', sparse=False)
sage: H.clear()
sage: H.order(); H.size()
0
0
sage: len(H._pos)
0
sage: H.name()
''
sage: H.get_vertex(0)
sage: H = G.copy(implementation='networkx')
sage: H.clear()
sage: H.order(); H.size()
0
0
sage: len(H._pos)
0
sage: H.name()
''
sage: H.get_vertex(0)
"""
self.name('')
self.delete_vertices(self.vertices())
def degree(self, vertices=None, labels=False):
"""
Gives the degree (in + out for digraphs) of a vertex or of
vertices.
INPUT:
- ``vertices`` - If vertices is a single vertex,
returns the number of neighbors of vertex. If vertices is an
iterable container of vertices, returns a list of degrees. If
vertices is None, same as listing all vertices.
- ``labels`` - see OUTPUT
OUTPUT: Single vertex- an integer. Multiple vertices- a list of
integers. If labels is True, then returns a dictionary mapping each
vertex to its degree.
EXAMPLES::
sage: P = graphs.PetersenGraph()
sage: P.degree(5)
3
::
sage: K = graphs.CompleteGraph(9)
sage: K.degree()
[8, 8, 8, 8, 8, 8, 8, 8, 8]
::
sage: D = DiGraph( { 0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1] } )
sage: D.degree(vertices = [0,1,2], labels=True)
{0: 5, 1: 4, 2: 3}
sage: D.degree()
[5, 4, 3, 3, 3, 2]
"""
if labels:
return dict(self.degree_iterator(vertices,labels))
elif vertices in self and not labels:
return self.degree_iterator(vertices,labels).next()
else:
return list(self.degree_iterator(vertices,labels))
def average_degree(self):
r"""
Returns the average degree of the graph.
The average degree of a graph `G=(V,E)` is equal to
``\frac {2|E|}{|V|}``.
EXAMPLES:
The average degree of a regular graph is equal to the
degree of any vertex::
sage: g = graphs.CompleteGraph(5)
sage: g.average_degree() == 4
True
The average degree of a tree is always strictly less than
`2`::
sage: g = graphs.RandomGNP(20,.5)
sage: tree = Graph()
sage: tree.add_edges(g.min_spanning_tree())
sage: tree.average_degree() < 2
True
For any graph, it is equal to ``\frac {2|E|}{|V|}``::
sage: g = graphs.RandomGNP(50,.8)
sage: g.average_degree() == 2*g.size()/g.order()
True
"""
return 2*Integer(self.size())/Integer(self.order())
def maximum_average_degree(self, value_only=True, solver = None, verbose = 0):
r"""
Returns the Maximum Average Degree (MAD) of the current graph.
The Maximum Average Degree (MAD) of a graph is defined as
the average degree of its densest subgraph. More formally,
``Mad(G) = \max_{H\subseteq G} Ad(H)``, where `Ad(G)` denotes
the average degree of `G`.
This can be computed in polynomial time.
INPUT:
- ``value_only`` (boolean) -- ``True`` by default
- If ``value_only=True``, only the numerical
value of the `MAD` is returned.
- Else, the subgraph of `G` realizing the `MAD`
is returned.
- ``solver`` -- (default: ``None``) Specify a Linear Program (LP)
solver to be used. If set to ``None``, the default one is used. For
more information on LP solvers and which default solver is used, see
the method
:meth:`solve <sage.numerical.mip.MixedIntegerLinearProgram.solve>`
of the class
:class:`MixedIntegerLinearProgram <sage.numerical.mip.MixedIntegerLinearProgram>`.
- ``verbose`` -- integer (default: ``0``). Sets the level of
verbosity. Set to 0 by default, which means quiet.
EXAMPLES:
In any graph, the `Mad` is always larger than the average
degree::
sage: g = graphs.RandomGNP(20,.3)
sage: mad_g = g.maximum_average_degree()
sage: g.average_degree() <= mad_g
True
Unlike the average degree, the `Mad` of the disjoint
union of two graphs is the maximum of the `Mad` of each
graphs::
sage: h = graphs.RandomGNP(20,.3)
sage: mad_h = h.maximum_average_degree()
sage: (g+h).maximum_average_degree() == max(mad_g, mad_h)
True
The subgraph of a regular graph realizing the maximum
average degree is always the whole graph ::
sage: g = graphs.CompleteGraph(5)
sage: mad_g = g.maximum_average_degree(value_only=False)
sage: g.is_isomorphic(mad_g)
True
This also works for complete bipartite graphs ::
sage: g = graphs.CompleteBipartiteGraph(3,4)
sage: mad_g = g.maximum_average_degree(value_only=False)
sage: g.is_isomorphic(mad_g)
True
"""
g = self
from sage.numerical.mip import MixedIntegerLinearProgram, Sum
p = MixedIntegerLinearProgram(maximization=True, solver = solver)
d = p.new_variable()
one = p.new_variable()
reorder = lambda u,v : (min(u,v),max(u,v))
for u,v in g.edge_iterator(labels=False):
p.add_constraint( one[ reorder(u,v) ] - 2*d[u] , max = 0 )
p.add_constraint( one[ reorder(u,v) ] - 2*d[v] , max = 0 )
p.add_constraint( Sum([d[v] for v in g]), max = 1)
p.set_objective( Sum([ one[reorder(u,v)] for u,v in g.edge_iterator(labels=False)]) )
obj = p.solve(log = verbose)
m = 1/(10 *Integer(g.order()))
g_mad = g.subgraph([v for v,l in p.get_values(d).iteritems() if l>m ])
if value_only:
return g_mad.average_degree()
else:
return g_mad
def degree_histogram(self):
"""
Returns a list, whose ith entry is the frequency of degree i.
EXAMPLES::
sage: G = graphs.Grid2dGraph(9,12)
sage: G.degree_histogram()
[0, 0, 4, 34, 70]
::
sage: G = graphs.Grid2dGraph(9,12).to_directed()
sage: G.degree_histogram()
[0, 0, 0, 0, 4, 0, 34, 0, 70]
"""
degree_sequence = self.degree()
dmax = max(degree_sequence) + 1
frequency = [0]*dmax
for d in degree_sequence:
frequency[d] += 1
return frequency
def degree_iterator(self, vertices=None, labels=False):
"""
Returns an iterator over the degrees of the (di)graph.
In the case of a digraph, the degree is defined as the sum of the
in-degree and the out-degree, i.e. the total number of edges incident to
a given vertex.
INPUT:
- ``labels`` (boolean) -- if set to ``False`` (default) the method
returns an iterator over degrees. Otherwise it returns an iterator
over tuples (vertex, degree).
- ``vertices`` - if specified, restrict to this
subset.
EXAMPLES::
sage: G = graphs.Grid2dGraph(3,4)
sage: for i in G.degree_iterator():
... print i
3
4
2
...
2
4
sage: for i in G.degree_iterator(labels=True):
... print i
((0, 1), 3)
((1, 2), 4)
((0, 0), 2)
...
((0, 3), 2)
((1, 1), 4)
::
sage: D = graphs.Grid2dGraph(2,4).to_directed()
sage: for i in D.degree_iterator():
... print i
6
6
...
4
6
sage: for i in D.degree_iterator(labels=True):
... print i
((0, 1), 6)
((1, 2), 6)
...
((0, 3), 4)
((1, 1), 6)
"""
if vertices is None:
vertices = self
elif vertices in self:
vertices = [vertices]
else:
vertices = [v for v in vertices if v in self]
if labels:
filter = lambda v, self: (v, self._backend.degree(v, self._directed))
else:
filter = lambda v, self: self._backend.degree(v, self._directed)
for v in vertices:
yield filter(v, self)
def degree_sequence(self):
r"""
Return the degree sequence of this (di)graph.
EXAMPLES:
The degree sequence of an undirected graph::
sage: g = Graph({1: [2, 5], 2: [1, 5, 3, 4], 3: [2, 5], 4: [3], 5: [2, 3]})
sage: g.degree_sequence()
[4, 3, 3, 2, 2]
The degree sequence of a digraph::
sage: g = DiGraph({1: [2, 5, 6], 2: [3, 6], 3: [4, 6], 4: [6], 5: [4, 6]})
sage: g.degree_sequence()
[5, 3, 3, 3, 3, 3]
Degree sequences of some common graphs::
sage: graphs.PetersenGraph().degree_sequence()
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
sage: graphs.HouseGraph().degree_sequence()
[3, 3, 2, 2, 2]
sage: graphs.FlowerSnark().degree_sequence()
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
"""
return sorted(self.degree_iterator(), reverse=True)
def is_regular(self, k = None):
"""
Return ``True`` if this graph is (`k`-)regular.
INPUT:
- ``k`` (default: ``None``) - the degree of regularity to
check for
EXAMPLES::
sage: G = graphs.HoffmanSingletonGraph()
sage: G.is_regular()
True
sage: G.is_regular(9)
False
So the Hoffman-Singleton graph is regular, but not
9-regular. In fact, we can now find the degree easily as
follows::
sage: G.degree_iterator().next()
7
The house graph is not regular::
sage: graphs.HouseGraph().is_regular()
False
A graph without vertices is `k`-regular for every `k`::
sage: Graph().is_regular()
True
"""
if self.order() == 0:
return True
deg_it = self.degree_iterator()
if k is None:
k = deg_it.next()
for d in deg_it:
if d != k:
return False
return True
def subgraph(self, vertices=None, edges=None, inplace=False,
vertex_property=None, edge_property=None, algorithm=None):
"""
Returns the subgraph containing the given vertices and edges.
If either vertices or edges are not specified, they are assumed to be
all vertices or edges. If edges are not specified, returns the subgraph
induced by the vertices.
INPUT:
- ``inplace`` - Using inplace is True will simply
delete the extra vertices and edges from the current graph. This
will modify the graph.
- ``vertices`` - Vertices can be a single vertex or an
iterable container of vertices, e.g. a list, set, graph, file or
numeric array. If not passed, defaults to the entire graph.
- ``edges`` - As with vertices, edges can be a single
edge or an iterable container of edges (e.g., a list, set, file,
numeric array, etc.). If not edges are not specified, then all
edges are assumed and the returned graph is an induced subgraph. In
the case of multiple edges, specifying an edge as (u,v) means to
keep all edges (u,v), regardless of the label.
- ``vertex_property`` - If specified, this is
expected to be a function on vertices, which is intersected with
the vertices specified, if any are.
- ``edge_property`` - If specified, this is expected
to be a function on edges, which is intersected with the edges
specified, if any are.
- ``algorithm`` - If ``algorithm=delete`` or ``inplace=True``,
then the graph is constructed by deleting edges and
vertices. If ``add``, then the graph is constructed by
building a new graph from the appropriate vertices and
edges. If not specified, then the algorithm is chosen based
on the number of vertices in the subgraph.
EXAMPLES::
sage: G = graphs.CompleteGraph(9)
sage: H = G.subgraph([0,1,2]); H
Subgraph of (Complete graph): Graph on 3 vertices
sage: G
Complete graph: Graph on 9 vertices
sage: J = G.subgraph(edges=[(0,1)])
sage: J.edges(labels=False)
[(0, 1)]
sage: J.vertices()==G.vertices()
True
sage: G.subgraph([0,1,2], inplace=True); G
Subgraph of (Complete graph): Graph on 3 vertices
sage: G.subgraph()==G
True
::
sage: D = graphs.CompleteGraph(9).to_directed()
sage: H = D.subgraph([0,1,2]); H
Subgraph of (Complete graph): Digraph on 3 vertices
sage: H = D.subgraph(edges=[(0,1), (0,2)])
sage: H.edges(labels=False)
[(0, 1), (0, 2)]
sage: H.vertices()==D.vertices()
True
sage: D
Complete graph: Digraph on 9 vertices
sage: D.subgraph([0,1,2], inplace=True); D
Subgraph of (Complete graph): Digraph on 3 vertices
sage: D.subgraph()==D
True
A more complicated example involving multiple edges and labels.
::
sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edges([(0,1,'a'), (0,1,'b'), (1,0,'c'), (0,2,'d'), (0,2,'e'), (2,0,'f'), (1,2,'g')])
sage: G.subgraph(edges=[(0,1), (0,2,'d'), (0,2,'not in graph')]).edges()
[(0, 1, 'a'), (0, 1, 'b'), (0, 1, 'c'), (0, 2, 'd')]
sage: J = G.subgraph(vertices=[0,1], edges=[(0,1,'a'), (0,2,'c')])
sage: J.edges()
[(0, 1, 'a')]
sage: J.vertices()
[0, 1]
sage: G.subgraph(vertices=G.vertices())==G
True
::
sage: D = DiGraph(multiedges=True, sparse=True)
sage: D.add_edges([(0,1,'a'), (0,1,'b'), (1,0,'c'), (0,2,'d'), (0,2,'e'), (2,0,'f'), (1,2,'g')])
sage: D.subgraph(edges=[(0,1), (0,2,'d'), (0,2,'not in graph')]).edges()
[(0, 1, 'a'), (0, 1, 'b'), (0, 2, 'd')]
sage: H = D.subgraph(vertices=[0,1], edges=[(0,1,'a'), (0,2,'c')])
sage: H.edges()
[(0, 1, 'a')]
sage: H.vertices()
[0, 1]
Using the property arguments::
sage: P = graphs.PetersenGraph()
sage: S = P.subgraph(vertex_property = lambda v : v%2 == 0)
sage: S.vertices()
[0, 2, 4, 6, 8]
::
sage: C = graphs.CubeGraph(2)
sage: S = C.subgraph(edge_property=(lambda e: e[0][0] == e[1][0]))
sage: C.edges()
[('00', '01', None), ('00', '10', None), ('01', '11', None), ('10', '11', None)]
sage: S.edges()
[('00', '01', None), ('10', '11', None)]
The algorithm is not specified, then a reasonable choice is made for speed.
::
sage: g=graphs.PathGraph(1000)
sage: g.subgraph(range(10)) # uses the 'add' algorithm
Subgraph of (Path Graph): Graph on 10 vertices
TESTS: The appropriate properties are preserved.
::
sage: g = graphs.PathGraph(10)
sage: g.is_planar(set_embedding=True)
True
sage: g.set_vertices(dict((v, 'v%d'%v) for v in g.vertices()))
sage: h = g.subgraph([3..5])
sage: h.get_pos().keys()
[3, 4, 5]
sage: h.get_vertices()
{3: 'v3', 4: 'v4', 5: 'v5'}
"""
if vertices is None:
vertices=self.vertices()
elif vertices in self:
vertices=[vertices]
else:
vertices=list(vertices)
if vertex_property is not None:
vertices = [v for v in vertices if vertex_property(v)]
if algorithm is not None and algorithm not in ("delete", "add"):
raise ValueError('algorithm should be None, "delete", or "add"')
if inplace or len(vertices)>0.05*self.order() or algorithm=="delete":
return self._subgraph_by_deleting(vertices=vertices, edges=edges,
inplace=inplace,
edge_property=edge_property)
else:
return self._subgraph_by_adding(vertices=vertices, edges=edges,
edge_property=edge_property)
def _subgraph_by_adding(self, vertices=None, edges=None, edge_property=None):
"""
Returns the subgraph containing the given vertices and edges.
The edges also satisfy the edge_property, if it is not None.
The subgraph is created by creating a new empty graph and
adding the necessary vertices, edges, and other properties.
INPUT:
- ``vertices`` - Vertices is a list of vertices
- ``edges`` - Edges can be a single edge or an iterable
container of edges (e.g., a list, set, file, numeric array,
etc.). If not edges are not specified, then all edges are
assumed and the returned graph is an induced subgraph. In
the case of multiple edges, specifying an edge as (u,v)
means to keep all edges (u,v), regardless of the label.
- ``edge_property`` - If specified, this is expected
to be a function on edges, which is intersected with the edges
specified, if any are.
EXAMPLES::
sage: G = graphs.CompleteGraph(9)
sage: H = G._subgraph_by_adding([0,1,2]); H
Subgraph of (Complete graph): Graph on 3 vertices
sage: G
Complete graph: Graph on 9 vertices
sage: J = G._subgraph_by_adding(vertices=G.vertices(), edges=[(0,1)])
sage: J.edges(labels=False)
[(0, 1)]
sage: J.vertices()==G.vertices()
True
sage: G._subgraph_by_adding(vertices=G.vertices())==G
True
::
sage: D = graphs.CompleteGraph(9).to_directed()
sage: H = D._subgraph_by_adding([0,1,2]); H
Subgraph of (Complete graph): Digraph on 3 vertices
sage: H = D._subgraph_by_adding(vertices=D.vertices(), edges=[(0,1), (0,2)])
sage: H.edges(labels=False)
[(0, 1), (0, 2)]
sage: H.vertices()==D.vertices()
True
sage: D
Complete graph: Digraph on 9 vertices
sage: D._subgraph_by_adding(D.vertices())==D
True
A more complicated example involving multiple edges and labels.
::
sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edges([(0,1,'a'), (0,1,'b'), (1,0,'c'), (0,2,'d'), (0,2,'e'), (2,0,'f'), (1,2,'g')])
sage: G._subgraph_by_adding(G.vertices(), edges=[(0,1), (0,2,'d'), (0,2,'not in graph')]).edges()
[(0, 1, 'a'), (0, 1, 'b'), (0, 1, 'c'), (0, 2, 'd')]
sage: J = G._subgraph_by_adding(vertices=[0,1], edges=[(0,1,'a'), (0,2,'c')])
sage: J.edges()
[(0, 1, 'a')]
sage: J.vertices()
[0, 1]
sage: G._subgraph_by_adding(vertices=G.vertices())==G
True
::
sage: D = DiGraph(multiedges=True, sparse=True)
sage: D.add_edges([(0,1,'a'), (0,1,'b'), (1,0,'c'), (0,2,'d'), (0,2,'e'), (2,0,'f'), (1,2,'g')])
sage: D._subgraph_by_adding(vertices=D.vertices(), edges=[(0,1), (0,2,'d'), (0,2,'not in graph')]).edges()
[(0, 1, 'a'), (0, 1, 'b'), (0, 2, 'd')]
sage: H = D._subgraph_by_adding(vertices=[0,1], edges=[(0,1,'a'), (0,2,'c')])
sage: H.edges()
[(0, 1, 'a')]
sage: H.vertices()
[0, 1]
Using the property arguments::
sage: C = graphs.CubeGraph(2)
sage: S = C._subgraph_by_adding(vertices=C.vertices(), edge_property=(lambda e: e[0][0] == e[1][0]))
sage: C.edges()
[('00', '01', None), ('00', '10', None), ('01', '11', None), ('10', '11', None)]
sage: S.edges()
[('00', '01', None), ('10', '11', None)]
TESTS: Properties of the graph are preserved.
::
sage: g = graphs.PathGraph(10)
sage: g.is_planar(set_embedding=True)
True
sage: g.set_vertices(dict((v, 'v%d'%v) for v in g.vertices()))
sage: h = g._subgraph_by_adding([3..5])
sage: h.get_pos().keys()
[3, 4, 5]
sage: h.get_vertices()
{3: 'v3', 4: 'v4', 5: 'v5'}
"""
G = self.__class__(weighted=self._weighted, loops=self.allows_loops(),
multiedges= self.allows_multiple_edges())
G.name("Subgraph of (%s)"%self.name())
G.add_vertices(vertices)
if edges is not None:
if G._directed:
edges_graph = (e for e in self.edge_iterator(vertices) if e[1] in vertices)
edges_to_keep_labeled = [e for e in edges if len(e)==3]
edges_to_keep_unlabeled = [e for e in edges if len(e)==2]
else:
edges_graph = (sorted(e[0:2])+[e[2]] for e in self.edge_iterator(vertices) if e[0] in vertices and e[1] in vertices)
edges_to_keep_labeled = [sorted(e[0:2])+[e[2]] for e in edges if len(e)==3]
edges_to_keep_unlabeled = [sorted(e) for e in edges if len(e)==2]
edges_to_keep = [tuple(e) for e in edges_graph if e in edges_to_keep_labeled
or e[0:2] in edges_to_keep_unlabeled]
else:
edges_to_keep=[e for e in self.edge_iterator(vertices) if e[0] in vertices and e[1] in vertices]
if edge_property is not None:
edges_to_keep = [e for e in edges_to_keep if edge_property(e)]
G.add_edges(edges_to_keep)
attributes_to_update = ('_pos', '_assoc')
for attr in attributes_to_update:
if hasattr(self, attr) and getattr(self, attr) is not None:
value = dict([(v, getattr(self, attr).get(v, None)) for v in G])
setattr(G, attr,value)
G._boundary = [v for v in self._boundary if v in G]
return G
def _subgraph_by_deleting(self, vertices=None, edges=None, inplace=False,
edge_property=None):
"""
Returns the subgraph containing the given vertices and edges.
The edges also satisfy the edge_property, if it is not None.
The subgraph is created by creating deleting things that are
not needed.
INPUT:
- ``vertices`` - Vertices is a list of vertices
- ``edges`` - Edges can be a single edge or an iterable
container of edges (e.g., a list, set, file, numeric array,
etc.). If not edges are not specified, then all edges are
assumed and the returned graph is an induced subgraph. In
the case of multiple edges, specifying an edge as (u,v)
means to keep all edges (u,v), regardless of the label.
- ``edge_property`` - If specified, this is expected
to be a function on edges, which is intersected with the edges
specified, if any are.
- ``inplace`` - Using inplace is True will simply
delete the extra vertices and edges from the current graph. This
will modify the graph.
EXAMPLES::
sage: G = graphs.CompleteGraph(9)
sage: H = G._subgraph_by_deleting([0,1,2]); H
Subgraph of (Complete graph): Graph on 3 vertices
sage: G
Complete graph: Graph on 9 vertices
sage: J = G._subgraph_by_deleting(vertices=G.vertices(), edges=[(0,1)])
sage: J.edges(labels=False)
[(0, 1)]
sage: J.vertices()==G.vertices()
True
sage: G._subgraph_by_deleting([0,1,2], inplace=True); G
Subgraph of (Complete graph): Graph on 3 vertices
sage: G._subgraph_by_deleting(vertices=G.vertices())==G
True
::
sage: D = graphs.CompleteGraph(9).to_directed()
sage: H = D._subgraph_by_deleting([0,1,2]); H
Subgraph of (Complete graph): Digraph on 3 vertices
sage: H = D._subgraph_by_deleting(vertices=D.vertices(), edges=[(0,1), (0,2)])
sage: H.edges(labels=False)
[(0, 1), (0, 2)]
sage: H.vertices()==D.vertices()
True
sage: D
Complete graph: Digraph on 9 vertices
sage: D._subgraph_by_deleting([0,1,2], inplace=True); D
Subgraph of (Complete graph): Digraph on 3 vertices
sage: D._subgraph_by_deleting(D.vertices())==D
True
A more complicated example involving multiple edges and labels.
::
sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edges([(0,1,'a'), (0,1,'b'), (1,0,'c'), (0,2,'d'), (0,2,'e'), (2,0,'f'), (1,2,'g')])
sage: G._subgraph_by_deleting(G.vertices(), edges=[(0,1), (0,2,'d'), (0,2,'not in graph')]).edges()
[(0, 1, 'a'), (0, 1, 'b'), (0, 1, 'c'), (0, 2, 'd')]
sage: J = G._subgraph_by_deleting(vertices=[0,1], edges=[(0,1,'a'), (0,2,'c')])
sage: J.edges()
[(0, 1, 'a')]
sage: J.vertices()
[0, 1]
sage: G._subgraph_by_deleting(vertices=G.vertices())==G
True
::
sage: D = DiGraph(multiedges=True, sparse=True)
sage: D.add_edges([(0,1,'a'), (0,1,'b'), (1,0,'c'), (0,2,'d'), (0,2,'e'), (2,0,'f'), (1,2,'g')])
sage: D._subgraph_by_deleting(vertices=D.vertices(), edges=[(0,1), (0,2,'d'), (0,2,'not in graph')]).edges()
[(0, 1, 'a'), (0, 1, 'b'), (0, 2, 'd')]
sage: H = D._subgraph_by_deleting(vertices=[0,1], edges=[(0,1,'a'), (0,2,'c')])
sage: H.edges()
[(0, 1, 'a')]
sage: H.vertices()
[0, 1]
Using the property arguments::
sage: C = graphs.CubeGraph(2)
sage: S = C._subgraph_by_deleting(vertices=C.vertices(), edge_property=(lambda e: e[0][0] == e[1][0]))
sage: C.edges()
[('00', '01', None), ('00', '10', None), ('01', '11', None), ('10', '11', None)]
sage: S.edges()
[('00', '01', None), ('10', '11', None)]
TESTS: Properties of the graph are preserved.
::
sage: g = graphs.PathGraph(10)
sage: g.is_planar(set_embedding=True)
True
sage: g.set_vertices(dict((v, 'v%d'%v) for v in g.vertices()))
sage: h = g._subgraph_by_deleting([3..5])
sage: h.get_pos().keys()
[3, 4, 5]
sage: h.get_vertices()
{3: 'v3', 4: 'v4', 5: 'v5'}
"""
if inplace:
G = self
else:
G = self.copy()
G.name("Subgraph of (%s)"%self.name())
G.delete_vertices([v for v in G if v not in vertices])
edges_to_delete=[]
if edges is not None:
if G._directed:
edges_graph = G.edge_iterator()
edges_to_keep_labeled = [e for e in edges if len(e)==3]
edges_to_keep_unlabeled = [e for e in edges if len(e)==2]
else:
edges_graph = [sorted(e[0:2])+[e[2]] for e in G.edge_iterator()]
edges_to_keep_labeled = [sorted(e[0:2])+[e[2]] for e in edges if len(e)==3]
edges_to_keep_unlabeled = [sorted(e) for e in edges if len(e)==2]
for e in edges_graph:
if e not in edges_to_keep_labeled and e[0:2] not in edges_to_keep_unlabeled:
edges_to_delete.append(tuple(e))
if edge_property is not None:
for e in G.edge_iterator():
if not edge_property(e):
edges_to_delete.append(e)
G.delete_edges(edges_to_delete)
if not inplace:
return G
def subgraph_search(self, G, induced=False):
r"""
Returns a copy of ``G`` in ``self``.
INPUT:
- ``G`` -- the graph whose copy we are looking for in ``self``.
- ``induced`` -- boolean (default: ``False``). Whether or not to
search for an induced copy of ``G`` in ``self``.
OUTPUT:
- If ``induced=False``, return a copy of ``G`` in this graph.
Otherwise, return an induced copy of ``G`` in ``self``. If ``G``
is the empty graph, return the empty graph since it is a subgraph
of every graph. Now suppose ``G`` is not the empty graph. If there
is no copy (induced or otherwise) of ``G`` in ``self``, we return
``None``.
.. NOTE::
This method also works on digraphs.
.. SEEALSO::
- :meth:`~GenericGraph.subgraph_search_count` -- Counts the number
of copies of a graph `H` inside of a graph `G`
- :meth:`~GenericGraph.subgraph_search_iterator` -- Iterate on the
copies of a graph `H` inside of a graph `G`
ALGORITHM:
Brute-force search.
EXAMPLES:
The Petersen graph contains the path graph `P_5`::
sage: g = graphs.PetersenGraph()
sage: h1 = g.subgraph_search(graphs.PathGraph(5)); h1
Subgraph of (Petersen graph): Graph on 5 vertices
sage: h1.vertices(); h1.edges(labels=False)
[0, 1, 2, 3, 4]
[(0, 1), (1, 2), (2, 3), (3, 4)]
sage: I1 = g.subgraph_search(graphs.PathGraph(5), induced=True); I1
Subgraph of (Petersen graph): Graph on 5 vertices
sage: I1.vertices(); I1.edges(labels=False)
[0, 1, 2, 3, 8]
[(0, 1), (1, 2), (2, 3), (3, 8)]
It also contains the claw `K_{1,3}`::
sage: h2 = g.subgraph_search(graphs.ClawGraph()); h2
Subgraph of (Petersen graph): Graph on 4 vertices
sage: h2.vertices(); h2.edges(labels=False)
[0, 1, 4, 5]
[(0, 1), (0, 4), (0, 5)]
sage: I2 = g.subgraph_search(graphs.ClawGraph(), induced=True); I2
Subgraph of (Petersen graph): Graph on 4 vertices
sage: I2.vertices(); I2.edges(labels=False)
[0, 1, 4, 5]
[(0, 1), (0, 4), (0, 5)]
Of course the induced copies are isomorphic to the graphs we were
looking for::
sage: I1.is_isomorphic(graphs.PathGraph(5))
True
sage: I2.is_isomorphic(graphs.ClawGraph())
True
However, the Petersen graph does not contain a subgraph isomorphic to
`K_3`::
sage: g.subgraph_search(graphs.CompleteGraph(3)) is None
True
Nor does it contain a nonempty induced subgraph isomorphic to `P_6`::
sage: g.subgraph_search(graphs.PathGraph(6), induced=True) is None
True
The empty graph is a subgraph of every graph::
sage: g.subgraph_search(graphs.EmptyGraph())
Graph on 0 vertices
sage: g.subgraph_search(graphs.EmptyGraph(), induced=True)
Graph on 0 vertices
The subgraph may just have edges missing::
sage: k3=graphs.CompleteGraph(3); p3=graphs.PathGraph(3)
sage: k3.relabel(list('abc'))
sage: s=k3.subgraph_search(p3)
sage: s.edges(labels=False)
[('a', 'b'), ('b', 'c')]
Of course, `P_3` is not an induced subgraph of `K_3`, though::
sage: k3=graphs.CompleteGraph(3); p3=graphs.PathGraph(3)
sage: k3.relabel(list('abc'))
sage: k3.subgraph_search(p3, induced=True) is None
True
"""
from sage.graphs.generic_graph_pyx import SubgraphSearch
from sage.graphs.graph_generators import GraphGenerators
if G.order() == 0:
return GraphGenerators().EmptyGraph()
S = SubgraphSearch(self, G, induced = induced)
for g in S:
if induced:
return self.subgraph(g)
else:
Gcopy=G.copy()
Gcopy.relabel(g)
return self.subgraph(vertices=Gcopy.vertices(), edges=Gcopy.edges())
return None
def subgraph_search_count(self, G, induced=False):
r"""
Returns the number of labelled occurences of ``G`` in ``self``.
INPUT:
- ``G`` -- the graph whose copies we are looking for in
``self``.
- ``induced`` -- boolean (default: ``False``). Whether or not
to count induced copies of ``G`` in ``self``.
ALGORITHM:
Brute-force search.
.. NOTE::
This method also works on digraphs.
.. SEEALSO::
- :meth:`~GenericGraph.subgraph_search` -- finds an subgraph
isomorphic to `H` inside of a graph `G`
- :meth:`~GenericGraph.subgraph_search_iterator` -- Iterate on the
copies of a graph `H` inside of a graph `G`
EXAMPLES:
Counting the number of paths `P_5` in a PetersenGraph::
sage: g = graphs.PetersenGraph()
sage: g.subgraph_search_count(graphs.PathGraph(5))
240
Requiring these subgraphs be induced::
sage: g.subgraph_search_count(graphs.PathGraph(5), induced = True)
120
If we define the graph `T_k` (the transitive tournament on `k`
vertices) as the graph on `\{0, ..., k-1\}` such that `ij \in
T_k` iif `i<j`, how many directed triangles can be found in
`T_5` ? The answer is of course `0` ::
sage: T5 = DiGraph()
sage: T5.add_edges([(i,j) for i in xrange(5) for j in xrange(i+1, 5)])
sage: T5.subgraph_search_count(digraphs.Circuit(3))
0
If we count instead the number of `T_3` in `T_5`, we expect
the answer to be `{5 \choose 3}`::
sage: T3 = T5.subgraph([0,1,2])
sage: T5.subgraph_search_count(T3)
10
sage: binomial(5,3)
10
The empty graph is a subgraph of every graph::
sage: g.subgraph_search_count(graphs.EmptyGraph())
1
"""
from sage.graphs.generic_graph_pyx import SubgraphSearch
if G.order() == 0:
return 1
if self.order() == 0:
return 0
S = SubgraphSearch(self, G, induced = induced)
return S.cardinality()
def subgraph_search_iterator(self, G, induced=False):
r"""
Returns an iterator over the labelled copies of ``G`` in ``self``.
INPUT:
- ``G`` -- the graph whose copies we are looking for in
``self``.
- ``induced`` -- boolean (default: ``False``). Whether or not
to iterate over the induced copies of ``G`` in ``self``.
ALGORITHM:
Brute-force search.
OUTPUT:
Iterator over the labelled copies of ``G`` in ``self``, as
*lists*. For each value `(v_1, v_2, ..., v_k)` returned,
the first vertex of `G` is associated with `v_1`, the
second with `v_2`, etc ...
.. NOTE::
This method also works on digraphs.
.. SEEALSO::
- :meth:`~GenericGraph.subgraph_search` -- finds an subgraph
isomorphic to `H` inside of a graph `G`
- :meth:`~GenericGraph.subgraph_search_count` -- Counts the number
of copies of a graph `H` inside of a graph `G`
EXAMPLE:
Iterating through all the labelled `P_3` of `P_5`::
sage: g = graphs.PathGraph(5)
sage: for p in g.subgraph_search_iterator(graphs.PathGraph(3)):
... print p
[0, 1, 2]
[1, 2, 3]
[2, 1, 0]
[2, 3, 4]
[3, 2, 1]
[4, 3, 2]
"""
if G.order() == 0:
from sage.graphs.graph_generators import GraphGenerators
return [GraphGenerators().EmptyGraph()]
elif self.order() == 0:
return []
else:
from sage.graphs.generic_graph_pyx import SubgraphSearch
return SubgraphSearch(self, G, induced = induced)
def random_subgraph(self, p, inplace=False):
"""
Return a random subgraph that contains each vertex with prob. p.
EXAMPLES::
sage: P = graphs.PetersenGraph()
sage: P.random_subgraph(.25)
Subgraph of (Petersen graph): Graph on 4 vertices
"""
vertices = []
p = float(p)
for v in self:
if random() < p:
vertices.append(v)
return self.subgraph(vertices=vertices, inplace=inplace)
def is_chordal(self, certificate = False, algorithm = "B"):
r"""
Tests whether the given graph is chordal.
A Graph `G` is said to be chordal if it contains no induced hole (a
cycle of length at least 4).
Alternatively, chordality can be defined using a Perfect Elimination
Order :
A Perfect Elimination Order of a graph `G` is an ordering `v_1,...,v_n`
of its vertex set such that for all `i`, the neighbors of `v_i` whose
index is greater that `i` induce a complete subgraph in `G`. Hence, the
graph `G` can be totally erased by successively removing vertices whose
neighborhood is a clique (also called *simplicial* vertices)
[Fulkerson65]_.
(It can be seen that if `G` contains an induced hole, then it can not
have a perfect elimination order. Indeed, if we write `h_1,...,h_k` the
`k` vertices of such a hole, then the first of those vertices to be
removed would have two non-adjacent neighbors in the graph.)
A Graph is then chordal if and only if it has a Perfect Elimination
Order.
INPUT:
- ``certificate`` (boolean) -- Whether to return a certificate.
* If ``certificate = False`` (default), returns ``True`` or
``False`` accordingly.
* If ``certificate = True``, returns :
* ``(True, peo)`` when the graph is chordal, where ``peo`` is a
perfect elimination order of its vertices.
* ``(False, Hole)`` when the graph is not chordal, where
``Hole`` (a ``Graph`` object) is an induced subgraph of
``self`` isomorphic to a hole.
- ``algorithm`` -- Two algorithms are available for this method (see
next section), which can be selected by setting ``algorithm = "A"`` or
``algorithm = "B"`` (default). While they will agree on whether the
given graph is chordal, they can not be expected to return the same
certificates.
ALGORITHM:
This algorithm works through computing a Lex BFS on the graph, then
checking whether the order is a Perfect Elimination Order by computing
for each vertex `v` the subgraph induces by its non-deleted neighbors,
then testing whether this graph is complete.
This problem can be solved in `O(m)` [Rose75]_ ( where `m` is the number
of edges in the graph ) but this implementation is not linear because of
the complexity of Lex BFS.
.. NOTE::
Because of a past bug (#11735, #11961), the first implementation
(algorithm A) of this method sometimes returned as certificates
subgraphs which were **not** holes. Since then, this bug has been
fixed and the values are now double-checked before being returned,
so that the algorithm only returns correct values or raises an
exception. In the case where an exception is raised, the user is
advised to switch to the other algorithm. And to **please** report
the bug :-)
EXAMPLES:
The lexicographic product of a Path and a Complete Graph
is chordal ::
sage: g = graphs.PathGraph(5).lexicographic_product(graphs.CompleteGraph(3))
sage: g.is_chordal()
True
The same goes with the product of a random lobster
( which is a tree ) and a Complete Graph ::
sage: g = graphs.RandomLobster(10,.5,.5).lexicographic_product(graphs.CompleteGraph(3))
sage: g.is_chordal()
True
The disjoint union of chordal graphs is still chordal::
sage: (2*g).is_chordal()
True
Let us check the certificate given by Sage is indeed a perfect elimintion order::
sage: (_, peo) = g.is_chordal(certificate = True)
sage: for v in peo:
... if not g.subgraph(g.neighbors(v)).is_clique():
... print "This should never happen !"
... g.delete_vertex(v)
sage: print "Everything is fine !"
Everything is fine !
Of course, the Petersen Graph is not chordal as it has girth 5 ::
sage: g = graphs.PetersenGraph()
sage: g.girth()
5
sage: g.is_chordal()
False
We can even obtain such a cycle as a certificate ::
sage: (_, hole) = g.is_chordal(certificate = True)
sage: hole
Subgraph of (Petersen graph): Graph on 5 vertices
sage: hole.is_isomorphic(graphs.CycleGraph(5))
True
TESTS:
This shouldn't fail (trac 10899)::
sage: Graph(1).is_chordal()
True
sage: for g in graphs(5):
... try:
... forget = g.is_chordal()
... except:
... print("Oh no.")
REFERENCES:
.. [Rose75] Rose, D.J. and Tarjan, R.E.,
Algorithmic aspects of vertex elimination,
Proceedings of seventh annual ACM symposium on Theory of computing
Page 254, ACM 1975
.. [Fulkerson65] Fulkerson, D.R. and Gross, OA
Incidence matrices and interval graphs
Pacific J. Math 1965
Vol. 15, number 3, pages 835--855
TESTS:
Trac Ticket #11735::
sage: g = Graph({3:[2,1,4],2:[1],4:[1],5:[2,1,4]})
sage: _, g1 = g.is_chordal(certificate=True); g1.is_chordal()
False
sage: g1.is_isomorphic(graphs.CycleGraph(g1.order()))
True
"""
if not self.is_connected():
if certificate:
peo = []
for gg in self.connected_components_subgraphs():
b, certif = gg.is_chordal(certificate = True)
if not b:
return False, certif
else:
peo.extend(certif)
return True, peo
else:
return all( gg.is_chordal() for gg in self.connected_components_subgraphs() )
hole = None
g = self.copy()
if algorithm == "A":
peo,t_peo = self.lex_BFS(tree=True)
peo.reverse()
for v in peo:
if t_peo.out_degree(v) == 0:
g.delete_vertex(v)
continue
x = t_peo.neighbor_out_iterator(v).next()
S = self.neighbors(x)+[x]
if not frozenset(g.neighbors(v)).issubset(S):
if certificate:
for y in g.neighbors(v):
if y not in S:
break
g.delete_vertices([vv for vv in g.neighbors(v) if vv != y and vv != x])
g.delete_vertex(v)
hole = self.subgraph([v] + g.shortest_path(x,y))
break
else:
return False
g.delete_vertex(v)
elif algorithm == "B":
peo,t_peo = self.lex_BFS(reverse=True, tree=True)
neighbors_subsets = dict([(v,self.neighbors(v)+[v]) for v in g])
pos_in_peo = dict(zip(peo, range(self.order())))
for v in reversed(peo):
if (t_peo.out_degree(v)>0 and
not frozenset([v1 for v1 in g.neighbors(v) if pos_in_peo[v1] > pos_in_peo[v]]).issubset(
neighbors_subsets[t_peo.neighbor_out_iterator(v).next()])):
if certificate:
max_tup = (-1, 0)
nb1 = [u for u in g.neighbors(v) if pos_in_peo[u] > pos_in_peo[v]]
for xi in nb1:
for yi in nb1:
if not yi in neighbors_subsets[xi]:
new_tup = (pos_in_peo[xi], pos_in_peo[yi])
if max_tup < new_tup:
max_tup = new_tup
x, y = xi, yi
g.delete_vertices([vv for vv in g.neighbors(v) if vv != y and vv != x])
g.delete_vertex(v)
hole = self.subgraph([v] + g.shortest_path(x,y))
break
else:
return False
if not hole is None:
if hole.order() <= 3 or not hole.is_regular(k=2):
raise Exception("The graph is not chordal, and something went wrong in the computation of the certificate. Please report this bug, providing the graph if possible !")
return (False, hole)
if certificate:
return True, peo
else:
return True
def is_interval(self, certificate = False):
r"""
Check whether self is an interval graph
INPUT:
- ``certificate`` (boolean) -- The function returns ``True``
or ``False`` according to the graph, when ``certificate =
False`` (default). When ``certificate = True`` and the graph
is an interval graph, a dictionary whose keys are the
vertices and values are pairs of integers are returned
instead of ``True``. They correspond to an embedding of the
interval graph, each vertex being represented by an interval
going from the first of the two values to the second.
ALGORITHM:
Through the use of PQ-Trees
AUTHOR:
Nathann Cohen (implementation)
EXAMPLES:
A Petersen Graph is not chordal, nor car it be an interval
graph ::
sage: g = graphs.PetersenGraph()
sage: g.is_interval()
False
Though we can build intervals from the corresponding random
generator::
sage: g = graphs.RandomInterval(20)
sage: g.is_interval()
True
This method can also return, given an interval graph, a
possible embedding (we can actually compute all of them
through the PQ-Tree structures)::
sage: g = Graph(':S__@_@A_@AB_@AC_@ACD_@ACDE_ACDEF_ACDEFG_ACDEGH_ACDEGHI_ACDEGHIJ_ACDEGIJK_ACDEGIJKL_ACDEGIJKLMaCEGIJKNaCEGIJKNaCGIJKNPaCIP')
sage: d = g.is_interval(certificate = True)
sage: print d # not tested
{0: (0, 20), 1: (1, 9), 2: (2, 36), 3: (3, 5), 4: (4, 38), 5: (6, 21), 6: (7, 27), 7: (8, 12), 8: (10, 29), 9: (11, 16), 10: (13, 39), 11: (14, 31), 12: (15, 32), 13: (17, 23), 14: (18, 22), 15: (19, 33), 16: (24, 25), 17: (26, 35), 18: (28, 30), 19: (34, 37)}
From this embedding, we can clearly build an interval graph
isomorphic to the previous one::
sage: g2 = graphs.IntervalGraph(d.values())
sage: g2.is_isomorphic(g)
True
.. SEEALSO::
- :mod:`Interval Graph Recognition <sage.graphs.pq_trees>`.
- :meth:`PQ <sage.graphs.pq_trees.PQ>`
-- Implementation of PQ-Trees.
"""
if not self.is_chordal():
return False
cliques = []
g = self.copy()
for cc in self.connected_components_subgraphs():
peo = cc.lex_BFS()
while peo:
v = peo.pop()
clique = frozenset( [v] + cc.neighbors(v))
cc.delete_vertex(v)
if not any([clique.issubset(c) for c in cliques]):
cliques.append(clique)
from sage.graphs.pq_trees import reorder_sets
try:
ordered_sets = reorder_sets(cliques)
if not certificate:
return True
except ValueError:
return False
current = set([])
beg = {}
end = {}
i = 0
ordered_sets.append([])
for S in map(set,ordered_sets):
for v in current-S:
end[v] = i
i = i + 1
for v in S-current:
beg[v] = i
i = i + 1
current = S
return dict([(v, (beg[v], end[v])) for v in self])
def is_gallai_tree(self):
r"""
Returns whether the current graph is a Gallai tree.
A graph is a Gallai tree if and only if it is
connected and its `2`-connected components are all
isomorphic to complete graphs or odd cycles.
A connected graph is not degree-choosable if and
only if it is a Gallai tree [erdos1978choos]_.
REFERENCES:
.. [erdos1978choos] Erdos, P. and Rubin, A.L. and Taylor, H.
Proc. West Coast Conf. on Combinatorics
Graph Theory and Computing, Congressus Numerantium
vol 26, pages 125--157, 1979
EXAMPLES:
A complete graph is, or course, a Gallai Tree::
sage: g = graphs.CompleteGraph(15)
sage: g.is_gallai_tree()
True
The Petersen Graph is not::
sage: g = graphs.PetersenGraph()
sage: g.is_gallai_tree()
False
A Graph built from vertex-disjoint complete graphs
linked by one edge to a special vertex `-1` is a
''star-shaped'' Gallai tree ::
sage: g = 8 * graphs.CompleteGraph(6)
sage: g.add_edges([(-1,c[0]) for c in g.connected_components()])
sage: g.is_gallai_tree()
True
"""
if not self.is_connected():
return False
for c in self.blocks_and_cut_vertices()[0]:
gg = self.subgraph(c)
if not ( (len(c)%2 == 1 and gg.size() == len(c)+1) or gg.is_clique() ):
return False
return True
def is_clique(self, vertices=None, directed_clique=False):
"""
Tests whether a set of vertices is a clique
A clique is a set of vertices such that there is an edge between any two
vertices.
INPUT:
- ``vertices`` - Vertices can be a single vertex or an
iterable container of vertices, e.g. a list, set, graph, file or
numeric array. If not passed, defaults to the entire graph.
- ``directed_clique`` - (default False) If set to
False, only consider the underlying undirected graph. If set to
True and the graph is directed, only return True if all possible
edges in _both_ directions exist.
EXAMPLES::
sage: g = graphs.CompleteGraph(4)
sage: g.is_clique([1,2,3])
True
sage: g.is_clique()
True
sage: h = graphs.CycleGraph(4)
sage: h.is_clique([1,2])
True
sage: h.is_clique([1,2,3])
False
sage: h.is_clique()
False
sage: i = graphs.CompleteGraph(4).to_directed()
sage: i.delete_edge([0,1])
sage: i.is_clique()
True
sage: i.is_clique(directed_clique=True)
False
"""
if directed_clique and self._directed:
subgraph=self.subgraph(vertices)
subgraph.allow_loops(False)
subgraph.allow_multiple_edges(False)
n=subgraph.order()
return subgraph.size()==n*(n-1)
else:
if vertices is None:
subgraph = self
else:
subgraph=self.subgraph(vertices)
if self._directed:
subgraph = subgraph.to_simple()
n=subgraph.order()
return subgraph.size()==n*(n-1)/2
def is_independent_set(self, vertices=None):
"""
Returns True if the set ``vertices`` is an independent
set, False if not. An independent set is a set of vertices such
that there is no edge between any two vertices.
INPUT:
- ``vertices`` - Vertices can be a single vertex or an
iterable container of vertices, e.g. a list, set, graph, file or
numeric array. If not passed, defaults to the entire graph.
EXAMPLES::
sage: graphs.CycleGraph(4).is_independent_set([1,3])
True
sage: graphs.CycleGraph(4).is_independent_set([1,2,3])
False
"""
return self.subgraph(vertices).to_simple().size()==0
def is_subgraph(self, other):
"""
Tests whether self is an induced subgraph of other.
.. WARNING::
Please note that this method does not check whether ``self``
contains a subgraph *isomorphic* to ``other``, but only if it
directly contains it as a subgraph ! This means that this method
returns ``True`` only if the vertices of ``other`` are also vertices
of ``self``, and that the edges of ``other`` are equal to the edges
of ``self`` between the vertices contained in ``other``.
.. SEEALSO::
If you are interested in the (possibly induced) subgraphs of
``self`` to ``other``, you are looking for the following methods:
- :meth:`~GenericGraph.subgraph_search` -- finds an subgraph
isomorphic to `H` inside of a graph `G`
- :meth:`~GenericGraph.subgraph_search_count` -- Counts the number
of such copies.
- :meth:`~GenericGraph.subgraph_search_iterator` -- Iterate over all
the copies of `H` contained in `G`.
EXAMPLES::
sage: P = graphs.PetersenGraph()
sage: G = P.subgraph(range(6))
sage: G.is_subgraph(P)
True
"""
self_verts = self.vertices()
for v in self_verts:
if v not in other:
return False
return other.subgraph(self_verts) == self
def cluster_triangles(self, nbunch=None, with_labels=False):
r"""
Returns the number of triangles for nbunch of vertices as a
dictionary keyed by vertex.
The clustering coefficient of a graph is the fraction of possible
triangles that are triangles, `c_i = triangles_i /
(k_i\*(k_i-1)/2)` where `k_i` is the degree of vertex `i`, [1]. A
coefficient for the whole graph is the average of the `c_i`.
Transitivity is the fraction of all possible triangles which are
triangles, T = 3\*triangles/triads, [HSSNX]_.
INPUT:
- ``nbunch`` - The vertices to inspect. If
nbunch=None, returns data for all vertices in the graph
REFERENCE:
.. [HSSNX] Aric Hagberg, Dan Schult and Pieter Swart. NetworkX
documentation. [Online] Available:
https://networkx.lanl.gov/reference/networkx/
EXAMPLES::
sage: (graphs.FruchtGraph()).cluster_triangles().values()
[1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0]
sage: (graphs.FruchtGraph()).cluster_triangles()
{0: 1, 1: 1, 2: 0, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 0, 9: 1, 10: 1, 11: 0}
sage: (graphs.FruchtGraph()).cluster_triangles(nbunch=[0,1,2])
{0: 1, 1: 1, 2: 0}
"""
import networkx
return networkx.triangles(self.networkx_graph(copy=False), nbunch)
def clustering_average(self):
r"""
Returns the average clustering coefficient.
The clustering coefficient of a graph is the fraction of possible
triangles that are triangles, `c_i = triangles_i /
(k_i\*(k_i-1)/2)` where `k_i` is the degree of vertex `i`, [1]. A
coefficient for the whole graph is the average of the `c_i`.
Transitivity is the fraction of all possible triangles which are
triangles, T = 3\*triangles/triads, [1].
REFERENCE:
- [1] Aric Hagberg, Dan Schult and Pieter Swart. NetworkX
documentation. [Online] Available:
https://networkx.lanl.gov/reference/networkx/
EXAMPLES::
sage: (graphs.FruchtGraph()).clustering_average()
0.25
"""
import networkx
return networkx.average_clustering(self.networkx_graph(copy=False))
def clustering_coeff(self, nbunch=None, weights=False):
r"""
Returns the clustering coefficient for each vertex in nbunch as a
dictionary keyed by vertex.
The clustering coefficient of a graph is the fraction of possible
triangles that are triangles, `c_i = triangles_i /
(k_i\*(k_i-1)/2)` where `k_i` is the degree of vertex `i`, [1]. A
coefficient for the whole graph is the average of the `c_i`.
Transitivity is the fraction of all possible triangles which are
triangles, T = 3\*triangles/triads, [1].
INPUT:
- ``nbunch`` - the vertices to inspect (default
None returns data on all vertices in graph)
- ``weights`` - default is False. If both
with_labels and weights are True, then returns a clustering
coefficient dict and a dict of weights based on degree. Weights are
the fraction of connected triples in the graph that include the
keyed vertex.
REFERENCE:
- [1] Aric Hagberg, Dan Schult and Pieter Swart. NetworkX
documentation. [Online] Available:
https://networkx.lanl.gov/reference/networkx/
EXAMPLES::
sage: (graphs.FruchtGraph()).clustering_coeff().values()
[0.3333333333333333, 0.3333333333333333, 0.0, 0.3333333333333333, 0.3333333333333333, 0.3333333333333333, 0.3333333333333333, 0.3333333333333333, 0.0, 0.3333333333333333, 0.3333333333333333, 0.0]
sage: (graphs.FruchtGraph()).clustering_coeff()
{0: 0.3333333333333333, 1: 0.3333333333333333, 2: 0.0, 3: 0.3333333333333333, 4: 0.3333333333333333, 5: 0.3333333333333333, 6: 0.3333333333333333, 7: 0.3333333333333333, 8: 0.0, 9: 0.3333333333333333, 10: 0.3333333333333333, 11: 0.0}
sage: (graphs.FruchtGraph()).clustering_coeff(weights=True)
({0: 0.3333333333333333, 1: 0.3333333333333333, 2: 0.0, 3: 0.3333333333333333, 4: 0.3333333333333333, 5: 0.3333333333333333, 6: 0.3333333333333333, 7: 0.3333333333333333, 8: 0.0, 9: 0.3333333333333333, 10: 0.3333333333333333, 11: 0.0}, {0: 0.08333333333333333, 1: 0.08333333333333333, 2: 0.08333333333333333, 3: 0.08333333333333333, 4: 0.08333333333333333, 5: 0.08333333333333333, 6: 0.08333333333333333, 7: 0.08333333333333333, 8: 0.08333333333333333, 9: 0.08333333333333333, 10: 0.08333333333333333, 11: 0.08333333333333333})
sage: (graphs.FruchtGraph()).clustering_coeff(nbunch=[0,1,2])
{0: 0.3333333333333333, 1: 0.3333333333333333, 2: 0.0}
sage: (graphs.FruchtGraph()).clustering_coeff(nbunch=[0,1,2],weights=True)
({0: 0.3333333333333333, 1: 0.3333333333333333, 2: 0.0}, {0: 0.3333333333333333, 1: 0.3333333333333333, 2: 0.3333333333333333})
"""
import networkx
return networkx.clustering(self.networkx_graph(copy=False), nbunch, weights)
def cluster_transitivity(self):
r"""
Returns the transitivity (fraction of transitive triangles) of the
graph.
The clustering coefficient of a graph is the fraction of possible
triangles that are triangles, `c_i = triangles_i /
(k_i\*(k_i-1)/2)` where `k_i` is the degree of vertex `i`, [1]. A
coefficient for the whole graph is the average of the `c_i`.
Transitivity is the fraction of all possible triangles which are
triangles, T = 3\*triangles/triads, [1].
REFERENCE:
.. [1] Aric Hagberg, Dan Schult and Pieter Swart. NetworkX
documentation. [Online] Available:
https://networkx.lanl.gov/reference/networkx/
EXAMPLES::
sage: (graphs.FruchtGraph()).cluster_transitivity()
0.25
"""
import networkx
return networkx.transitivity(self.networkx_graph(copy=False))
def cores(self, k = None, with_labels=False):
"""
Returns the core number for each vertex in an ordered list.
**DEFINITIONS**
* *K-cores* in graph theory were introduced by Seidman in 1983 and by
Bollobas in 1984 as a method of (destructively) simplifying graph
topology to aid in analysis and visualization. They have been more
recently defined as the following by Batagelj et al:
*Given a graph `G` with vertices set `V` and edges set `E`, the
`k`-core of `G` is the graph obtained from `G` by recursively removing
the vertices with degree less than `k`, for as long as there are any.*
This operation can be useful to filter or to study some properties of
the graphs. For instance, when you compute the 2-core of graph G, you
are cutting all the vertices which are in a tree part of graph. (A
tree is a graph with no loops). [WPkcore]_
[PSW1996]_ defines a `k`-core of `G` as the largest subgraph (it is
unique) of `G` with minimum degree at least `k`.
* Core number of a vertex
The core number of a vertex `v` is the largest integer `k` such that
`v` belongs to the `k`-core of `G`.
* Degeneracy
The *degeneracy* of a graph `G`, usually denoted `\delta^*(G)`, is the
smallest integer `k` such that the graph `G` can be reduced to the
empty graph by iteratively removing vertices of degree `\leq
k`. Equivalently, `\delta^*(G)=k` if `k` is the smallest integer such
that the `k`-core of `G` is empty.
**IMPLEMENTATION**
This implementation is based on the NetworkX implementation of
the algorithm described in [BZ]_.
**INPUT**
- ``k`` (integer)
* If ``k = None`` (default), returns the core number for each vertex.
* If ``k`` is an integer, returns a pair ``(ordering, core)``, where
``core`` is the list of vertices in the `k`-core of ``self``, and
``ordering`` is an elimination order for the other vertices such
that each vertex is of degree strictly less than `k` when it is to
be eliminated from the graph.
- ``with_labels`` (boolean)
* When set to ``False``, and ``k = None``, the method returns a list
whose `i` th element is the core number of the `i` th vertex. When
set to ``True``, the method returns a dictionary whose keys are
vertices, and whose values are the corresponding core numbers.
By default, ``with_labels = False``.
REFERENCE:
.. [WPkcore] K-core. Wikipedia. (2007). [Online] Available:
http://en.wikipedia.org/wiki/K-core
.. [PSW1996] Boris Pittel, Joel Spencer and Nicholas Wormald. Sudden
Emergence of a Giant k-Core in a Random
Graph. (1996). J. Combinatorial Theory. Ser B 67. pages
111-151. [Online] Available:
http://cs.nyu.edu/cs/faculty/spencer/papers/k-core.pdf
.. [BZ] Vladimir Batagelj and Matjaz Zaversnik. An `O(m)`
Algorithm for Cores Decomposition of
Networks. arXiv:cs/0310049v1. [Online] Available:
http://arxiv.org/abs/cs/0310049
EXAMPLES::
sage: (graphs.FruchtGraph()).cores()
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
sage: (graphs.FruchtGraph()).cores(with_labels=True)
{0: 3, 1: 3, 2: 3, 3: 3, 4: 3, 5: 3, 6: 3, 7: 3, 8: 3, 9: 3, 10: 3, 11: 3}
sage: a=random_matrix(ZZ,20,x=2,sparse=True, density=.1)
sage: b=DiGraph(20)
sage: b.add_edges(a.nonzero_positions())
sage: cores=b.cores(with_labels=True); cores
{0: 3, 1: 3, 2: 3, 3: 3, 4: 2, 5: 2, 6: 3, 7: 1, 8: 3, 9: 3, 10: 3, 11: 3, 12: 3, 13: 3, 14: 2, 15: 3, 16: 3, 17: 3, 18: 3, 19: 3}
sage: [v for v,c in cores.items() if c>=2] # the vertices in the 2-core
[0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
Checking the 2-core of a random lobster is indeed the empty set::
sage: g = graphs.RandomLobster(20,.5,.5)
sage: ordering, core = g.cores(2)
sage: len(core) == 0
True
"""
degrees=self.degree(labels=True)
verts= sorted( degrees.keys(), key=lambda x: degrees[x])
bin_boundaries=[0]
curr_degree=0
for i,v in enumerate(verts):
if degrees[v]>curr_degree:
bin_boundaries.extend([i]*(degrees[v]-curr_degree))
curr_degree=degrees[v]
vert_pos = dict((v,pos) for pos,v in enumerate(verts))
core= degrees
nbrs=dict((v,set(self.neighbors(v))) for v in self)
for v in verts:
if k is not None and core[v] >= k:
return verts[:vert_pos[v]], verts[vert_pos[v]:]
for u in nbrs[v]:
if core[u] > core[v]:
nbrs[u].remove(v)
pos=vert_pos[u]
bin_start=bin_boundaries[core[u]]
vert_pos[u]=bin_start
vert_pos[verts[bin_start]]=pos
verts[bin_start],verts[pos]=verts[pos],verts[bin_start]
bin_boundaries[core[u]]+=1
core[u] -= 1
if k is not None:
return verts, []
if with_labels:
return core
else:
return core.values()
def distance(self, u, v, by_weight=False):
"""
Returns the (directed) distance from u to v in the (di)graph, i.e.
the length of the shortest path from u to v.
INPUT:
- ``by_weight`` - if False, uses a breadth first
search. If True, takes edge weightings into account, using
Dijkstra's algorithm.
EXAMPLES::
sage: G = graphs.CycleGraph(9)
sage: G.distance(0,1)
1
sage: G.distance(0,4)
4
sage: G.distance(0,5)
4
sage: G = Graph( {0:[], 1:[]} )
sage: G.distance(0,1)
+Infinity
sage: G = Graph( { 0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} }, sparse = True)
sage: G.plot(edge_labels=True).show() # long time
sage: G.distance(0, 3)
2
sage: G.distance(0, 3, by_weight=True)
3
"""
return self.shortest_path_length(u, v, by_weight = by_weight)
def distance_all_pairs(self, algorithm = "auto"):
r"""
Returns the distances between all pairs of vertices.
INPUT:
- ``"algorithm"`` (string) -- two algorithms are available
* ``algorithm = "BFS"`` in which case the distances are computed
through `n` different breadth-first-search.
* ``algorithm = "Floyd-Warshall"``, in which case the
Floyd-Warshall algorithm is used.
* ``algorithm = "auto"``, in which case the Floyd-Warshall
algorithm is used for graphs on less than 20 vertices, and BFS
otherwise.
The default is ``algorithm = "BFS"``.
OUTPUT:
A doubly indexed dictionary
.. NOTE::
There is a Cython version of this method that is usually
much faster for large graphs, as most of the time is
actually spent building the final double
dictionary. Everything on the subject is to be found in the
:mod:`~sage.graphs.distances_all_pairs` module.
EXAMPLE:
The Petersen Graph::
sage: g = graphs.PetersenGraph()
sage: print g.distance_all_pairs()
{0: {0: 0, 1: 1, 2: 2, 3: 2, 4: 1, 5: 1, 6: 2, 7: 2, 8: 2, 9: 2}, 1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 2, 5: 2, 6: 1, 7: 2, 8: 2, 9: 2}, 2: {0: 2, 1: 1, 2: 0, 3: 1, 4: 2, 5: 2, 6: 2, 7: 1, 8: 2, 9: 2}, 3: {0: 2, 1: 2, 2: 1, 3: 0, 4: 1, 5: 2, 6: 2, 7: 2, 8: 1, 9: 2}, 4: {0: 1, 1: 2, 2: 2, 3: 1, 4: 0, 5: 2, 6: 2, 7: 2, 8: 2, 9: 1}, 5: {0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 0, 6: 2, 7: 1, 8: 1, 9: 2}, 6: {0: 2, 1: 1, 2: 2, 3: 2, 4: 2, 5: 2, 6: 0, 7: 2, 8: 1, 9: 1}, 7: {0: 2, 1: 2, 2: 1, 3: 2, 4: 2, 5: 1, 6: 2, 7: 0, 8: 2, 9: 1}, 8: {0: 2, 1: 2, 2: 2, 3: 1, 4: 2, 5: 1, 6: 1, 7: 2, 8: 0, 9: 2}, 9: {0: 2, 1: 2, 2: 2, 3: 2, 4: 1, 5: 2, 6: 1, 7: 1, 8: 2, 9: 0}}
Testing on Random Graphs::
sage: g = graphs.RandomGNP(20,.3)
sage: distances = g.distance_all_pairs()
sage: all([g.distance(0,v) == distances[0][v] for v in g])
True
"""
if algorithm == "auto":
if self.order() <= 20:
algorithm = "Floyd-Warshall"
else:
algorithm = "BFS"
if algorithm == "BFS":
from sage.graphs.distances_all_pairs import distances_all_pairs
return distances_all_pairs(self)
elif algorithm == "Floyd-Warshall":
from sage.graphs.distances_all_pairs import floyd_warshall
return floyd_warshall(self,paths = False, distances = True)
else:
raise ValueError("The algorithm keyword can be equal to either \"BFS\" or \"Floyd-Warshall\" or \"auto\"")
def distances_distribution(self):
r"""
Returns the distances distribution of the (di)graph in a dictionary.
This method *ignores all edge labels*, so that the distance considered
is the topological distance.
OUTPUT:
A dictionary ``d`` such that the number of pairs of vertices at
distance ``k`` (if any) is equal to `d[k] \cdot |V(G)| \cdot
(|V(G)|-1)`.
.. NOTE::
We consider that two vertices that do not belong to the same
connected component are at infinite distance, and we do not take the
trivial pairs of vertices `(v, v)` at distance `0` into account.
Empty (di)graphs and (di)graphs of order 1 have no paths and so we
return the empty dictionary ``{}``.
EXAMPLES:
An empty Graph::
sage: g = Graph()
sage: g.distances_distribution()
{}
A Graph of order 1::
sage: g = Graph()
sage: g.add_vertex(1)
sage: g.distances_distribution()
{}
A Graph of order 2 without edge::
sage: g = Graph()
sage: g.add_vertices([1,2])
sage: g.distances_distribution()
{+Infinity: 1}
The Petersen Graph::
sage: g = graphs.PetersenGraph()
sage: g.distances_distribution()
{1: 1/3, 2: 2/3}
A graph with multiple disconnected components::
sage: g = graphs.PetersenGraph()
sage: g.add_edge('good','wine')
sage: g.distances_distribution()
{1: 8/33, 2: 5/11, +Infinity: 10/33}
The de Bruijn digraph dB(2,3)::
sage: D = digraphs.DeBruijn(2,3)
sage: D.distances_distribution()
{1: 1/4, 2: 11/28, 3: 5/14}
"""
from sage.graphs.distances_all_pairs import distances_distribution
return distances_distribution(self)
def eccentricity(self, v=None, dist_dict=None, with_labels=False):
"""
Return the eccentricity of vertex (or vertices) v.
The eccentricity of a vertex is the maximum distance to any other
vertex.
INPUT:
- ``v`` - either a single vertex or a list of
vertices. If it is not specified, then it is taken to be all
vertices.
- ``dist_dict`` - optional, a dict of dicts of
distance.
- ``with_labels`` - Whether to return a list or a
dict.
EXAMPLES::
sage: G = graphs.KrackhardtKiteGraph()
sage: G.eccentricity()
[4, 4, 4, 4, 4, 3, 3, 2, 3, 4]
sage: G.vertices()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: G.eccentricity(7)
2
sage: G.eccentricity([7,8,9])
[3, 4, 2]
sage: G.eccentricity([7,8,9], with_labels=True) == {8: 3, 9: 4, 7: 2}
True
sage: G = Graph( { 0 : [], 1 : [], 2 : [1] } )
sage: G.eccentricity()
[+Infinity, +Infinity, +Infinity]
sage: G = Graph({0:[]})
sage: G.eccentricity(with_labels=True)
{0: 0}
sage: G = Graph({0:[], 1:[]})
sage: G.eccentricity(with_labels=True)
{0: +Infinity, 1: +Infinity}
"""
if v is None:
if dist_dict is None:
from sage.graphs.distances_all_pairs import eccentricity
if with_labels:
return dict(zip(self.vertices(), eccentricity(self)))
else:
return eccentricity(self)
v = self.vertices()
elif not isinstance(v, list):
v = [v]
e = {}
infinite = False
for u in v:
if dist_dict is None:
length = self.shortest_path_lengths(u)
else:
length = dist_dict[u]
if len(length) != self.num_verts():
infinite = True
break
e[u] = max(length.values())
if infinite:
from sage.rings.infinity import Infinity
for u in v:
e[u] = Infinity
if with_labels:
return e
else:
if len(e)==1: return e.values()[0]
return e.values()
def radius(self):
"""
Returns the radius of the (di)graph.
The radius is defined to be the minimum eccentricity of any vertex,
where the eccentricity is the maximum distance to any other
vertex.
EXAMPLES: The more symmetric a graph is, the smaller (diameter -
radius) is.
::
sage: G = graphs.BarbellGraph(9, 3)
sage: G.radius()
3
sage: G.diameter()
6
::
sage: G = graphs.OctahedralGraph()
sage: G.radius()
2
sage: G.diameter()
2
TEST::
sage: g = Graph()
sage: g.radius()
Traceback (most recent call last):
...
ValueError: This method has no meaning on empty graphs.
"""
if self.order() == 0:
raise ValueError("This method has no meaning on empty graphs.")
return min(self.eccentricity())
def center(self):
"""
Returns the set of vertices in the center, i.e. whose eccentricity
is equal to the radius of the (di)graph.
In other words, the center is the set of vertices achieving the
minimum eccentricity.
EXAMPLES::
sage: G = graphs.DiamondGraph()
sage: G.center()
[1, 2]
sage: P = graphs.PetersenGraph()
sage: P.subgraph(P.center()) == P
True
sage: S = graphs.StarGraph(19)
sage: S.center()
[0]
sage: G = Graph()
sage: G.center()
[]
sage: G.add_vertex()
0
sage: G.center()
[0]
"""
e = self.eccentricity(with_labels=True)
try:
r = min(e.values())
except:
return []
return [v for v in e if e[v]==r]
def diameter(self):
"""
Returns the largest distance between any two vertices. Returns
Infinity if the (di)graph is not connected.
EXAMPLES::
sage: G = graphs.PetersenGraph()
sage: G.diameter()
2
sage: G = Graph( { 0 : [], 1 : [], 2 : [1] } )
sage: G.diameter()
+Infinity
Although max( ) is usually defined as -Infinity, since the diameter
will never be negative, we define it to be zero::
sage: G = graphs.EmptyGraph()
sage: G.diameter()
0
"""
if self.order() > 0:
return max(self.eccentricity())
else:
return 0
def distance_graph(self, dist):
r"""
Returns the graph on the same vertex set as
the original graph but vertices are adjacent
in the returned graph if and only if they are
at specified distances in the original graph.
INPUT:
- ``dist`` is a nonnegative integer or
a list of nonnegative integers.
``Infinity`` may be used here to describe
vertex pairs in separate components.
OUTPUT:
The returned value is an undirected graph. The
vertex set is identical to the calling graph, but edges
of the returned graph join vertices whose distance in
the calling graph are present in the input ``dist``.
Loops will only be present if distance 0 is included. If
the original graph has a position dictionary specifying
locations of vertices for plotting, then this information
is copied over to the distance graph. In some instances
this layout may not be the best, and might even be confusing
when edges run on top of each other due to symmetries
chosen for the layout.
EXAMPLES::
sage: G = graphs.CompleteGraph(3)
sage: H = G.cartesian_product(graphs.CompleteGraph(2))
sage: K = H.distance_graph(2)
sage: K.am()
[0 0 0 1 0 1]
[0 0 1 0 1 0]
[0 1 0 0 0 1]
[1 0 0 0 1 0]
[0 1 0 1 0 0]
[1 0 1 0 0 0]
To obtain the graph where vertices are adjacent if their
distance apart is ``d`` or less use a ``range()`` command
to create the input, using ``d+1`` as the input to ``range``.
Notice that this will include distance 0 and hence place a loop
at each vertex. To avoid this, use ``range(1,d+1)``. ::
sage: G = graphs.OddGraph(4)
sage: d = G.diameter()
sage: n = G.num_verts()
sage: H = G.distance_graph(range(d+1))
sage: H.is_isomorphic(graphs.CompleteGraph(n))
False
sage: H = G.distance_graph(range(1,d+1))
sage: H.is_isomorphic(graphs.CompleteGraph(n))
True
A complete collection of distance graphs will have
adjacency matrices that sum to the matrix of all ones. ::
sage: P = graphs.PathGraph(20)
sage: all_ones = sum([P.distance_graph(i).am() for i in range(20)])
sage: all_ones == matrix(ZZ, 20, 20, [1]*400)
True
Four-bit strings differing in one bit is the same as
four-bit strings differing in three bits. ::
sage: G = graphs.CubeGraph(4)
sage: H = G.distance_graph(3)
sage: G.is_isomorphic(H)
True
The graph of eight-bit strings, adjacent if different
in an odd number of bits. ::
sage: G = graphs.CubeGraph(8) # long time
sage: H = G.distance_graph([1,3,5,7]) # long time
sage: degrees = [0]*sum([binomial(8,j) for j in [1,3,5,7]]) # long time
sage: degrees.append(2^8) # long time
sage: degrees == H.degree_histogram() # long time
True
An example of using ``Infinity`` as the distance in
a graph that is not connected. ::
sage: G = graphs.CompleteGraph(3)
sage: H = G.disjoint_union(graphs.CompleteGraph(2))
sage: L = H.distance_graph(Infinity)
sage: L.am()
[0 0 0 1 1]
[0 0 0 1 1]
[0 0 0 1 1]
[1 1 1 0 0]
[1 1 1 0 0]
TESTS:
Empty input, or unachievable distances silently yield empty graphs. ::
sage: G = graphs.CompleteGraph(5)
sage: G.distance_graph([]).num_edges()
0
sage: G = graphs.CompleteGraph(5)
sage: G.distance_graph(23).num_edges()
0
It is an error to provide a distance that is not an integer type. ::
sage: G = graphs.CompleteGraph(5)
sage: G.distance_graph('junk')
Traceback (most recent call last):
...
TypeError: unable to convert x (=junk) to an integer
It is an error to provide a negative distance. ::
sage: G = graphs.CompleteGraph(5)
sage: G.distance_graph(-3)
Traceback (most recent call last):
...
ValueError: Distance graph for a negative distance (d=-3) is not defined
AUTHOR:
Rob Beezer, 2009-11-25
"""
from sage.rings.infinity import Infinity
from copy import copy
if not isinstance(dist, list):
dist = [dist]
distances = []
for d in dist:
if d == Infinity:
distances.append(d)
else:
dint = ZZ(d)
if dint < 0:
raise ValueError('Distance graph for a negative distance (d=%d) is not defined' % dint)
distances.append(dint)
vertices = {}
for v in self.vertex_iterator():
vertices[v] = {}
positions = copy(self.get_pos())
if ZZ(0) in distances:
looped = True
else:
looped = False
from sage.graphs.all import Graph
D = Graph(vertices, pos=positions, multiedges=False, loops=looped)
if len(distances) == 1:
dstring = "distance " + str(distances[0])
else:
dstring = "distances " + str(sorted(distances))
D.name("Distance graph for %s in " % dstring + self.name())
d = self.distance_all_pairs()
for u in self.vertex_iterator():
for v in self.vertex_iterator():
if d[u][v] in distances:
D.add_edge(u,v)
return D
def girth(self):
"""
Computes the girth of the graph. For directed graphs, computes the
girth of the undirected graph.
The girth is the length of the shortest cycle in the graph. Graphs
without cycles have infinite girth.
EXAMPLES::
sage: graphs.TetrahedralGraph().girth()
3
sage: graphs.CubeGraph(3).girth()
4
sage: graphs.PetersenGraph().girth()
5
sage: graphs.HeawoodGraph().girth()
6
sage: graphs.trees(9).next().girth()
+Infinity
TESTS:
Prior to Trac #12243, the girth computation assumed
vertices were integers (and failed). The example below
tests the computation for graphs with vertices that are
not integers. In this example the vertices are sets. ::
sage: G = graphs.OddGraph(3)
sage: type(G.vertices()[0])
<class 'sage.sets.set.Set_object_enumerated_with_category'>
sage: G.girth()
5
Ticket :trac:`12355`::
sage: H=Graph([(0, 1), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (1, 6), (2, 5), (3, 4), (5, 6)])
sage: H.girth()
3
Girth < 3 (see :trac:`12355`)::
sage: g = graphs.PetersenGraph()
sage: g.allow_multiple_edges(True)
sage: g.allow_loops(True)
sage: g.girth()
5
sage: g.add_edge(0,0)
sage: g.girth()
1
sage: g.delete_edge(0,0)
sage: g.add_edge(0,1)
sage: g.girth()
2
sage: g.delete_edge(0,1)
sage: g.girth()
5
sage: g = DiGraph(g)
sage: g.girth()
2
"""
if self.has_loops():
return 1
if self.is_directed():
if any(self.has_edge(v,u) for u,v in self.edges(labels = False)):
return 2
else:
if self.has_multiple_edges():
return 2
n = self.num_verts()
best = n+1
seen = {}
for w in self.vertex_iterator():
seen[w] = None
span = set([w])
depth = 1
thisList = set([w])
while 2*depth <= best and 3 < best:
nextList = set()
for v in thisList:
for u in self.neighbors(v):
if u in seen: continue
if not u in span:
span.add(u)
nextList.add(u)
else:
if u in thisList:
best = depth*2-1
thislList = set()
break
if u in nextList:
best = depth*2
if best == 2*depth-1:
break
thisList = nextList
depth += 1
if best == n+1:
from sage.rings.infinity import Infinity
return Infinity
return best
def periphery(self):
"""
Returns the set of vertices in the periphery, i.e. whose
eccentricity is equal to the diameter of the (di)graph.
In other words, the periphery is the set of vertices achieving the
maximum eccentricity.
EXAMPLES::
sage: G = graphs.DiamondGraph()
sage: G.periphery()
[0, 3]
sage: P = graphs.PetersenGraph()
sage: P.subgraph(P.periphery()) == P
True
sage: S = graphs.StarGraph(19)
sage: S.periphery()
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
sage: G = Graph()
sage: G.periphery()
[]
sage: G.add_vertex()
0
sage: G.periphery()
[0]
"""
e = self.eccentricity(with_labels=True)
try:
r = max(e.values())
except:
return []
return [v for v in e if e[v]==r]
def interior_paths(self, start, end):
"""
Returns an exhaustive list of paths (also lists) through only
interior vertices from vertex start to vertex end in the
(di)graph.
Note - start and end do not necessarily have to be boundary
vertices.
INPUT:
- ``start`` - the vertex of the graph to search for
paths from
- ``end`` - the vertex of the graph to search for
paths to
EXAMPLES::
sage: eg1 = Graph({0:[1,2], 1:[4], 2:[3,4], 4:[5], 5:[6]})
sage: sorted(eg1.all_paths(0,6))
[[0, 1, 4, 5, 6], [0, 2, 4, 5, 6]]
sage: eg2 = copy(eg1)
sage: eg2.set_boundary([0,1,3])
sage: sorted(eg2.interior_paths(0,6))
[[0, 2, 4, 5, 6]]
sage: sorted(eg2.all_paths(0,6))
[[0, 1, 4, 5, 6], [0, 2, 4, 5, 6]]
sage: eg3 = graphs.PetersenGraph()
sage: eg3.set_boundary([0,1,2,3,4])
sage: sorted(eg3.all_paths(1,4))
[[1, 0, 4],
[1, 0, 5, 7, 2, 3, 4],
[1, 0, 5, 7, 2, 3, 8, 6, 9, 4],
[1, 0, 5, 7, 9, 4],
[1, 0, 5, 7, 9, 6, 8, 3, 4],
[1, 0, 5, 8, 3, 2, 7, 9, 4],
[1, 0, 5, 8, 3, 4],
[1, 0, 5, 8, 6, 9, 4],
[1, 0, 5, 8, 6, 9, 7, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 8, 5, 0, 4],
[1, 2, 3, 8, 5, 7, 9, 4],
[1, 2, 3, 8, 6, 9, 4],
[1, 2, 3, 8, 6, 9, 7, 5, 0, 4],
[1, 2, 7, 5, 0, 4],
[1, 2, 7, 5, 8, 3, 4],
[1, 2, 7, 5, 8, 6, 9, 4],
[1, 2, 7, 9, 4],
[1, 2, 7, 9, 6, 8, 3, 4],
[1, 2, 7, 9, 6, 8, 5, 0, 4],
[1, 6, 8, 3, 2, 7, 5, 0, 4],
[1, 6, 8, 3, 2, 7, 9, 4],
[1, 6, 8, 3, 4],
[1, 6, 8, 5, 0, 4],
[1, 6, 8, 5, 7, 2, 3, 4],
[1, 6, 8, 5, 7, 9, 4],
[1, 6, 9, 4],
[1, 6, 9, 7, 2, 3, 4],
[1, 6, 9, 7, 2, 3, 8, 5, 0, 4],
[1, 6, 9, 7, 5, 0, 4],
[1, 6, 9, 7, 5, 8, 3, 4]]
sage: sorted(eg3.interior_paths(1,4))
[[1, 6, 8, 5, 7, 9, 4], [1, 6, 9, 4]]
sage: dg = DiGraph({0:[1,3,4], 1:[3], 2:[0,3,4],4:[3]}, boundary=[4])
sage: sorted(dg.all_paths(0,3))
[[0, 1, 3], [0, 3], [0, 4, 3]]
sage: sorted(dg.interior_paths(0,3))
[[0, 1, 3], [0, 3]]
sage: ug = dg.to_undirected()
sage: sorted(ug.all_paths(0,3))
[[0, 1, 3], [0, 2, 3], [0, 2, 4, 3], [0, 3], [0, 4, 2, 3], [0, 4, 3]]
sage: sorted(ug.interior_paths(0,3))
[[0, 1, 3], [0, 2, 3], [0, 3]]
"""
from copy import copy
H = copy(self)
for vertex in self.get_boundary():
if (vertex != start and vertex != end):
H.delete_edges(H.edges_incident(vertex))
return H.all_paths(start, end)
def all_paths(self, start, end):
"""
Returns a list of all paths (also lists) between a pair of
vertices (start, end) in the (di)graph. If ``start`` is the same
vertex as ``end``, then ``[[start]]`` is returned -- a list
containing the 1-vertex, 0-edge path "``start``".
EXAMPLES::
sage: eg1 = Graph({0:[1,2], 1:[4], 2:[3,4], 4:[5], 5:[6]})
sage: eg1.all_paths(0,6)
[[0, 1, 4, 5, 6], [0, 2, 4, 5, 6]]
sage: eg2 = graphs.PetersenGraph()
sage: sorted(eg2.all_paths(1,4))
[[1, 0, 4],
[1, 0, 5, 7, 2, 3, 4],
[1, 0, 5, 7, 2, 3, 8, 6, 9, 4],
[1, 0, 5, 7, 9, 4],
[1, 0, 5, 7, 9, 6, 8, 3, 4],
[1, 0, 5, 8, 3, 2, 7, 9, 4],
[1, 0, 5, 8, 3, 4],
[1, 0, 5, 8, 6, 9, 4],
[1, 0, 5, 8, 6, 9, 7, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 8, 5, 0, 4],
[1, 2, 3, 8, 5, 7, 9, 4],
[1, 2, 3, 8, 6, 9, 4],
[1, 2, 3, 8, 6, 9, 7, 5, 0, 4],
[1, 2, 7, 5, 0, 4],
[1, 2, 7, 5, 8, 3, 4],
[1, 2, 7, 5, 8, 6, 9, 4],
[1, 2, 7, 9, 4],
[1, 2, 7, 9, 6, 8, 3, 4],
[1, 2, 7, 9, 6, 8, 5, 0, 4],
[1, 6, 8, 3, 2, 7, 5, 0, 4],
[1, 6, 8, 3, 2, 7, 9, 4],
[1, 6, 8, 3, 4],
[1, 6, 8, 5, 0, 4],
[1, 6, 8, 5, 7, 2, 3, 4],
[1, 6, 8, 5, 7, 9, 4],
[1, 6, 9, 4],
[1, 6, 9, 7, 2, 3, 4],
[1, 6, 9, 7, 2, 3, 8, 5, 0, 4],
[1, 6, 9, 7, 5, 0, 4],
[1, 6, 9, 7, 5, 8, 3, 4]]
sage: dg = DiGraph({0:[1,3], 1:[3], 2:[0,3]})
sage: sorted(dg.all_paths(0,3))
[[0, 1, 3], [0, 3]]
sage: ug = dg.to_undirected()
sage: sorted(ug.all_paths(0,3))
[[0, 1, 3], [0, 2, 3], [0, 3]]
Starting and ending at the same vertex (see :trac:`13006`)::
sage: graphs.CompleteGraph(4).all_paths(2,2)
[[2]]
"""
if self.is_directed():
iterator=self.neighbor_out_iterator
else:
iterator=self.neighbor_iterator
if start == end:
return [[start]]
all_paths = []
act_path = []
act_path_iter = []
done = False
s=start
while not done:
if s==end:
all_paths.append(act_path+[s])
else:
if s not in act_path:
act_path.append(s)
act_path_iter.append(iterator(s))
s=None
while (s is None) and not done:
try:
s=act_path_iter[-1].next()
except (StopIteration):
act_path.pop()
act_path_iter.pop()
if len(act_path)==0:
done = True
return all_paths
def shortest_path(self, u, v, by_weight=False, bidirectional=True):
"""
Returns a list of vertices representing some shortest path from u
to v: if there is no path from u to v, the list is empty.
INPUT:
- ``by_weight`` - if False, uses a breadth first
search. If True, takes edge weightings into account, using
Dijkstra's algorithm.
- ``bidirectional`` - if True, the algorithm will
expand vertices from u and v at the same time, making two spheres
of half the usual radius. This generally doubles the speed
(consider the total volume in each case).
EXAMPLES::
sage: D = graphs.DodecahedralGraph()
sage: D.shortest_path(4, 9)
[4, 17, 16, 12, 13, 9]
sage: D.shortest_path(5, 5)
[5]
sage: D.delete_edges(D.edges_incident(13))
sage: D.shortest_path(13, 4)
[]
sage: G = Graph( { 0: [1], 1: [2], 2: [3], 3: [4], 4: [0] })
sage: G.plot(edge_labels=True).show() # long time
sage: G.shortest_path(0, 3)
[0, 4, 3]
sage: G = Graph( { 0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} }, sparse = True)
sage: G.shortest_path(0, 3, by_weight=True)
[0, 1, 2, 3]
"""
if u == v:
return [u]
import networkx
if by_weight:
if bidirectional:
try:
L = self._backend.bidirectional_dijkstra(u,v)
except AttributeError:
try:
L = networkx.bidirectional_dijkstra(self.networkx_graph(copy=False), u, v)[1]
except:
L = False
else:
L = networkx.dijkstra_path(self.networkx_graph(copy=False), u, v)
else:
if bidirectional:
try:
L = self._backend.shortest_path(u,v)
except AttributeError:
L = networkx.shortest_path(self.networkx_graph(copy=False), u, v)
else:
try:
L = networkx.single_source_shortest_path(self.networkx_graph(copy=False), u)[v]
except:
L = False
if L:
return L
else:
return []
def shortest_path_length(self, u, v, by_weight=False,
bidirectional=True,
weight_sum=None):
"""
Returns the minimal length of paths from u to v.
If there is no path from u to v, returns Infinity.
INPUT:
- ``by_weight`` - if False, uses a breadth first
search. If True, takes edge weightings into account, using
Dijkstra's algorithm.
- ``bidirectional`` - if True, the algorithm will
expand vertices from u and v at the same time, making two spheres
of half the usual radius. This generally doubles the speed
(consider the total volume in each case).
- ``weight_sum`` - if False, returns the number of
edges in the path. If True, returns the sum of the weights of these
edges. Default behavior is to have the same value as by_weight.
EXAMPLES::
sage: D = graphs.DodecahedralGraph()
sage: D.shortest_path_length(4, 9)
5
sage: D.shortest_path_length(5, 5)
0
sage: D.delete_edges(D.edges_incident(13))
sage: D.shortest_path_length(13, 4)
+Infinity
sage: G = Graph( { 0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} }, sparse = True)
sage: G.plot(edge_labels=True).show() # long time
sage: G.shortest_path_length(0, 3)
2
sage: G.shortest_path_length(0, 3, by_weight=True)
3
"""
if weight_sum is None:
weight_sum = by_weight
path = self.shortest_path(u, v, by_weight, bidirectional)
length = len(path) - 1
if length == -1:
from sage.rings.infinity import Infinity
return Infinity
if weight_sum:
wt = 0
for j in range(length):
wt += self.edge_label(path[j], path[j+1])
return wt
else:
return length
def shortest_paths(self, u, by_weight=False, cutoff=None):
"""
Returns a dictionary associating to each vertex v a shortest path from u
to v, if it exists.
INPUT:
- ``by_weight`` - if False, uses a breadth first
search. If True, uses Dijkstra's algorithm to find the shortest
paths by weight.
- ``cutoff`` - integer depth to stop search.
(ignored if ``by_weight == True``)
EXAMPLES::
sage: D = graphs.DodecahedralGraph()
sage: D.shortest_paths(0)
{0: [0], 1: [0, 1], 2: [0, 1, 2], 3: [0, 19, 3], 4: [0, 19, 3, 4], 5: [0, 1, 2, 6, 5], 6: [0, 1, 2, 6], 7: [0, 1, 8, 7], 8: [0, 1, 8], 9: [0, 10, 9], 10: [0, 10], 11: [0, 10, 11], 12: [0, 10, 11, 12], 13: [0, 10, 9, 13], 14: [0, 1, 8, 7, 14], 15: [0, 19, 18, 17, 16, 15], 16: [0, 19, 18, 17, 16], 17: [0, 19, 18, 17], 18: [0, 19, 18], 19: [0, 19]}
All these paths are obviously induced graphs::
sage: all([D.subgraph(p).is_isomorphic(graphs.PathGraph(len(p)) )for p in D.shortest_paths(0).values()])
True
::
sage: D.shortest_paths(0, cutoff=2)
{0: [0], 1: [0, 1], 2: [0, 1, 2], 3: [0, 19, 3], 8: [0, 1, 8], 9: [0, 10, 9], 10: [0, 10], 11: [0, 10, 11], 18: [0, 19, 18], 19: [0, 19]}
sage: G = Graph( { 0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} }, sparse=True)
sage: G.plot(edge_labels=True).show() # long time
sage: G.shortest_paths(0, by_weight=True)
{0: [0], 1: [0, 1], 2: [0, 1, 2], 3: [0, 1, 2, 3], 4: [0, 4]}
"""
if by_weight:
import networkx
return networkx.single_source_dijkstra_path(self.networkx_graph(copy=False), u)
else:
try:
return self._backend.shortest_path_all_vertices(u, cutoff)
except AttributeError:
return networkx.single_source_shortest_path(self.networkx_graph(copy=False), u, cutoff)
def shortest_path_lengths(self, u, by_weight=False, weight_sums=None):
"""
Returns a dictionary of shortest path lengths keyed by targets that
are connected by a path from u.
INPUT:
- ``by_weight`` - if False, uses a breadth first
search. If True, takes edge weightings into account, using
Dijkstra's algorithm.
EXAMPLES::
sage: D = graphs.DodecahedralGraph()
sage: D.shortest_path_lengths(0)
{0: 0, 1: 1, 2: 2, 3: 2, 4: 3, 5: 4, 6: 3, 7: 3, 8: 2, 9: 2, 10: 1, 11: 2, 12: 3, 13: 3, 14: 4, 15: 5, 16: 4, 17: 3, 18: 2, 19: 1}
sage: G = Graph( { 0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} }, sparse=True )
sage: G.plot(edge_labels=True).show() # long time
sage: G.shortest_path_lengths(0, by_weight=True)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 2}
"""
paths = self.shortest_paths(u, by_weight)
if by_weight:
weights = {}
for v in paths:
wt = 0
path = paths[v]
for j in range(len(path) - 1):
wt += self.edge_label(path[j], path[j+1])
weights[v] = wt
return weights
else:
lengths = {}
for v in paths:
lengths[v] = len(paths[v]) - 1
return lengths
def shortest_path_all_pairs(self, by_weight=False, default_weight=1, algorithm = "auto"):
"""
Computes a shortest path between each pair of vertices.
INPUT:
- ``by_weight`` - Whether to use the labels defined over the edges as
weights. If ``False`` (default), the distance between `u` and `v` is
the minimum number of edges of a path from `u` to `v`.
- ``default_weight`` - (defaults to 1) The default weight to assign
edges that don't have a weight (i.e., a label).
Implies ``by_weight == True``.
- ``algorithm`` -- four options :
* ``"BFS"`` -- the computation is done through a BFS
centered on each vertex successively. Only implemented
when ``default_weight = 1`` and ``by_weight = False``.
* ``"Floyd-Warshall-Cython"`` -- through the Cython implementation of
the Floyd-Warshall algorithm.
* ``"Floyd-Warshall-Python"`` -- through the Python implementation of
the Floyd-Warshall algorithm.
* ``"auto"`` -- use the fastest algorithm depending on the input
(``"BFS"`` if possible, and ``"Floyd-Warshall-Python"`` otherwise)
This is the default value.
OUTPUT:
A tuple ``(dist, pred)``. They are both dicts of dicts. The first
indicates the length ``dist[u][v]`` of the shortest weighted path
from `u` to `v`. The second is a compact representation of all the
paths- it indicates the predecessor ``pred[u][v]`` of `v` in the
shortest path from `u` to `v`.
.. NOTE::
Three different implementations are actually available through this method :
* BFS (Cython)
* Floyd-Warshall (Cython)
* Floyd-Warshall (Python)
The BFS algorithm is the fastest of the three, then comes the Cython
implementation of Floyd-Warshall, and last the Python
implementation. The first two implementations, however, only compute
distances based on the topological distance (each edge is of weight
1, or equivalently the length of a path is its number of
edges). Besides, they do not deal with graphs larger than 65536
vertices (which already represents 16GB of ram).
.. NOTE::
There is a Cython version of this method that is usually
much faster for large graphs, as most of the time is
actually spent building the final double
dictionary. Everything on the subject is to be found in the
:mod:`~sage.graphs.distances_all_pairs` module.
EXAMPLES::
sage: G = Graph( { 0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} }, sparse=True )
sage: G.plot(edge_labels=True).show() # long time
sage: dist, pred = G.shortest_path_all_pairs(by_weight = True)
sage: dist
{0: {0: 0, 1: 1, 2: 2, 3: 3, 4: 2}, 1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 3}, 2: {0: 2, 1: 1, 2: 0, 3: 1, 4: 3}, 3: {0: 3, 1: 2, 2: 1, 3: 0, 4: 2}, 4: {0: 2, 1: 3, 2: 3, 3: 2, 4: 0}}
sage: pred
{0: {0: None, 1: 0, 2: 1, 3: 2, 4: 0}, 1: {0: 1, 1: None, 2: 1, 3: 2, 4: 0}, 2: {0: 1, 1: 2, 2: None, 3: 2, 4: 3}, 3: {0: 1, 1: 2, 2: 3, 3: None, 4: 3}, 4: {0: 4, 1: 0, 2: 3, 3: 4, 4: None}}
sage: pred[0]
{0: None, 1: 0, 2: 1, 3: 2, 4: 0}
So for example the shortest weighted path from `0` to `3` is obtained as
follows. The predecessor of `3` is ``pred[0][3] == 2``, the predecessor
of `2` is ``pred[0][2] == 1``, and the predecessor of `1` is
``pred[0][1] == 0``.
::
sage: G = Graph( { 0: {1:None}, 1: {2:None}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} }, sparse=True )
sage: G.shortest_path_all_pairs()
({0: {0: 0, 1: 1, 2: 2, 3: 2, 4: 1},
1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 2},
2: {0: 2, 1: 1, 2: 0, 3: 1, 4: 2},
3: {0: 2, 1: 2, 2: 1, 3: 0, 4: 1},
4: {0: 1, 1: 2, 2: 2, 3: 1, 4: 0}},
{0: {0: None, 1: 0, 2: 1, 3: 4, 4: 0},
1: {0: 1, 1: None, 2: 1, 3: 2, 4: 0},
2: {0: 1, 1: 2, 2: None, 3: 2, 4: 3},
3: {0: 4, 1: 2, 2: 3, 3: None, 4: 3},
4: {0: 4, 1: 0, 2: 3, 3: 4, 4: None}})
sage: G.shortest_path_all_pairs(by_weight = True)
({0: {0: 0, 1: 1, 2: 2, 3: 3, 4: 2},
1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 3},
2: {0: 2, 1: 1, 2: 0, 3: 1, 4: 3},
3: {0: 3, 1: 2, 2: 1, 3: 0, 4: 2},
4: {0: 2, 1: 3, 2: 3, 3: 2, 4: 0}},
{0: {0: None, 1: 0, 2: 1, 3: 2, 4: 0},
1: {0: 1, 1: None, 2: 1, 3: 2, 4: 0},
2: {0: 1, 1: 2, 2: None, 3: 2, 4: 3},
3: {0: 1, 1: 2, 2: 3, 3: None, 4: 3},
4: {0: 4, 1: 0, 2: 3, 3: 4, 4: None}})
sage: G.shortest_path_all_pairs(default_weight=200)
({0: {0: 0, 1: 200, 2: 5, 3: 4, 4: 2},
1: {0: 200, 1: 0, 2: 200, 3: 201, 4: 202},
2: {0: 5, 1: 200, 2: 0, 3: 1, 4: 3},
3: {0: 4, 1: 201, 2: 1, 3: 0, 4: 2},
4: {0: 2, 1: 202, 2: 3, 3: 2, 4: 0}},
{0: {0: None, 1: 0, 2: 3, 3: 4, 4: 0},
1: {0: 1, 1: None, 2: 1, 3: 2, 4: 0},
2: {0: 4, 1: 2, 2: None, 3: 2, 4: 3},
3: {0: 4, 1: 2, 2: 3, 3: None, 4: 3},
4: {0: 4, 1: 0, 2: 3, 3: 4, 4: None}})
Checking the distances are equal regardless of the algorithm used::
sage: g = graphs.Grid2dGraph(5,5)
sage: d1, _ = g.shortest_path_all_pairs(algorithm="BFS")
sage: d2, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall-Cython")
sage: d3, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall-Python")
sage: d1 == d2 == d3
True
Checking a random path is valid ::
sage: dist, path = g.shortest_path_all_pairs(algorithm="BFS")
sage: u,v = g.random_vertex(), g.random_vertex()
sage: p = [v]
sage: while p[0] != None:
... p.insert(0,path[u][p[0]])
sage: len(p) == dist[u][v] + 2
True
TESTS:
Wrong name for ``algorithm``::
sage: g.shortest_path_all_pairs(algorithm="Bob")
Traceback (most recent call last):
...
ValueError: The algorithm keyword can only be set to "auto", "BFS", "Floyd-Warshall-Python" or "Floyd-Warshall-Cython"
"""
if default_weight != 1:
by_weight = True
if algorithm == "auto":
if by_weight is False:
algorithm = "BFS"
else:
algorithm = "Floyd-Warshall-Python"
if algorithm == "BFS":
from sage.graphs.distances_all_pairs import distances_and_predecessors_all_pairs
return distances_and_predecessors_all_pairs(self)
elif algorithm == "Floyd-Warshall-Cython":
from sage.graphs.distances_all_pairs import floyd_warshall
return floyd_warshall(self, distances = True)
elif algorithm != "Floyd-Warshall-Python":
raise ValueError("The algorithm keyword can only be set to "+
"\"auto\","+
" \"BFS\", "+
"\"Floyd-Warshall-Python\" or "+
"\"Floyd-Warshall-Cython\"")
from sage.rings.infinity import Infinity
dist = {}
pred = {}
verts = self.vertices()
for u in verts:
du = {}
pu = {}
for v in verts:
if self.has_edge(u, v):
if by_weight is False:
du[v] = 1
else:
edge_label = self.edge_label(u, v)
if edge_label is None or edge_label == {}:
du[v] = default_weight
else:
du[v] = edge_label
pu[v] = u
else:
du[v] = Infinity
pu[v] = None
du[u] = 0
dist[u] = du
pred[u] = pu
for w in verts:
dw = dist[w]
for u in verts:
du = dist[u]
for v in verts:
if du[v] > du[w] + dw[v]:
du[v] = du[w] + dw[v]
pred[u][v] = pred[w][v]
return dist, pred
def wiener_index(self):
r"""
Returns the Wiener index of the graph.
The Wiener index of a graph `G` can be defined in two equivalent
ways [KRG96]_ :
- `W(G) = \frac 1 2 \sum_{u,v\in G} d(u,v)` where `d(u,v)` denotes the
distance between vertices `u` and `v`.
- Let `\Omega` be a set of `\frac {n(n-1)} 2` paths in `G` such that
`\Omega` contains exactly one shortest `u-v` path for each set
`\{u,v\}` of vertices in `G`. Besides, `\forall e\in E(G)`, let
`\Omega(e)` denote the paths from `\Omega` containing `e`. We then
have `W(G) = \sum_{e\in E(G)}|\Omega(e)|`.
EXAMPLE:
From [GYLL93b]_, cited in [KRG96]_::
sage: g=graphs.PathGraph(10)
sage: w=lambda x: (x*(x*x -1)/6)
sage: g.wiener_index()==w(10)
True
REFERENCES:
.. [KRG96] S. Klavzar, A. Rajapakse, and I. Gutman. The Szeged and the
Wiener index of graphs. *Applied Mathematics Letters*, 9(5):45--49,
1996.
.. [GYLL93b] I. Gutman, Y.-N. Yeh, S.-L. Lee, and Y.-L. Luo. Some recent
results in the theory of the Wiener number. *Indian Journal of
Chemistry*, 32A:651--661, 1993.
"""
from sage.graphs.distances_all_pairs import wiener_index
return wiener_index(self)
def average_distance(self):
r"""
Returns the average distance between vertices of the graph.
Formally, for a graph `G` this value is equal to
`\frac 1 {n(n-1)} \sum_{u,v\in G} d(u,v)` where `d(u,v)`
denotes the distance between vertices `u` and `v` and `n`
is the number of vertices in `G`.
EXAMPLE:
From [GYLL93]_::
sage: g=graphs.PathGraph(10)
sage: w=lambda x: (x*(x*x -1)/6)/(x*(x-1)/2)
sage: g.average_distance()==w(10)
True
REFERENCE:
.. [GYLL93] I. Gutman, Y.-N. Yeh, S.-L. Lee, and Y.-L. Luo. Some recent
results in the theory of the Wiener number. *Indian Journal of
Chemistry*, 32A:651--661, 1993.
TEST::
sage: g = Graph()
sage: g.average_distance()
Traceback (most recent call last):
...
ValueError: The graph must have at least two vertices for this value to be defined
"""
if self.order() < 2:
raise ValueError("The graph must have at least two vertices for this value to be defined")
return Integer(self.wiener_index())/Integer((self.order()*(self.order()-1))/2)
def szeged_index(self):
r"""
Returns the Szeged index of the graph.
For any `uv\in E(G)`, let
`N_u(uv) = \{w\in G:d(u,w)<d(v,w)\}, n_u(uv)=|N_u(uv)|`
The Szeged index of a graph is then defined as [1]:
`\sum_{uv \in E(G)}n_u(uv)\times n_v(uv)`
EXAMPLE:
True for any connected graph [1]::
sage: g=graphs.PetersenGraph()
sage: g.wiener_index()<= g.szeged_index()
True
True for all trees [1]::
sage: g=Graph()
sage: g.add_edges(graphs.CubeGraph(5).min_spanning_tree())
sage: g.wiener_index() == g.szeged_index()
True
REFERENCE:
[1] Klavzar S., Rajapakse A., Gutman I. (1996). The Szeged and the
Wiener index of graphs. Applied Mathematics Letters, 9 (5), pp. 45-49.
"""
distances=self.distance_all_pairs()
s=0
for (u,v) in self.edges(labels=None):
du=distances[u]
dv=distances[v]
n1=n2=0
for w in self:
if du[w] < dv[w]:
n1+=1
elif dv[w] < du[w]:
n2+=1
s+=(n1*n2)
return s
def breadth_first_search(self, start, ignore_direction=False,
distance=None, neighbors=None):
"""
Returns an iterator over the vertices in a breadth-first ordering.
INPUT:
- ``start`` - vertex or list of vertices from which to start
the traversal
- ``ignore_direction`` - (default False) only applies to
directed graphs. If True, searches across edges in either
direction.
- ``distance`` - the maximum distance from the ``start`` nodes
to traverse. The ``start`` nodes are distance zero from
themselves.
- ``neighbors`` - a function giving the neighbors of a vertex.
The function should take a vertex and return a list of
vertices. For a graph, ``neighbors`` is by default the
:meth:`.neighbors` function of the graph. For a digraph,
the ``neighbors`` function defaults to the
:meth:`.successors` function of the graph.
.. SEEALSO::
- :meth:`breadth_first_search <sage.graphs.base.c_graph.CGraphBackend.breadth_first_search>`
-- breadth-first search for fast compiled graphs.
- :meth:`depth_first_search <sage.graphs.base.c_graph.CGraphBackend.depth_first_search>`
-- depth-first search for fast compiled graphs.
- :meth:`depth_first_search` -- depth-first search for generic graphs.
EXAMPLES::
sage: G = Graph( { 0: [1], 1: [2], 2: [3], 3: [4], 4: [0]} )
sage: list(G.breadth_first_search(0))
[0, 1, 4, 2, 3]
By default, the edge direction of a digraph is respected, but this
can be overridden by the ``ignore_direction`` parameter::
sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.breadth_first_search(0))
[0, 1, 2, 3, 4, 5, 6, 7]
sage: list(D.breadth_first_search(0, ignore_direction=True))
[0, 1, 2, 3, 7, 4, 5, 6]
You can specify a maximum distance in which to search. A
distance of zero returns the ``start`` vertices::
sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.breadth_first_search(0,distance=0))
[0]
sage: list(D.breadth_first_search(0,distance=1))
[0, 1, 2, 3]
Multiple starting vertices can be specified in a list::
sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.breadth_first_search([0]))
[0, 1, 2, 3, 4, 5, 6, 7]
sage: list(D.breadth_first_search([0,6]))
[0, 6, 1, 2, 3, 7, 4, 5]
sage: list(D.breadth_first_search([0,6],distance=0))
[0, 6]
sage: list(D.breadth_first_search([0,6],distance=1))
[0, 6, 1, 2, 3, 7]
sage: list(D.breadth_first_search(6,ignore_direction=True,distance=2))
[6, 3, 7, 0, 5]
More generally, you can specify a ``neighbors`` function. For
example, you can traverse the graph backwards by setting
``neighbors`` to be the :meth:`.neighbors_in` function of the graph::
sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.breadth_first_search(5,neighbors=D.neighbors_in, distance=2))
[5, 1, 2, 0]
sage: list(D.breadth_first_search(5,neighbors=D.neighbors_out, distance=2))
[5, 7, 0]
sage: list(D.breadth_first_search(5,neighbors=D.neighbors, distance=2))
[5, 1, 2, 7, 0, 4, 6]
TESTS::
sage: D = DiGraph({1:[0], 2:[0]})
sage: list(D.breadth_first_search(0))
[0]
sage: list(D.breadth_first_search(0, ignore_direction=True))
[0, 1, 2]
"""
if neighbors is None and not isinstance(start,list) and distance is None and hasattr(self._backend,"breadth_first_search"):
for v in self._backend.breadth_first_search(start, ignore_direction = ignore_direction):
yield v
else:
if neighbors is None:
if not self._directed or ignore_direction:
neighbors=self.neighbor_iterator
else:
neighbors=self.neighbor_out_iterator
seen=set([])
if isinstance(start, list):
queue=[(v,0) for v in start]
else:
queue=[(start,0)]
for v,d in queue:
yield v
seen.add(v)
while len(queue)>0:
v,d = queue.pop(0)
if distance is None or d<distance:
for w in neighbors(v):
if w not in seen:
seen.add(w)
queue.append((w, d+1))
yield w
def depth_first_search(self, start, ignore_direction=False,
distance=None, neighbors=None):
"""
Returns an iterator over the vertices in a depth-first ordering.
INPUT:
- ``start`` - vertex or list of vertices from which to start
the traversal
- ``ignore_direction`` - (default False) only applies to
directed graphs. If True, searches across edges in either
direction.
- ``distance`` - the maximum distance from the ``start`` nodes
to traverse. The ``start`` nodes are distance zero from
themselves.
- ``neighbors`` - a function giving the neighbors of a vertex.
The function should take a vertex and return a list of
vertices. For a graph, ``neighbors`` is by default the
:meth:`.neighbors` function of the graph. For a digraph,
the ``neighbors`` function defaults to the
:meth:`.successors` function of the graph.
.. SEEALSO::
- :meth:`breadth_first_search`
- :meth:`breadth_first_search <sage.graphs.base.c_graph.CGraphBackend.breadth_first_search>`
-- breadth-first search for fast compiled graphs.
- :meth:`depth_first_search <sage.graphs.base.c_graph.CGraphBackend.depth_first_search>`
-- depth-first search for fast compiled graphs.
EXAMPLES::
sage: G = Graph( { 0: [1], 1: [2], 2: [3], 3: [4], 4: [0]} )
sage: list(G.depth_first_search(0))
[0, 4, 3, 2, 1]
By default, the edge direction of a digraph is respected, but this
can be overridden by the ``ignore_direction`` parameter::
sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.depth_first_search(0))
[0, 3, 6, 7, 2, 5, 1, 4]
sage: list(D.depth_first_search(0, ignore_direction=True))
[0, 7, 6, 3, 5, 2, 1, 4]
You can specify a maximum distance in which to search. A
distance of zero returns the ``start`` vertices::
sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.depth_first_search(0,distance=0))
[0]
sage: list(D.depth_first_search(0,distance=1))
[0, 3, 2, 1]
Multiple starting vertices can be specified in a list::
sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.depth_first_search([0]))
[0, 3, 6, 7, 2, 5, 1, 4]
sage: list(D.depth_first_search([0,6]))
[0, 3, 6, 7, 2, 5, 1, 4]
sage: list(D.depth_first_search([0,6],distance=0))
[0, 6]
sage: list(D.depth_first_search([0,6],distance=1))
[0, 3, 2, 1, 6, 7]
sage: list(D.depth_first_search(6,ignore_direction=True,distance=2))
[6, 7, 5, 0, 3]
More generally, you can specify a ``neighbors`` function. For
example, you can traverse the graph backwards by setting
``neighbors`` to be the :meth:`.neighbors_in` function of the graph::
sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.depth_first_search(5,neighbors=D.neighbors_in, distance=2))
[5, 2, 0, 1]
sage: list(D.depth_first_search(5,neighbors=D.neighbors_out, distance=2))
[5, 7, 0]
sage: list(D.depth_first_search(5,neighbors=D.neighbors, distance=2))
[5, 7, 6, 0, 2, 1, 4]
TESTS::
sage: D = DiGraph({1:[0], 2:[0]})
sage: list(D.depth_first_search(0))
[0]
sage: list(D.depth_first_search(0, ignore_direction=True))
[0, 2, 1]
"""
if neighbors is None and not isinstance(start,list) and distance is None and hasattr(self._backend,"depth_first_search"):
for v in self._backend.depth_first_search(start, ignore_direction = ignore_direction):
yield v
else:
if neighbors is None:
if not self._directed or ignore_direction:
neighbors=self.neighbor_iterator
else:
neighbors=self.neighbor_out_iterator
seen=set([])
if isinstance(start, list):
queue=[(v,0) for v in reversed(start)]
else:
queue=[(start,0)]
while len(queue)>0:
v,d = queue.pop()
if v not in seen:
yield v
seen.add(v)
if distance is None or d<distance:
for w in neighbors(v):
if w not in seen:
queue.append((w, d+1))
def lex_BFS(self,reverse=False,tree=False, initial_vertex = None):
r"""
Performs a Lex BFS on the graph.
A Lex BFS ( or Lexicographic Breadth-First Search ) is a Breadth
First Search used for the recognition of Chordal Graphs. For more
information, see the
`Wikipedia article on Lex-BFS
<http://en.wikipedia.org/wiki/Lexicographic_breadth-first_search>`_.
INPUT:
- ``reverse`` (boolean) -- whether to return the vertices
in discovery order, or the reverse.
``False`` by default.
- ``tree`` (boolean) -- whether to return the discovery
directed tree (each vertex being linked to the one that
saw it for the first time)
``False`` by default.
- ``initial_vertex`` -- the first vertex to consider.
``None`` by default.
ALGORITHM:
This algorithm maintains for each vertex left in the graph
a code corresponding to the vertices already removed. The
vertex of maximal code ( according to the lexicographic
order ) is then removed, and the codes are updated.
This algorithm runs in time `O(n^2)` ( where `n` is the
number of vertices in the graph ), which is not optimal.
An optimal algorithm would run in time `O(m)` ( where `m`
is the number of edges in the graph ), and require the use
of a doubly-linked list which are not available in python
and can not really be written efficiently. This could be
done in Cython, though.
EXAMPLE:
A Lex BFS is obviously an ordering of the vertices::
sage: g = graphs.PetersenGraph()
sage: len(g.lex_BFS()) == g.order()
True
For a Chordal Graph, a reversed Lex BFS is a Perfect
Elimination Order ::
sage: g = graphs.PathGraph(3).lexicographic_product(graphs.CompleteGraph(2))
sage: g.lex_BFS(reverse=True)
[(2, 1), (2, 0), (1, 1), (1, 0), (0, 1), (0, 0)]
And the vertices at the end of the tree of discovery are, for
chordal graphs, simplicial vertices (their neighborhood is
a complete graph)::
sage: g = graphs.ClawGraph().lexicographic_product(graphs.CompleteGraph(2))
sage: v = g.lex_BFS()[-1]
sage: peo, tree = g.lex_BFS(initial_vertex = v, tree=True)
sage: leaves = [v for v in tree if tree.in_degree(v) ==0]
sage: all([g.subgraph(g.neighbors(v)).is_clique() for v in leaves])
True
TESTS:
There were some problems with the following call in the past (trac 10899) -- now
it should be fine::
sage: Graph(1).lex_BFS(tree=True)
([0], Digraph on 1 vertex)
"""
id_inv = dict([(i,v) for (v,i) in zip(self.vertices(),range(self.order()))])
code = [[] for i in range(self.order())]
m = self.am()
l = lambda x : code[x]
vertices = set(range(self.order()))
value = []
pred = [-1]*self.order()
add_element = (lambda y:value.append(id_inv[y])) if not reverse else (lambda y: value.insert(0,id_inv[y]))
first = True if initial_vertex is not None else False
while vertices:
if not first:
v = max(vertices,key=l)
else:
v = self.vertices().index(initial_vertex)
first = False
vertices.remove(v)
vector = m.column(v)
for i in vertices:
code[i].append(vector[i])
if vector[i]:
pred[i] = v
add_element(v)
if tree:
from sage.graphs.digraph import DiGraph
g = DiGraph(sparse=True)
g.add_vertices(self.vertices())
edges = [(id_inv[i], id_inv[pred[i]]) for i in range(self.order()) if pred[i]!=-1]
g.add_edges(edges)
return value, g
else:
return value
def add_cycle(self, vertices):
"""
Adds a cycle to the graph with the given vertices. If the vertices
are already present, only the edges are added.
For digraphs, adds the directed cycle, whose orientation is
determined by the list. Adds edges (vertices[u], vertices[u+1]) and
(vertices[-1], vertices[0]).
INPUT:
- ``vertices`` -- a list of indices for the vertices of
the cycle to be added.
EXAMPLES::
sage: G = Graph()
sage: G.add_vertices(range(10)); G
Graph on 10 vertices
sage: show(G)
sage: G.add_cycle(range(20)[10:20])
sage: show(G)
sage: G.add_cycle(range(10))
sage: show(G)
::
sage: D = DiGraph()
sage: D.add_cycle(range(4))
sage: D.edges()
[(0, 1, None), (1, 2, None), (2, 3, None), (3, 0, None)]
"""
self.add_path(vertices)
self.add_edge(vertices[-1], vertices[0])
def add_path(self, vertices):
"""
Adds a cycle to the graph with the given vertices. If the vertices
are already present, only the edges are added.
For digraphs, adds the directed path vertices[0], ...,
vertices[-1].
INPUT:
- ``vertices`` - a list of indices for the vertices of
the cycle to be added.
EXAMPLES::
sage: G = Graph()
sage: G.add_vertices(range(10)); G
Graph on 10 vertices
sage: show(G)
sage: G.add_path(range(20)[10:20])
sage: show(G)
sage: G.add_path(range(10))
sage: show(G)
::
sage: D = DiGraph()
sage: D.add_path(range(4))
sage: D.edges()
[(0, 1, None), (1, 2, None), (2, 3, None)]
"""
vert1 = vertices[0]
for v in vertices[1:]:
self.add_edge(vert1, v)
vert1 = v
def complement(self):
"""
Returns the complement of the (di)graph.
The complement of a graph has the same vertices, but exactly those
edges that are not in the original graph. This is not well defined
for graphs with multiple edges.
EXAMPLES::
sage: P = graphs.PetersenGraph()
sage: P.plot() # long time
sage: PC = P.complement()
sage: PC.plot() # long time
::
sage: graphs.TetrahedralGraph().complement().size()
0
sage: graphs.CycleGraph(4).complement().edges()
[(0, 2, None), (1, 3, None)]
sage: graphs.CycleGraph(4).complement()
complement(Cycle graph): Graph on 4 vertices
sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edges([(0,1)]*3)
sage: G.complement()
Traceback (most recent call last):
...
TypeError: Complement not well defined for (di)graphs with multiple edges.
"""
if self.has_multiple_edges():
raise TypeError('Complement not well defined for (di)graphs with multiple edges.')
from copy import copy
G = copy(self)
G.delete_edges(G.edges())
G.name('complement(%s)'%self.name())
for u in self:
for v in self:
if not self.has_edge(u,v):
G.add_edge(u,v)
return G
def line_graph(self, labels=True):
"""
Returns the line graph of the (di)graph.
The line graph of an undirected graph G is an undirected graph H
such that the vertices of H are the edges of G and two vertices e
and f of H are adjacent if e and f share a common vertex in G. In
other words, an edge in H represents a path of length 2 in G.
The line graph of a directed graph G is a directed graph H such
that the vertices of H are the edges of G and two vertices e and f
of H are adjacent if e and f share a common vertex in G and the
terminal vertex of e is the initial vertex of f. In other words, an
edge in H represents a (directed) path of length 2 in G.
EXAMPLES::
sage: g=graphs.CompleteGraph(4)
sage: h=g.line_graph()
sage: h.vertices()
[(0, 1, None),
(0, 2, None),
(0, 3, None),
(1, 2, None),
(1, 3, None),
(2, 3, None)]
sage: h.am()
[0 1 1 1 1 0]
[1 0 1 1 0 1]
[1 1 0 0 1 1]
[1 1 0 0 1 1]
[1 0 1 1 0 1]
[0 1 1 1 1 0]
sage: h2=g.line_graph(labels=False)
sage: h2.vertices()
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
sage: h2.am()==h.am()
True
sage: g = DiGraph([[1..4],lambda i,j: i<j])
sage: h = g.line_graph()
sage: h.vertices()
[(1, 2, None),
(1, 3, None),
(1, 4, None),
(2, 3, None),
(2, 4, None),
(3, 4, None)]
sage: h.edges()
[((1, 2, None), (2, 3, None), None),
((1, 2, None), (2, 4, None), None),
((1, 3, None), (3, 4, None), None),
((2, 3, None), (3, 4, None), None)]
"""
if self._directed:
from sage.graphs.digraph import DiGraph
G=DiGraph()
G.add_vertices(self.edges(labels=labels))
for v in self:
G.add_edges([(e,f) for e in self.incoming_edge_iterator(v, labels=labels) \
for f in self.outgoing_edge_iterator(v, labels=labels)])
return G
else:
from sage.graphs.all import Graph
G=Graph()
if labels:
elist=[(min(i[0:2]),max(i[0:2]),i[2] if i[2] != {} else None)
for i in self.edge_iterator()]
else:
elist=[(min(i),max(i))
for i in self.edge_iterator(labels=False)]
G.add_vertices(elist)
for v in self:
if labels:
elist=[(min(i[0:2]),max(i[0:2]),i[2] if i[2] != {} else None)
for i in self.edge_iterator(v)]
else:
elist=[(min(i),max(i))
for i in self.edge_iterator(v, labels=False)]
G.add_edges([(e, f) for e in elist for f in elist])
return G
def to_simple(self):
"""
Returns a simple version of itself (i.e., undirected and loops and
multiple edges are removed).
EXAMPLES::
sage: G = DiGraph(loops=True,multiedges=True,sparse=True)
sage: G.add_edges( [ (0,0), (1,1), (2,2), (2,3,1), (2,3,2), (3,2) ] )
sage: G.edges(labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (2, 3), (3, 2)]
sage: H=G.to_simple()
sage: H.edges(labels=False)
[(2, 3)]
sage: H.is_directed()
False
sage: H.allows_loops()
False
sage: H.allows_multiple_edges()
False
"""
g=self.to_undirected()
g.allow_loops(False)
g.allow_multiple_edges(False)
return g
def disjoint_union(self, other, verbose_relabel=True):
"""
Returns the disjoint union of self and other.
If the graphs have common vertices, the vertices will be renamed to
form disjoint sets.
INPUT:
- ``verbose_relabel`` - (defaults to True) If True
and the graphs have common vertices, then each vertex v in the
first graph will be changed to '0,v' and each vertex u in the
second graph will be changed to '1,u'. If False, the vertices of
the first graph and the second graph will be relabeled with
consecutive integers.
EXAMPLES::
sage: G = graphs.CycleGraph(3)
sage: H = graphs.CycleGraph(4)
sage: J = G.disjoint_union(H); J
Cycle graph disjoint_union Cycle graph: Graph on 7 vertices
sage: J.vertices()
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3)]
sage: J = G.disjoint_union(H, verbose_relabel=False); J
Cycle graph disjoint_union Cycle graph: Graph on 7 vertices
sage: J.vertices()
[0, 1, 2, 3, 4, 5, 6]
If the vertices are already disjoint and verbose_relabel is True,
then the vertices are not relabeled.
::
sage: G=Graph({'a': ['b']})
sage: G.name("Custom path")
sage: G.name()
'Custom path'
sage: H=graphs.CycleGraph(3)
sage: J=G.disjoint_union(H); J
Custom path disjoint_union Cycle graph: Graph on 5 vertices
sage: J.vertices()
[0, 1, 2, 'a', 'b']
"""
if (self._directed and not other._directed) or (not self._directed and other._directed):
raise TypeError('Both arguments must be of the same class.')
if not verbose_relabel:
r_self = {}; r_other = {}; i = 0
for v in self:
r_self[v] = i; i += 1
for v in other:
r_other[v] = i; i += 1
G = self.relabel(r_self, inplace=False).union(other.relabel(r_other, inplace=False))
elif any(u==v for u in self for v in other):
r_self = dict([[v,(0,v)] for v in self])
r_other = dict([[v,(1,v)] for v in other])
G = self.relabel(r_self, inplace=False).union(other.relabel(r_other, inplace=False))
else:
G = self.union(other)
G.name('%s disjoint_union %s'%(self.name(), other.name()))
return G
def union(self, other):
"""
Returns the union of self and other.
If the graphs have common vertices, the common vertices will be
identified.
EXAMPLES::
sage: G = graphs.CycleGraph(3)
sage: H = graphs.CycleGraph(4)
sage: J = G.union(H); J
Graph on 4 vertices
sage: J.vertices()
[0, 1, 2, 3]
sage: J.edges(labels=False)
[(0, 1), (0, 2), (0, 3), (1, 2), (2, 3)]
"""
if (self._directed and not other._directed) or (not self._directed and other._directed):
raise TypeError('Both arguments must be of the same class.')
if self._directed:
from sage.graphs.all import DiGraph
G = DiGraph()
else:
from sage.graphs.all import Graph
G = Graph()
G.add_vertices(self.vertices())
G.add_vertices(other.vertices())
G.add_edges(self.edges())
G.add_edges(other.edges())
return G
def cartesian_product(self, other):
r"""
Returns the Cartesian product of self and other.
The Cartesian product of `G` and `H` is the graph `L` with vertex set
`V(L)` equal to the Cartesian product of the vertices `V(G)` and `V(H)`,
and `((u,v), (w,x))` is an edge iff either - `(u, w)` is an edge of self
and `v = x`, or - `(v, x)` is an edge of other and `u = w`.
TESTS:
Cartesian product of graphs::
sage: G = Graph([(0,1),(1,2)])
sage: H = Graph([('a','b')])
sage: C1 = G.cartesian_product(H)
sage: C1.edges(labels=None)
[((0, 'a'), (0, 'b')), ((0, 'a'), (1, 'a')), ((0, 'b'), (1, 'b')), ((1, 'a'), (1, 'b')), ((1, 'a'), (2, 'a')), ((1, 'b'), (2, 'b')), ((2, 'a'), (2, 'b'))]
sage: C2 = H.cartesian_product(G)
sage: C1.is_isomorphic(C2)
True
Construction of a Toroidal grid::
sage: A = graphs.CycleGraph(3)
sage: B = graphs.CycleGraph(4)
sage: T = A.cartesian_product(B)
sage: T.is_isomorphic( graphs.ToroidalGrid2dGraph(3,4) )
True
Cartesian product of digraphs::
sage: P = DiGraph([(0,1)])
sage: B = digraphs.DeBruijn( ['a','b'], 2 )
sage: Q = P.cartesian_product(B)
sage: Q.edges(labels=None)
[((0, 'aa'), (0, 'aa')), ((0, 'aa'), (0, 'ab')), ((0, 'aa'), (1, 'aa')), ((0, 'ab'), (0, 'ba')), ((0, 'ab'), (0, 'bb')), ((0, 'ab'), (1, 'ab')), ((0, 'ba'), (0, 'aa')), ((0, 'ba'), (0, 'ab')), ((0, 'ba'), (1, 'ba')), ((0, 'bb'), (0, 'ba')), ((0, 'bb'), (0, 'bb')), ((0, 'bb'), (1, 'bb')), ((1, 'aa'), (1, 'aa')), ((1, 'aa'), (1, 'ab')), ((1, 'ab'), (1, 'ba')), ((1, 'ab'), (1, 'bb')), ((1, 'ba'), (1, 'aa')), ((1, 'ba'), (1, 'ab')), ((1, 'bb'), (1, 'ba')), ((1, 'bb'), (1, 'bb'))]
sage: Q.strongly_connected_components_digraph().num_verts()
2
sage: V = Q.strongly_connected_component_containing_vertex( (0, 'aa') )
sage: B.is_isomorphic( Q.subgraph(V) )
True
"""
if self._directed and other._directed:
from sage.graphs.all import DiGraph
G = DiGraph( loops = (self.has_loops() or other.has_loops()) )
elif (not self._directed) and (not other._directed):
from sage.graphs.all import Graph
G = Graph()
else:
raise TypeError('The graphs should be both directed or both undirected.')
G.add_vertices( [(u,v) for u in self for v in other] )
for u,w in self.edge_iterator(labels=None):
for v in other:
G.add_edge((u,v), (w,v))
for v,x in other.edge_iterator(labels=None):
for u in self:
G.add_edge((u,v), (u,x))
return G
def tensor_product(self, other):
r"""
Returns the tensor product of self and other.
The tensor product of `G` and `H` is the graph `L` with vertex set
`V(L)` equal to the Cartesian product of the vertices `V(G)` and `V(H)`,
and `((u,v), (w,x))` is an edge iff - `(u, w)` is an edge of self, and -
`(v, x)` is an edge of other.
The tensor product is also knwon as the categorical product and the
kronecker product (refering to the kronecker matrix product). See
:wikipedia:`Wikipedia article on the Kronecker product <Kronecker_product>`.
EXAMPLES::
sage: Z = graphs.CompleteGraph(2)
sage: C = graphs.CycleGraph(5)
sage: T = C.tensor_product(Z); T
Graph on 10 vertices
sage: T.size()
10
sage: T.plot() # long time
::
sage: D = graphs.DodecahedralGraph()
sage: P = graphs.PetersenGraph()
sage: T = D.tensor_product(P); T
Graph on 200 vertices
sage: T.size()
900
sage: T.plot() # long time
TESTS:
Tensor product of graphs::
sage: G = Graph([(0,1), (1,2)])
sage: H = Graph([('a','b')])
sage: T = G.tensor_product(H)
sage: T.edges(labels=None)
[((0, 'a'), (1, 'b')), ((0, 'b'), (1, 'a')), ((1, 'a'), (2, 'b')), ((1, 'b'), (2, 'a'))]
sage: T.is_isomorphic( H.tensor_product(G) )
True
Tensor product of digraphs::
sage: I = DiGraph([(0,1), (1,2)])
sage: J = DiGraph([('a','b')])
sage: T = I.tensor_product(J)
sage: T.edges(labels=None)
[((0, 'a'), (1, 'b')), ((1, 'a'), (2, 'b'))]
sage: T.is_isomorphic( J.tensor_product(I) )
True
The tensor product of two DeBruijn digraphs of same diameter is a DeBruijn digraph::
sage: B1 = digraphs.DeBruijn(2, 3)
sage: B2 = digraphs.DeBruijn(3, 3)
sage: T = B1.tensor_product( B2 )
sage: T.is_isomorphic( digraphs.DeBruijn( 2*3, 3) )
True
"""
if self._directed and other._directed:
from sage.graphs.all import DiGraph
G = DiGraph( loops = (self.has_loops() or other.has_loops()) )
elif (not self._directed) and (not other._directed):
from sage.graphs.all import Graph
G = Graph()
else:
raise TypeError('The graphs should be both directed or both undirected.')
G.add_vertices( [(u,v) for u in self for v in other] )
for u,w in self.edges(labels=None):
for v,x in other.edges(labels=None):
G.add_edge((u,v), (w,x))
if not G._directed:
G.add_edge((u,x), (w,v))
return G
categorical_product = tensor_product
kronecker_product = tensor_product
def lexicographic_product(self, other):
r"""
Returns the lexicographic product of self and other.
The lexicographic product of `G` and `H` is the graph `L` with vertex
set `V(L)` equal to the Cartesian product of the vertices `V(G)` and
`V(H)`, and `((u,v), (w,x))` is an edge iff - `(u, w)` is an edge of
self, or - `u = w` and `(v, x)` is an edge of other.
EXAMPLES::
sage: Z = graphs.CompleteGraph(2)
sage: C = graphs.CycleGraph(5)
sage: L = C.lexicographic_product(Z); L
Graph on 10 vertices
sage: L.plot() # long time
::
sage: D = graphs.DodecahedralGraph()
sage: P = graphs.PetersenGraph()
sage: L = D.lexicographic_product(P); L
Graph on 200 vertices
sage: L.plot() # long time
TESTS:
Lexicographic product of graphs::
sage: G = Graph([(0,1), (1,2)])
sage: H = Graph([('a','b')])
sage: T = G.lexicographic_product(H)
sage: T.edges(labels=None)
[((0, 'a'), (0, 'b')), ((0, 'a'), (1, 'a')), ((0, 'a'), (1, 'b')), ((0, 'b'), (1, 'a')), ((0, 'b'), (1, 'b')), ((1, 'a'), (1, 'b')), ((1, 'a'), (2, 'a')), ((1, 'a'), (2, 'b')), ((1, 'b'), (2, 'a')), ((1, 'b'), (2, 'b')), ((2, 'a'), (2, 'b'))]
sage: T.is_isomorphic( H.lexicographic_product(G) )
False
Lexicographic product of digraphs::
sage: I = DiGraph([(0,1), (1,2)])
sage: J = DiGraph([('a','b')])
sage: T = I.lexicographic_product(J)
sage: T.edges(labels=None)
[((0, 'a'), (0, 'b')), ((0, 'a'), (1, 'a')), ((0, 'a'), (1, 'b')), ((0, 'b'), (1, 'a')), ((0, 'b'), (1, 'b')), ((1, 'a'), (1, 'b')), ((1, 'a'), (2, 'a')), ((1, 'a'), (2, 'b')), ((1, 'b'), (2, 'a')), ((1, 'b'), (2, 'b')), ((2, 'a'), (2, 'b'))]
sage: T.is_isomorphic( J.lexicographic_product(I) )
False
"""
if self._directed and other._directed:
from sage.graphs.all import DiGraph
G = DiGraph( loops = (self.has_loops() or other.has_loops()) )
elif (not self._directed) and (not other._directed):
from sage.graphs.all import Graph
G = Graph()
else:
raise TypeError('The graphs should be both directed or both undirected.')
G.add_vertices( [(u,v) for u in self for v in other] )
for u,w in self.edges(labels=None):
for v in other:
for x in other:
G.add_edge((u,v), (w,x))
for u in self:
for v,x in other.edges(labels=None):
G.add_edge((u,v), (u,x))
return G
def strong_product(self, other):
r"""
Returns the strong product of self and other.
The strong product of `G` and `H` is the graph `L` with vertex set
`V(L)` equal to the Cartesian product of the vertices `V(G)` and `V(H)`,
and `((u,v), (w,x))` is an edge iff either - `(u, w)` is an edge of self
and `v = x`, or - `(v, x)` is an edge of other and `u = w`, or - `(u,
w)` is an edge of self and `(v, x)` is an edge of other. In other words,
the edges of the strong product is the union of the edges of the tensor
and Cartesian products.
EXAMPLES::
sage: Z = graphs.CompleteGraph(2)
sage: C = graphs.CycleGraph(5)
sage: S = C.strong_product(Z); S
Graph on 10 vertices
sage: S.plot() # long time
::
sage: D = graphs.DodecahedralGraph()
sage: P = graphs.PetersenGraph()
sage: S = D.strong_product(P); S
Graph on 200 vertices
sage: S.plot() # long time
TESTS:
Strong product of graphs::
sage: G = Graph([(0,1), (1,2)])
sage: H = Graph([('a','b')])
sage: T = G.strong_product(H)
sage: T.edges(labels=None)
[((0, 'a'), (0, 'b')), ((0, 'a'), (1, 'a')), ((0, 'a'), (1, 'b')), ((0, 'b'), (1, 'b')), ((1, 'a'), (1, 'b')), ((1, 'a'), (2, 'a')), ((1, 'a'), (2, 'b')), ((1, 'b'), (2, 'b')), ((2, 'a'), (2, 'b'))]
sage: T.is_isomorphic( H.strong_product(G) )
True
Strong product of digraphs::
sage: I = DiGraph([(0,1), (1,2)])
sage: J = DiGraph([('a','b')])
sage: T = I.strong_product(J)
sage: T.edges(labels=None)
[((0, 'a'), (0, 'b')), ((0, 'a'), (1, 'a')), ((0, 'a'), (1, 'b')), ((0, 'b'), (1, 'b')), ((1, 'a'), (1, 'b')), ((1, 'a'), (2, 'a')), ((1, 'a'), (2, 'b')), ((1, 'b'), (2, 'b')), ((2, 'a'), (2, 'b'))]
sage: T.is_isomorphic( J.strong_product(I) )
True
"""
if self._directed and other._directed:
from sage.graphs.all import DiGraph
G = DiGraph( loops = (self.has_loops() or other.has_loops()) )
elif (not self._directed) and (not other._directed):
from sage.graphs.all import Graph
G = Graph()
else:
raise TypeError('The graphs should be both directed or both undirected.')
G.add_vertices( [(u,v) for u in self for v in other] )
for u,w in self.edges(labels=None):
for v in other:
G.add_edge((u,v), (w,v))
for v,x in other.edges(labels=None):
G.add_edge((u,v), (w,x))
for v,x in other.edges(labels=None):
for u in self:
G.add_edge((u,v), (u,x))
return G
def disjunctive_product(self, other):
r"""
Returns the disjunctive product of self and other.
The disjunctive product of `G` and `H` is the graph `L` with vertex set
`V(L)` equal to the Cartesian product of the vertices `V(G)` and `V(H)`,
and `((u,v), (w,x))` is an edge iff either - `(u, w)` is an edge of
self, or - `(v, x)` is an edge of other.
EXAMPLES::
sage: Z = graphs.CompleteGraph(2)
sage: D = Z.disjunctive_product(Z); D
Graph on 4 vertices
sage: D.plot() # long time
::
sage: C = graphs.CycleGraph(5)
sage: D = C.disjunctive_product(Z); D
Graph on 10 vertices
sage: D.plot() # long time
TESTS:
Disjunctive product of graphs::
sage: G = Graph([(0,1), (1,2)])
sage: H = Graph([('a','b')])
sage: T = G.disjunctive_product(H)
sage: T.edges(labels=None)
[((0, 'a'), (0, 'b')), ((0, 'a'), (1, 'a')), ((0, 'a'), (1, 'b')), ((0, 'a'), (2, 'b')), ((0, 'b'), (1, 'a')), ((0, 'b'), (1, 'b')), ((0, 'b'), (2, 'a')), ((1, 'a'), (1, 'b')), ((1, 'a'), (2, 'a')), ((1, 'a'), (2, 'b')), ((1, 'b'), (2, 'a')), ((1, 'b'), (2, 'b')), ((2, 'a'), (2, 'b'))]
sage: T.is_isomorphic( H.disjunctive_product(G) )
True
Disjunctive product of digraphs::
sage: I = DiGraph([(0,1), (1,2)])
sage: J = DiGraph([('a','b')])
sage: T = I.disjunctive_product(J)
sage: T.edges(labels=None)
[((0, 'a'), (0, 'b')), ((0, 'a'), (1, 'a')), ((0, 'a'), (1, 'b')), ((0, 'a'), (2, 'b')), ((0, 'b'), (1, 'a')), ((0, 'b'), (1, 'b')), ((1, 'a'), (0, 'b')), ((1, 'a'), (1, 'b')), ((1, 'a'), (2, 'a')), ((1, 'a'), (2, 'b')), ((1, 'b'), (2, 'a')), ((1, 'b'), (2, 'b')), ((2, 'a'), (0, 'b')), ((2, 'a'), (1, 'b')), ((2, 'a'), (2, 'b'))]
sage: T.is_isomorphic( J.disjunctive_product(I) )
True
"""
if self._directed and other._directed:
from sage.graphs.all import DiGraph
G = DiGraph( loops = (self.has_loops() or other.has_loops()) )
elif (not self._directed) and (not other._directed):
from sage.graphs.all import Graph
G = Graph()
else:
raise TypeError('The graphs should be both directed or both undirected.')
G.add_vertices( [(u,v) for u in self for v in other] )
for u,w in self.edges(labels=None):
for v in other:
for x in other:
G.add_edge((u,v), (w,x))
for v,x in other.edges(labels=None):
for u in self:
for w in self:
G.add_edge((u,v), (w,x))
return G
def transitive_closure(self):
r"""
Computes the transitive closure of a graph and returns it. The
original graph is not modified.
The transitive closure of a graph G has an edge (x,y) if and only
if there is a path between x and y in G.
The transitive closure of any strongly connected component of a
graph is a complete graph. In particular, the transitive closure of
a connected undirected graph is a complete graph. The transitive
closure of a directed acyclic graph is a directed acyclic graph
representing the full partial order.
EXAMPLES::
sage: g=graphs.PathGraph(4)
sage: g.transitive_closure()
Transitive closure of Path Graph: Graph on 4 vertices
sage: g.transitive_closure()==graphs.CompleteGraph(4)
True
sage: g=DiGraph({0:[1,2], 1:[3], 2:[4,5]})
sage: g.transitive_closure().edges(labels=False)
[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 3), (2, 4), (2, 5)]
"""
from copy import copy
G = copy(self)
G.name('Transitive closure of ' + self.name())
for v in G:
for e in G.breadth_first_search(v):
G.add_edge((v,e))
return G
def transitive_reduction(self):
r"""
Returns a transitive reduction of a graph. The original graph is
not modified.
A transitive reduction H of G has a path from x to y if and only if
there was a path from x to y in G. Deleting any edge of H destroys
this property. A transitive reduction is not unique in general. A
transitive reduction has the same transitive closure as the
original graph.
A transitive reduction of a complete graph is a tree. A transitive
reduction of a tree is itself.
EXAMPLES::
sage: g=graphs.PathGraph(4)
sage: g.transitive_reduction()==g
True
sage: g=graphs.CompleteGraph(5)
sage: edges = g.transitive_reduction().edges(); len(edges)
4
sage: g=DiGraph({0:[1,2], 1:[2,3,4,5], 2:[4,5]})
sage: g.transitive_reduction().size()
5
"""
from copy import copy
from sage.rings.infinity import Infinity
G = copy(self)
for e in self.edge_iterator():
G.delete_edge(e)
if G.distance(e[0],e[1])==Infinity:
G.add_edge(e)
return G
def is_transitively_reduced(self):
r"""
Tests whether the digraph is transitively reduced.
A digraph is transitively reduced if it is equal to its transitive
reduction.
EXAMPLES::
sage: d = DiGraph({0:[1],1:[2],2:[3]})
sage: d.is_transitively_reduced()
True
sage: d = DiGraph({0:[1,2],1:[2]})
sage: d.is_transitively_reduced()
False
sage: d = DiGraph({0:[1,2],1:[2],2:[]})
sage: d.is_transitively_reduced()
False
"""
from copy import copy
from sage.rings.infinity import Infinity
G = copy(self)
for e in self.edge_iterator():
G.delete_edge(e)
if G.distance(e[0],e[1]) == Infinity:
G.add_edge(e)
else:
return False
return True
def _color_by_label(self, format='hex', as_function=False, default_color = "black"):
"""
Coloring of the edges according to their label for plotting
INPUT:
- ``format`` -- "rgbtuple", "hex", ``True`` (same as "hex"),
or a function or dictionary assigning colors to labels
(default: "hex")
- ``default_color`` -- a color (as a string) or None (default: "black")
- ``as_function`` -- boolean (default: ``False``)
OUTPUT: A coloring of the edges of this graph.
If ``as_function`` is ``True``, then the coloring is returned
as a function assigning a color to each label. Otherwise (the
default, for backward compatibility), the coloring is returned
as a dictionary assigning to each color the list of the edges
of the graph of that color.
This is factored out from plot() for use in 3d plots, etc.
If ``format`` is a function, then it is used directly as
coloring. Otherwise, for each label a default color is chosen
along a rainbow (see :func:`sage.plot.colors.rainbow`). If
``format`` is a dictionary, then the colors specified there
override the default choices.
EXAMPLES:
We consider the Cayley graph of the symmetric group, whose
edges are labelled by the numbers 1,2, and 3::
sage: G = SymmetricGroup(4).cayley_graph()
sage: set(G.edge_labels())
set([1, 2, 3])
We first request the coloring as a function::
sage: f = G._color_by_label(as_function=True)
sage: [f(1), f(2), f(3)]
['#00ff00', '#ff0000', '#0000ff']
sage: f = G._color_by_label({1: "blue", 2: "red", 3: "green"}, as_function=True)
sage: [f(1), f(2), f(3)]
['blue', 'red', 'green']
sage: f = G._color_by_label({1: "red"}, as_function=True)
sage: [f(1), f(2), f(3)]
['red', 'black', 'black']
sage: f = G._color_by_label({1: "red"}, as_function=True, default_color = 'blue')
sage: [f(1), f(2), f(3)]
['red', 'blue', 'blue']
The default output is a dictionary assigning edges to colors::
sage: G._color_by_label()
{'#00ff00': [((1,4,3,2), (1,4,3), 1), ... ((1,2)(3,4), (3,4), 1)],
'#ff0000': [((1,4,3,2), (1,4,2), 2), ... ((1,2)(3,4), (1,3,4,2), 2)],
'#0000ff': [((1,4,3,2), (1,3,2), 3), ... ((1,2)(3,4), (1,2), 3)]}
sage: G._color_by_label({1: "blue", 2: "red", 3: "green"})
{'blue': [((1,4,3,2), (1,4,3), 1), ... ((1,2)(3,4), (3,4), 1)],
'green': [((1,4,3,2), (1,3,2), 3), ... ((1,2)(3,4), (1,2), 3)],
'red': [((1,4,3,2), (1,4,2), 2), ... ((1,2)(3,4), (1,3,4,2), 2)]}
TESTS:
We check what happens when several labels have the same color::
sage: result = G._color_by_label({1: "blue", 2: "blue", 3: "green"})
sage: result.keys()
['blue', 'green']
sage: len(result['blue'])
48
sage: len(result['green'])
24
"""
if format is True:
format = "hex"
if isinstance(format, str):
labels = []
for edge in self.edge_iterator():
label = edge[2]
if label not in labels:
labels.append(label)
from sage.plot.colors import rainbow
colors = rainbow(len(labels), format=format)
color_of_label = dict(zip(labels, colors))
color_of_label = color_of_label.__getitem__
elif isinstance(format, dict):
color_of_label = lambda label: format.get(label, default_color)
else:
color_of_label = format
if as_function:
return color_of_label
edges_by_color = {}
for edge in self.edge_iterator():
color = color_of_label(edge[2])
if color in edges_by_color:
edges_by_color[color].append(edge)
else:
edges_by_color[color] = [edge]
return edges_by_color
def latex_options(self):
r"""
Returns an instance of
:class:`~sage.graphs.graph_latex.GraphLatex` for the graph.
Changes to this object will affect the `\mbox{\rm\LaTeX}`
version of the graph. For a full explanation of
how to use LaTeX to render graphs, see the introduction to the
:mod:`~sage.graphs.graph_latex` module.
EXAMPLES::
sage: g = graphs.PetersenGraph()
sage: opts = g.latex_options()
sage: opts
LaTeX options for Petersen graph: {}
sage: opts.set_option('tkz_style', 'Classic')
sage: opts
LaTeX options for Petersen graph: {'tkz_style': 'Classic'}
"""
if self._latex_opts is None:
from sage.graphs.graph_latex import GraphLatex
self._latex_opts = GraphLatex(self)
return self._latex_opts
def set_latex_options(self, **kwds):
r"""
Sets multiple options for rendering a graph with LaTeX.
INPUTS:
- ``kwds`` - any number of option/value pairs to set many graph
latex options at once (a variable number, in any
order). Existing values are overwritten, new values are
added. Existing values can be cleared by setting the value
to ``None``. Possible options are documented at
:meth:`sage.graphs.graph_latex.GraphLatex.set_option`.
This method is a convenience for setting the options of a graph
directly on an instance of the graph. For a full explanation of
how to use LaTeX to render graphs, see the introduction to the
:mod:`~sage.graphs.graph_latex` module.
EXAMPLES::
sage: g = graphs.PetersenGraph()
sage: g.set_latex_options(tkz_style = 'Welsh')
sage: opts = g.latex_options()
sage: opts.get_option('tkz_style')
'Welsh'
"""
opts = self.latex_options()
opts.set_options(**kwds)
def layout(self, layout = None, pos = None, dim = 2, save_pos = False, **options):
"""
Returns a layout for the vertices of this graph.
INPUT:
- layout -- one of "acyclic", "circular", "ranked", "graphviz", "planar", "spring", or "tree"
- pos -- a dictionary of positions or None (the default)
- save_pos -- a boolean
- layout options -- (see below)
If ``layout=algorithm`` is specified, this algorithm is used
to compute the positions.
Otherwise, if ``pos`` is specified, use the given positions.
Otherwise, try to fetch previously computed and saved positions.
Otherwise use the default layout (usually the spring layout)
If ``save_pos = True``, the layout is saved for later use.
EXAMPLES::
sage: g = digraphs.ButterflyGraph(1)
sage: g.layout()
{('1', 1): [2.50..., -0.545...],
('0', 0): [2.22..., 0.832...],
('1', 0): [1.12..., -0.830...],
('0', 1): [0.833..., 0.543...]}
sage: 1+1
2
sage: x = g.layout(layout = "acyclic_dummy", save_pos = True)
sage: x = {('1', 1): [41, 18], ('0', 0): [41, 90], ('1', 0): [140, 90], ('0', 1): [141, 18]}
{('1', 1): [41, 18], ('0', 0): [41, 90], ('1', 0): [140, 90], ('0', 1): [141, 18]}
sage: g.layout(dim = 3)
{('1', 1): [1.07..., -0.260..., 0.927...],
('0', 0): [2.02..., 0.528..., 0.343...],
('1', 0): [0.674..., -0.528..., -0.343...],
('0', 1): [1.61..., 0.260..., -0.927...]}
Here is the list of all the available layout options::
sage: from sage.graphs.graph_plot import layout_options
sage: list(sorted(layout_options.iteritems()))
[('by_component', 'Whether to do the spring layout by connected component -- a boolean.'),
('dim', 'The dimension of the layout -- 2 or 3.'),
('heights', 'A dictionary mapping heights to the list of vertices at this height.'),
('iterations', 'The number of times to execute the spring layout algorithm.'),
('layout', 'A layout algorithm -- one of "acyclic", "circular", "ranked", "graphviz", "planar", "spring", or "tree".'),
('prog', 'Which graphviz layout program to use -- one of "circo", "dot", "fdp", "neato", or "twopi".'),
('save_pos', 'Whether or not to save the computed position for the graph.'),
('spring', 'Use spring layout to finalize the current layout.'),
('tree_orientation', 'The direction of tree branches -- "up" or "down".'),
('tree_root', 'A vertex designation for drawing trees.')]
Some of them only apply to certain layout algorithms. For
details, see :meth:`.layout_acyclic`, :meth:`.layout_planar`,
:meth:`.layout_circular`, :meth:`.layout_spring`, ...
..warning: unknown optional arguments are silently ignored
..warning: ``graphviz`` and ``dot2tex`` are currently required
to obtain a nice 'acyclic' layout. See
:meth:`.layout_graphviz` for installation instructions.
A subclass may implement another layout algorithm `blah`, by
implementing a method ``.layout_blah``. It may override
the default layout by overriding :meth:`.layout_default`, and
similarly override the predefined layouts.
TODO: use this feature for all the predefined graphs classes
(like for the Petersen graph, ...), rather than systematically
building the layout at construction time.
"""
if layout is None:
if pos is None:
pos = self.get_pos(dim = dim)
if pos is None:
layout = 'default'
if hasattr(self, "layout_%s"%layout):
pos = getattr(self, "layout_%s"%layout)(dim = dim, **options)
elif layout is not None:
raise ValueError, "unknown layout algorithm: %s"%layout
if len(pos) < self.order():
pos = self.layout_extend_randomly(pos, dim = dim)
if save_pos:
self.set_pos(pos, dim = dim)
return pos
def layout_spring(self, by_component = True, **options):
"""
Computes a spring layout for this graph
INPUT:
- ``iterations`` -- a positive integer
- ``dim`` -- 2 or 3 (default: 2)
OUTPUT: a dictionary mapping vertices to positions
Returns a layout computed by randomly arranging the vertices
along the given heights
EXAMPLES::
sage: g = graphs.LadderGraph(3) #TODO!!!!
sage: g.layout_spring()
{0: [1.28..., -0.943...],
1: [1.57..., -0.101...],
2: [1.83..., 0.747...],
3: [0.531..., -0.757...],
4: [0.795..., 0.108...],
5: [1.08..., 0.946...]}
sage: g = graphs.LadderGraph(7)
sage: g.plot(layout = "spring")
"""
return spring_layout_fast(self, by_component = by_component, **options)
layout_default = layout_spring
def layout_ranked(self, heights = None, dim = 2, spring = False, **options):
"""
Computes a ranked layout for this graph
INPUT:
- heights -- a dictionary mapping heights to the list of vertices at this height
OUTPUT: a dictionary mapping vertices to positions
Returns a layout computed by randomly arranging the vertices
along the given heights
EXAMPLES::
sage: g = graphs.LadderGraph(3)
sage: g.layout_ranked(heights = dict( (i,[i, i+3]) for i in range(3) ))
{0: [0.668..., 0],
1: [0.667..., 1],
2: [0.677..., 2],
3: [1.34..., 0],
4: [1.33..., 1],
5: [1.33..., 2]}
sage: g = graphs.LadderGraph(7)
sage: g.plot(layout = "ranked", heights = dict( (i,[i, i+7]) for i in range(7) ))
"""
assert heights is not None
from sage.misc.randstate import current_randstate
random = current_randstate().python_random().random
if self.order() == 0:
return {}
pos = {}
mmax = max([len(ccc) for ccc in heights.values()])
ymin = min(heights.keys())
ymax = max(heights.keys())
dist = ((ymax-ymin)/(mmax+1.0))
for height in heights:
num_xs = len(heights[height])
if num_xs == 0:
continue
j = (mmax - num_xs)/2.0
for k in range(num_xs):
pos[heights[height][k]] = [ dist*(j+k+1) + random()*(dist*0.03) for i in range(dim-1) ] + [height]
if spring:
newpos = spring_layout_fast(self,
vpos = pos,
dim = dim,
height = True,
**options)
for x in self.vertices():
newpos[x][dim-1] = pos[x][dim-1]
pos = newpos
return pos
def layout_extend_randomly(self, pos, dim = 2):
"""
Extends randomly a partial layout
INPUT:
- ``pos``: a dictionary mapping vertices to positions
OUTPUT: a dictionary mapping vertices to positions
The vertices not referenced in ``pos`` are assigned random
positions within the box delimited by the other vertices.
EXAMPLES::
sage: H = digraphs.ButterflyGraph(1)
sage: H.layout_extend_randomly({('0',0): (0,0), ('1',1): (1,1)})
{('1', 1): (1, 1),
('0', 0): (0, 0),
('1', 0): [0.111..., 0.514...],
('0', 1): [0.0446..., 0.332...]}
"""
assert dim == 2
from sage.misc.randstate import current_randstate
random = current_randstate().python_random().random
xmin, xmax,ymin, ymax = self._layout_bounding_box(pos)
dx = xmax - xmin
dy = ymax - ymin
for v in self:
if not v in pos:
pos[v] = [xmin + dx*random(), ymin + dy*random()]
return pos
def layout_circular(self, dim = 2, **options):
"""
Computes a circular layout for this graph
OUTPUT: a dictionary mapping vertices to positions
EXAMPLES::
sage: G = graphs.CirculantGraph(7,[1,3])
sage: G.layout_circular()
{0: [6.12...e-17, 1.0],
1: [-0.78..., 0.62...],
2: [-0.97..., -0.22...],
3: [-0.43..., -0.90...],
4: [0.43..., -0.90...],
5: [0.97..., -0.22...],
6: [0.78..., 0.62...]}
sage: G.plot(layout = "circular")
"""
assert dim == 2, "3D circular layout not implemented"
from math import sin, cos, pi
verts = self.vertices()
n = len(verts)
pos = {}
for i in range(n):
x = float(cos((pi/2) + ((2*pi)/n)*i))
y = float(sin((pi/2) + ((2*pi)/n)*i))
pos[verts[i]] = [x,y]
return pos
def layout_tree(self, tree_orientation = "down", tree_root = None, dim = 2, **options):
"""
Computes an ordered tree layout for this graph, which should
be a tree (no non-oriented cycles).
INPUT:
- ``tree_root`` -- a vertex
- ``tree_orientation`` -- "up" or "down"
OUTPUT: a dictionary mapping vertices to positions
EXAMPLES::
sage: G = graphs.BalancedTree(2,2)
sage: G.layout_tree(tree_root = 0)
{0: [1.0..., 2],
1: [0.8..., 1],
2: [1.2..., 1],
3: [0.4..., 0],
4: [0.8..., 0],
5: [1.2..., 0],
6: [1.6..., 0]}
sage: G = graphs.BalancedTree(2,4)
sage: G.plot(layout="tree", tree_root = 0, tree_orientation = "up")
"""
assert dim == 2, "3D tree layout not implemented"
if not self.is_tree():
raise RuntimeError("Cannot use tree layout on this graph: self.is_tree() returns False.")
n = self.order()
vertices = self.vertices()
if tree_root is None:
from sage.misc.prandom import randrange
root = vertices[randrange(n)]
else:
root = tree_root
seen = [root]
queue = [root]
heights = [-1]*n
heights[vertices.index(root)] = 0
while queue:
u = queue.pop(0)
for v in self.neighbors(u):
if v not in seen:
seen.append(v)
queue.append(v)
heights[vertices.index(v)] = heights[vertices.index(u)] + 1
if tree_orientation == 'down':
maxx = max(heights)
heights = [maxx-heights[i] for i in xrange(n)]
heights_dict = {}
for v in vertices:
if not heights_dict.has_key(heights[vertices.index(v)]):
heights_dict[heights[vertices.index(v)]] = [v]
else:
heights_dict[heights[vertices.index(v)]].append(v)
return self.layout_ranked(heights_dict)
def layout_graphviz(self, dim = 2, prog = 'dot', **options):
"""
Calls ``graphviz`` to compute a layout of the vertices of this graph.
INPUT:
- ``prog`` -- one of "dot", "neato", "twopi", "circo", or "fdp"
EXAMPLES::
sage: g = digraphs.ButterflyGraph(2)
sage: g.layout_graphviz() # optional - dot2tex, graphviz
{('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...]}
sage: g.plot(layout = "graphviz") # optional - dot2tex, graphviz
Note: the actual coordinates are not deterministic
By default, an acyclic layout is computed using ``graphviz``'s
``dot`` layout program. One may specify an alternative layout
program::
sage: g.plot(layout = "graphviz", prog = "dot") # optional - dot2tex, graphviz
sage: g.plot(layout = "graphviz", prog = "neato") # optional - dot2tex, graphviz
sage: g.plot(layout = "graphviz", prog = "twopi") # optional - dot2tex, graphviz
sage: g.plot(layout = "graphviz", prog = "fdp") # optional - dot2tex, graphviz
sage: g = graphs.BalancedTree(5,2)
sage: g.plot(layout = "graphviz", prog = "circo") # optional - dot2tex, graphviz
TODO: put here some cool examples showcasing graphviz features.
This requires ``graphviz`` and the ``dot2tex`` spkg. Here are
some installation tips:
- Install graphviz >= 2.14 so that the programs dot, neato, ...
are in your path. The graphviz suite can be download from
http://graphviz.org.
- Download dot2tex-2.8.?.spkg from http://trac.sagemath.org/sage_trac/ticket/7004
and install it with ``sage -i dot2tex-2.8.?.spkg``
TODO: use the graphviz functionality of Networkx 1.0 once it
will be merged into Sage.
"""
assert_have_dot2tex()
assert dim == 2, "3D graphviz layout not implemented"
key = self._keys_for_vertices()
key_to_vertex = dict( (key(v), v) for v in self )
import dot2tex
positions = dot2tex.dot2tex(self.graphviz_string(**options), format = "positions", prog = prog)
return dict( (key_to_vertex[key], pos) for (key, pos) in positions.iteritems() )
def _layout_bounding_box(self, pos):
"""
INPUT:
- pos -- a dictionary of positions
Returns a bounding box around the specified positions
EXAMPLES::
sage: Graph()._layout_bounding_box( {} )
[-1, 1, -1, 1]
sage: Graph()._layout_bounding_box( {0: [3,5], 1: [2,7], 2: [-4,2] } )
[-4, 3, 2, 7]
sage: Graph()._layout_bounding_box( {0: [3,5], 1: [3.00000000001,4.999999999999999] } )
[2, 4.00000000001000, 4.00000000000000, 6]
"""
xs = [pos[v][0] for v in pos]
ys = [pos[v][1] for v in pos]
if len(xs) == 0:
xmin = -1
xmax = 1
ymin = -1
ymax = 1
else:
xmin = min(xs)
xmax = max(xs)
ymin = min(ys)
ymax = max(ys)
if xmax - xmin < 0.00000001:
xmax += 1
xmin -= 1
if ymax - ymin < 0.00000001:
ymax += 1
ymin -= 1
return [xmin, xmax, ymin, ymax]
@options(vertex_size=200, vertex_labels=True, layout=None,
edge_style='solid', edge_color='black',edge_colors=None, edge_labels=False,
iterations=50, tree_orientation='down', heights=None, graph_border=False,
talk=False, color_by_label=False, partition=None,
dist = .075, max_dist=1.5, loop_size=.075)
def graphplot(self, **options):
"""
Returns a GraphPlot object.
EXAMPLES:
Creating a graphplot object uses the same options as graph.plot()::
sage: g = Graph({}, loops=True, multiedges=True, sparse=True)
sage: g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
... (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
sage: g.set_boundary([0,1])
sage: GP = g.graphplot(edge_labels=True, color_by_label=True, edge_style='dashed')
sage: GP.plot()
We can modify the graphplot object. Notice that the changes are cumulative::
sage: GP.set_edges(edge_style='solid')
sage: GP.plot()
sage: GP.set_vertices(talk=True)
sage: GP.plot()
"""
from sage.graphs.graph_plot import GraphPlot
return GraphPlot(graph=self, options=options)
@options(vertex_size=200, vertex_labels=True, layout=None,
edge_style='solid', edge_color = 'black', edge_colors=None, edge_labels=False,
iterations=50, tree_orientation='down', heights=None, graph_border=False,
talk=False, color_by_label=False, partition=None,
dist = .075, max_dist=1.5, loop_size=.075)
def plot(self, **options):
r"""
Returns a graphics object representing the (di)graph.
See also the :mod:`sage.graphs.graph_latex` module for ways
to use `\mbox{\rm\LaTeX}` to produce an image of a graph.
INPUT:
- ``pos`` - an optional positioning dictionary
- ``layout`` - what kind of layout to use, takes precedence
over pos
- 'circular' -- plots the graph with vertices evenly
distributed on a circle
- 'spring' - uses the traditional spring layout, using the
graph's current positions as initial positions
- 'tree' - the (di)graph must be a tree. One can specify
the root of the tree using the keyword tree_root,
otherwise a root will be selected at random. Then the
tree will be plotted in levels, depending on minimum
distance for the root.
- ``vertex_labels`` - whether to print vertex labels
- ``edge_labels`` - whether to print edge labels. By default,
False, but if True, the result of str(l) is printed on the
edge for each label l. Labels equal to None are not printed
(to set edge labels, see set_edge_label).
- ``vertex_size`` - size of vertices displayed
- ``vertex_shape`` - the shape to draw the vertices (Not
available for multiedge digraphs.)
- ``graph_border`` - whether to include a box around the graph
- ``vertex_colors`` - optional dictionary to specify vertex
colors: each key is a color recognizable by matplotlib, and
each corresponding entry is a list of vertices. If a vertex
is not listed, it looks invisible on the resulting plot (it
doesn't get drawn).
- ``edge_colors`` - a dictionary specifying edge colors: each
key is a color recognized by matplotlib, and each entry is a
list of edges.
- ``partition`` - a partition of the vertex set. if specified,
plot will show each cell in a different color. vertex_colors
takes precedence.
- ``talk`` - if true, prints large vertices with white
backgrounds so that labels are legible on slides
- ``iterations`` - how many iterations of the spring layout
algorithm to go through, if applicable
- ``color_by_label`` - if True, color edges by their labels
- ``heights`` - if specified, this is a dictionary from a set
of floating point heights to a set of vertices
- ``edge_style`` - keyword arguments passed into the
edge-drawing routine. This currently only works for
directed graphs, since we pass off the undirected graph to
networkx
- ``tree_root`` - a vertex of the tree to be used as the root
for the layout="tree" option. If no root is specified, then one
is chosen at random. Ignored unless layout='tree'.
- ``tree_orientation`` - "up" or "down" (default is "down").
If "up" (resp., "down"), then the root of the tree will
appear on the bottom (resp., top) and the tree will grow
upwards (resp. downwards). Ignored unless layout='tree'.
- ``save_pos`` - save position computed during plotting
EXAMPLES::
sage: from sage.graphs.graph_plot import graphplot_options
sage: list(sorted(graphplot_options.iteritems()))
[...]
sage: from math import sin, cos, pi
sage: P = graphs.PetersenGraph()
sage: d = {'#FF0000':[0,5], '#FF9900':[1,6], '#FFFF00':[2,7], '#00FF00':[3,8], '#0000FF':[4,9]}
sage: pos_dict = {}
sage: for i in range(5):
... x = float(cos(pi/2 + ((2*pi)/5)*i))
... y = float(sin(pi/2 + ((2*pi)/5)*i))
... pos_dict[i] = [x,y]
...
sage: for i in range(10)[5:]:
... x = float(0.5*cos(pi/2 + ((2*pi)/5)*i))
... y = float(0.5*sin(pi/2 + ((2*pi)/5)*i))
... pos_dict[i] = [x,y]
...
sage: pl = P.plot(pos=pos_dict, vertex_colors=d)
sage: pl.show()
::
sage: C = graphs.CubeGraph(8)
sage: P = C.plot(vertex_labels=False, vertex_size=0, graph_border=True)
sage: P.show()
::
sage: G = graphs.HeawoodGraph()
sage: for u,v,l in G.edges():
... G.set_edge_label(u,v,'(' + str(u) + ',' + str(v) + ')')
sage: G.plot(edge_labels=True).show()
::
sage: D = DiGraph( { 0: [1, 10, 19], 1: [8, 2], 2: [3, 6], 3: [19, 4], 4: [17, 5], 5: [6, 15], 6: [7], 7: [8, 14], 8: [9], 9: [10, 13], 10: [11], 11: [12, 18], 12: [16, 13], 13: [14], 14: [15], 15: [16], 16: [17], 17: [18], 18: [19], 19: []} , sparse=True)
sage: for u,v,l in D.edges():
... D.set_edge_label(u,v,'(' + str(u) + ',' + str(v) + ')')
sage: D.plot(edge_labels=True, layout='circular').show()
::
sage: from sage.plot.colors import rainbow
sage: C = graphs.CubeGraph(5)
sage: R = rainbow(5)
sage: edge_colors = {}
sage: for i in range(5):
... edge_colors[R[i]] = []
sage: for u,v,l in C.edges():
... for i in range(5):
... if u[i] != v[i]:
... edge_colors[R[i]].append((u,v,l))
sage: C.plot(vertex_labels=False, vertex_size=0, edge_colors=edge_colors).show()
::
sage: D = graphs.DodecahedralGraph()
sage: Pi = [[6,5,15,14,7],[16,13,8,2,4],[12,17,9,3,1],[0,19,18,10,11]]
sage: D.show(partition=Pi)
::
sage: G = graphs.PetersenGraph()
sage: G.allow_loops(True)
sage: G.add_edge(0,0)
sage: G.show()
::
sage: D = DiGraph({0:[0,1], 1:[2], 2:[3]}, loops=True)
sage: D.show()
sage: D.show(edge_colors={(0,1,0):[(0,1,None),(1,2,None)],(0,0,0):[(2,3,None)]})
::
sage: pos = {0:[0.0, 1.5], 1:[-0.8, 0.3], 2:[-0.6, -0.8], 3:[0.6, -0.8], 4:[0.8, 0.3]}
sage: g = Graph({0:[1], 1:[2], 2:[3], 3:[4], 4:[0]})
sage: g.plot(pos=pos, layout='spring', iterations=0)
::
sage: G = Graph()
sage: P = G.plot()
sage: P.axes()
False
sage: G = DiGraph()
sage: P = G.plot()
sage: P.axes()
False
::
sage: G = graphs.PetersenGraph()
sage: G.get_pos()
{0: (6.12..., 1.0...),
1: (-0.95..., 0.30...),
2: (-0.58..., -0.80...),
3: (0.58..., -0.80...),
4: (0.95..., 0.30...),
5: (1.53..., 0.5...),
6: (-0.47..., 0.15...),
7: (-0.29..., -0.40...),
8: (0.29..., -0.40...),
9: (0.47..., 0.15...)}
sage: P = G.plot(save_pos=True, layout='spring')
The following illustrates the format of a position dictionary.
sage: G.get_pos() # currently random across platforms, see #9593
{0: [1.17..., -0.855...],
1: [1.81..., -0.0990...],
2: [1.35..., 0.184...],
3: [1.51..., 0.644...],
4: [2.00..., -0.507...],
5: [0.597..., -0.236...],
6: [2.04..., 0.687...],
7: [1.46..., -0.473...],
8: [0.902..., 0.773...],
9: [2.48..., -0.119...]}
::
sage: T = list(graphs.trees(7))
sage: t = T[3]
sage: t.plot(heights={0:[0], 1:[4,5,1], 2:[2], 3:[3,6]})
::
sage: T = list(graphs.trees(7))
sage: t = T[3]
sage: t.plot(heights={0:[0], 1:[4,5,1], 2:[2], 3:[3,6]})
sage: t.set_edge_label(0,1,-7)
sage: t.set_edge_label(0,5,3)
sage: t.set_edge_label(0,5,99)
sage: t.set_edge_label(1,2,1000)
sage: t.set_edge_label(3,2,'spam')
sage: t.set_edge_label(2,6,3/2)
sage: t.set_edge_label(0,4,66)
sage: t.plot(heights={0:[0], 1:[4,5,1], 2:[2], 3:[3,6]}, edge_labels=True)
::
sage: T = list(graphs.trees(7))
sage: t = T[3]
sage: t.plot(layout='tree')
::
sage: t = DiGraph('JCC???@A??GO??CO??GO??')
sage: t.plot(layout='tree', tree_root=0, tree_orientation="up")
sage: D = DiGraph({0:[1,2,3], 2:[1,4], 3:[0]})
sage: D.plot()
sage: D = DiGraph(multiedges=True,sparse=True)
sage: for i in range(5):
... D.add_edge((i,i+1,'a'))
... D.add_edge((i,i-1,'b'))
sage: D.plot(edge_labels=True,edge_colors=D._color_by_label())
sage: g = Graph({}, loops=True, multiedges=True,sparse=True)
sage: g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
... (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
sage: g.plot(edge_labels=True, color_by_label=True, edge_style='dashed')
::
sage: S = SupersingularModule(389)
sage: H = S.hecke_matrix(2)
sage: D = DiGraph(H,sparse=True)
sage: P = D.plot()
::
sage: G=Graph({'a':['a','b','b','b','e'],'b':['c','d','e'],'c':['c','d','d','d'],'d':['e']},sparse=True)
sage: G.show(pos={'a':[0,1],'b':[1,1],'c':[2,0],'d':[1,0],'e':[0,0]})
"""
from sage.graphs.graph_plot import GraphPlot
return GraphPlot(graph=self, options=options).plot()
def show(self, **kwds):
"""
Shows the (di)graph.
For syntax and lengthy documentation, see G.plot?. Any options not
used by plot will be passed on to the Graphics.show method.
EXAMPLES::
sage: C = graphs.CubeGraph(8)
sage: P = C.plot(vertex_labels=False, vertex_size=0, graph_border=True)
sage: P.show() # long time (3s on sage.math, 2011)
"""
kwds.setdefault('figsize', [4,4])
from graph_plot import graphplot_options
vars = graphplot_options.keys()
plot_kwds = {}
for kwd in vars:
if kwds.has_key(kwd):
plot_kwds[kwd] = kwds.pop(kwd)
self.plot(**plot_kwds).show(**kwds)
def plot3d(self, bgcolor=(1,1,1), vertex_colors=None, vertex_size=0.06,
edge_colors=None, edge_size=0.02, edge_size2=0.0325,
pos3d=None, color_by_label=False,
engine='jmol', **kwds):
r"""
Plot a graph in three dimensions. See also the
:mod:`sage.graphs.graph_latex` module for ways to use
`\mbox{\rm\LaTeX}` to produce an image of a graph.
INPUT:
- ``bgcolor`` - rgb tuple (default: (1,1,1))
- ``vertex_size`` - float (default: 0.06)
- ``vertex_colors`` - optional dictionary to specify
vertex colors: each key is a color recognizable by tachyon (rgb
tuple (default: (1,0,0))), and each corresponding entry is a list
of vertices. If a vertex is not listed, it looks invisible on the
resulting plot (it doesn't get drawn).
- ``edge_colors`` - a dictionary specifying edge
colors: each key is a color recognized by tachyon ( default:
(0,0,0) ), and each entry is a list of edges.
- ``edge_size`` - float (default: 0.02)
- ``edge_size2`` - float (default: 0.0325), used for
Tachyon sleeves
- ``pos3d`` - a position dictionary for the vertices
- ``layout``, ``iterations``, ... - layout options; see :meth:`.layout`
- ``engine`` - which renderer to use. Options:
- ``'jmol'`` - default
- ``'tachyon'``
- ``xres`` - resolution
- ``yres`` - resolution
- ``**kwds`` - passed on to the rendering engine
EXAMPLES::
sage: G = graphs.CubeGraph(5)
sage: G.plot3d(iterations=500, edge_size=None, vertex_size=0.04) # long time
We plot a fairly complicated Cayley graph::
sage: A5 = AlternatingGroup(5); A5
Alternating group of order 5!/2 as a permutation group
sage: G = A5.cayley_graph()
sage: G.plot3d(vertex_size=0.03, edge_size=0.01, vertex_colors={(1,1,1):G.vertices()}, bgcolor=(0,0,0), color_by_label=True, iterations=200) # long time
Some Tachyon examples::
sage: D = graphs.DodecahedralGraph()
sage: P3D = D.plot3d(engine='tachyon')
sage: P3D.show() # long time
::
sage: G = graphs.PetersenGraph()
sage: G.plot3d(engine='tachyon', vertex_colors={(0,0,1):G.vertices()}).show() # long time
::
sage: C = graphs.CubeGraph(4)
sage: C.plot3d(engine='tachyon', edge_colors={(0,1,0):C.edges()}, vertex_colors={(1,1,1):C.vertices()}, bgcolor=(0,0,0)).show() # long time
::
sage: K = graphs.CompleteGraph(3)
sage: K.plot3d(engine='tachyon', edge_colors={(1,0,0):[(0,1,None)], (0,1,0):[(0,2,None)], (0,0,1):[(1,2,None)]}).show() # long time
A directed version of the dodecahedron
::
sage: D = DiGraph( { 0: [1, 10, 19], 1: [8, 2], 2: [3, 6], 3: [19, 4], 4: [17, 5], 5: [6, 15], 6: [7], 7: [8, 14], 8: [9], 9: [10, 13], 10: [11], 11: [12, 18], 12: [16, 13], 13: [14], 14: [15], 15: [16], 16: [17], 17: [18], 18: [19], 19: []} )
sage: D.plot3d().show() # long time
::
sage: P = graphs.PetersenGraph().to_directed()
sage: from sage.plot.colors import rainbow
sage: edges = P.edges()
sage: R = rainbow(len(edges), 'rgbtuple')
sage: edge_colors = {}
sage: for i in range(len(edges)):
... edge_colors[R[i]] = [edges[i]]
sage: P.plot3d(engine='tachyon', edge_colors=edge_colors).show() # long time
::
sage: G=Graph({'a':['a','b','b','b','e'],'b':['c','d','e'],'c':['c','d','d','d'],'d':['e']},sparse=True)
sage: G.show3d()
Traceback (most recent call last):
...
NotImplementedError: 3D plotting of multiple edges or loops not implemented.
"""
import graph_plot
layout_options = dict( (key,kwds[key]) for key in kwds.keys() if key in graph_plot.layout_options )
kwds = dict( (key,kwds[key]) for key in kwds.keys() if key not in graph_plot.layout_options )
if pos3d is None:
pos3d = self.layout(dim=3, **layout_options)
if self.has_multiple_edges() or self.has_loops():
raise NotImplementedError("3D plotting of multiple edges or loops not implemented.")
if engine == 'jmol':
from sage.plot.plot3d.all import sphere, line3d, arrow3d
from sage.plot.plot3d.texture import Texture
kwds.setdefault('aspect_ratio', [1,1,1])
verts = self.vertices()
if vertex_colors is None:
vertex_colors = { (1,0,0) : verts }
if color_by_label:
if edge_colors is None:
edge_colors = self._color_by_label(format='rgbtuple')
elif edge_colors is None:
edge_colors = { (0,0,0) : self.edges() }
if not kwds.has_key('frame'):
kwds['frame'] = False
if not kwds.has_key('background'):
kwds['background'] = bgcolor
try:
graphic = 0
for color in vertex_colors:
texture = Texture(color=color, ambient=0.1, diffuse=0.9, specular=0.03)
for v in vertex_colors[color]:
graphic += sphere(center=pos3d[v], size=vertex_size, texture=texture, **kwds)
if self._directed:
for color in edge_colors:
for u, v, l in edge_colors[color]:
graphic += arrow3d(pos3d[u], pos3d[v], radius=edge_size, color=color, closed=False, **kwds)
else:
for color in edge_colors:
texture = Texture(color=color, ambient=0.1, diffuse=0.9, specular=0.03)
for u, v, l in edge_colors[color]:
graphic += line3d([pos3d[u], pos3d[v]], radius=edge_size, texture=texture, closed=False, **kwds)
return graphic
except KeyError:
raise KeyError, "Oops! You haven't specified positions for all the vertices."
elif engine == 'tachyon':
TT, pos3d = tachyon_vertex_plot(self, bgcolor=bgcolor, vertex_colors=vertex_colors,
vertex_size=vertex_size, pos3d=pos3d, **kwds)
edges = self.edges()
if color_by_label:
if edge_colors is None:
edge_colors = self._color_by_label(format='rgbtuple')
if edge_colors is None:
edge_colors = { (0,0,0) : edges }
i = 0
for color in edge_colors:
i += 1
TT.texture('edge_color_%d'%i, ambient=0.1, diffuse=0.9, specular=0.03, opacity=1.0, color=color)
if self._directed:
for u,v,l in edge_colors[color]:
TT.fcylinder( (pos3d[u][0],pos3d[u][1],pos3d[u][2]),
(pos3d[v][0],pos3d[v][1],pos3d[v][2]), edge_size,'edge_color_%d'%i)
TT.fcylinder( (0.25*pos3d[u][0] + 0.75*pos3d[v][0],
0.25*pos3d[u][1] + 0.75*pos3d[v][1],
0.25*pos3d[u][2] + 0.75*pos3d[v][2],),
(pos3d[v][0],pos3d[v][1],pos3d[v][2]), edge_size2,'edge_color_%d'%i)
else:
for u, v, l in edge_colors[color]:
TT.fcylinder( (pos3d[u][0],pos3d[u][1],pos3d[u][2]), (pos3d[v][0],pos3d[v][1],pos3d[v][2]), edge_size,'edge_color_%d'%i)
return TT
else:
raise TypeError("Rendering engine (%s) not implemented."%engine)
def show3d(self, bgcolor=(1,1,1), vertex_colors=None, vertex_size=0.06,
edge_colors=None, edge_size=0.02, edge_size2=0.0325,
pos3d=None, color_by_label=False,
engine='jmol', **kwds):
"""
Plots the graph using Tachyon, and shows the resulting plot.
INPUT:
- ``bgcolor`` - rgb tuple (default: (1,1,1))
- ``vertex_size`` - float (default: 0.06)
- ``vertex_colors`` - optional dictionary to specify
vertex colors: each key is a color recognizable by tachyon (rgb
tuple (default: (1,0,0))), and each corresponding entry is a list
of vertices. If a vertex is not listed, it looks invisible on the
resulting plot (it doesn't get drawn).
- ``edge_colors`` - a dictionary specifying edge
colors: each key is a color recognized by tachyon ( default:
(0,0,0) ), and each entry is a list of edges.
- ``edge_size`` - float (default: 0.02)
- ``edge_size2`` - float (default: 0.0325), used for
Tachyon sleeves
- ``pos3d`` - a position dictionary for the vertices
- ``iterations`` - how many iterations of the spring
layout algorithm to go through, if applicable
- ``engine`` - which renderer to use. Options:
- ``'jmol'`` - default 'tachyon'
- ``xres`` - resolution
- ``yres`` - resolution
- ``**kwds`` - passed on to the Tachyon command
EXAMPLES::
sage: G = graphs.CubeGraph(5)
sage: G.show3d(iterations=500, edge_size=None, vertex_size=0.04) # long time
We plot a fairly complicated Cayley graph::
sage: A5 = AlternatingGroup(5); A5
Alternating group of order 5!/2 as a permutation group
sage: G = A5.cayley_graph()
sage: G.show3d(vertex_size=0.03, edge_size=0.01, edge_size2=0.02, vertex_colors={(1,1,1):G.vertices()}, bgcolor=(0,0,0), color_by_label=True, iterations=200) # long time
Some Tachyon examples::
sage: D = graphs.DodecahedralGraph()
sage: D.show3d(engine='tachyon') # long time
::
sage: G = graphs.PetersenGraph()
sage: G.show3d(engine='tachyon', vertex_colors={(0,0,1):G.vertices()}) # long time
::
sage: C = graphs.CubeGraph(4)
sage: C.show3d(engine='tachyon', edge_colors={(0,1,0):C.edges()}, vertex_colors={(1,1,1):C.vertices()}, bgcolor=(0,0,0)) # long time
::
sage: K = graphs.CompleteGraph(3)
sage: K.show3d(engine='tachyon', edge_colors={(1,0,0):[(0,1,None)], (0,1,0):[(0,2,None)], (0,0,1):[(1,2,None)]}) # long time
"""
self.plot3d(bgcolor=bgcolor, vertex_colors=vertex_colors,
edge_colors=edge_colors, vertex_size=vertex_size, engine=engine,
edge_size=edge_size, edge_size2=edge_size2, pos3d=pos3d,
color_by_label=color_by_label, **kwds).show()
def _keys_for_vertices(self):
"""
Returns a function mapping each vertex to a unique and hopefully
readable string
EXAMPLE::
sage: g = graphs.Grid2dGraph(5,5)
sage: g._keys_for_vertices()
<function key at ...
"""
from sage.graphs.dot2tex_utils import key, key_with_hash
if len(set(key(v) for v in self)) < self.num_verts():
return key_with_hash
else:
return key
@options(labels="string",
vertex_labels=True,edge_labels=False,
edge_color=None,edge_colors=None,
edge_options = (),
color_by_label=False)
def graphviz_string(self, **options):
r"""
Returns a representation in the dot language.
The dot language is a text based format for graphs. It is used
by the software suite graphviz. The specifications of the
language are available on the web (see the reference [dotspec]_).
INPUT:
- ``labels`` - "string" or "latex" (default: "string"). If labels is
string latex command are not interpreted. This option stands for both
vertex labels and edge labels.
- ``vertex_labels`` - boolean (default: True) whether to add the labels
on vertices.
- ``edge_labels`` - boolean (default: False) whether to add
the labels on edges.
- ``edge_color`` - (default: None) specify a default color for the
edges.
- ``edge_colors`` - (default: None) a dictionary whose keys
are colors and values are list of edges. The list of edges need not to
be complete in which case the default color is used.
- ``color_by_label`` - boolean (default: False): whether to
color each edge with a different color according to its
label. This overwrites the options ``edge_color`` and ``edge_colors``.
- ``edge_options`` - a function (or tuple thereof) mapping
edges to a dictionary of options for this edge.
EXAMPLES::
sage: G = Graph({0:{1:None,2:None}, 1:{0:None,2:None}, 2:{0:None,1:None,3:'foo'}, 3:{2:'foo'}},sparse=True)
sage: print G.graphviz_string(edge_labels=True)
graph {
"0" [label="0"];
"1" [label="1"];
"2" [label="2"];
"3" [label="3"];
<BLANKLINE>
"0" -- "1";
"0" -- "2";
"1" -- "2";
"2" -- "3" [label="foo"];
}
A variant, with the labels in latex, for post-processing with ``dot2tex``::
sage: print G.graphviz_string(edge_labels=True,labels = "latex")
graph {
node [shape="plaintext"];
"0" [label=" ", texlbl="$0$"];
"1" [label=" ", texlbl="$1$"];
"2" [label=" ", texlbl="$2$"];
"3" [label=" ", texlbl="$3$"];
<BLANKLINE>
"0" -- "1";
"0" -- "2";
"1" -- "2";
"2" -- "3" [label=" ", texlbl="$\verb|foo|$"];
}
Same, with a digraph and a color for edges::
sage: G = DiGraph({0:{1:None,2:None}, 1:{2:None}, 2:{3:'foo'}, 3:{}} ,sparse=True)
sage: print G.graphviz_string(edge_color="red")
digraph {
"0" [label="0"];
"1" [label="1"];
"2" [label="2"];
"3" [label="3"];
<BLANKLINE>
edge [color="red"];
"0" -> "1";
"0" -> "2";
"1" -> "2";
"2" -> "3";
}
A digraph using latex labels for vertices and edges::
sage: f(x) = -1/x
sage: g(x) = 1/(x+1)
sage: G = DiGraph()
sage: G.add_edges([(i,f(i),f) for i in (1,2,1/2,1/4)])
sage: G.add_edges([(i,g(i),g) for i in (1,2,1/2,1/4)])
sage: print G.graphviz_string(labels="latex",edge_labels=True)
digraph {
node [shape="plaintext"];
"2/3" [label=" ", texlbl="$\frac{2}{3}$"];
"1/3" [label=" ", texlbl="$\frac{1}{3}$"];
"1/2" [label=" ", texlbl="$\frac{1}{2}$"];
"1" [label=" ", texlbl="$1$"];
"1/4" [label=" ", texlbl="$\frac{1}{4}$"];
"4/5" [label=" ", texlbl="$\frac{4}{5}$"];
"-4" [label=" ", texlbl="$-4$"];
"2" [label=" ", texlbl="$2$"];
"-2" [label=" ", texlbl="$-2$"];
"-1/2" [label=" ", texlbl="$-\frac{1}{2}$"];
"-1" [label=" ", texlbl="$-1$"];
<BLANKLINE>
"1/2" -> "-2" [label=" ", texlbl="$x \ {\mapsto}\ -\frac{1}{x}$"];
"1/2" -> "2/3" [label=" ", texlbl="$x \ {\mapsto}\ \frac{1}{x + 1}$"];
"1" -> "-1" [label=" ", texlbl="$x \ {\mapsto}\ -\frac{1}{x}$"];
"1" -> "1/2" [label=" ", texlbl="$x \ {\mapsto}\ \frac{1}{x + 1}$"];
"1/4" -> "-4" [label=" ", texlbl="$x \ {\mapsto}\ -\frac{1}{x}$"];
"1/4" -> "4/5" [label=" ", texlbl="$x \ {\mapsto}\ \frac{1}{x + 1}$"];
"2" -> "-1/2" [label=" ", texlbl="$x \ {\mapsto}\ -\frac{1}{x}$"];
"2" -> "1/3" [label=" ", texlbl="$x \ {\mapsto}\ \frac{1}{x + 1}$"];
}
sage: print G.graphviz_string(labels="latex",color_by_label=True)
digraph {
node [shape="plaintext"];
"2/3" [label=" ", texlbl="$\frac{2}{3}$"];
"1/3" [label=" ", texlbl="$\frac{1}{3}$"];
"1/2" [label=" ", texlbl="$\frac{1}{2}$"];
"1" [label=" ", texlbl="$1$"];
"1/4" [label=" ", texlbl="$\frac{1}{4}$"];
"4/5" [label=" ", texlbl="$\frac{4}{5}$"];
"-4" [label=" ", texlbl="$-4$"];
"2" [label=" ", texlbl="$2$"];
"-2" [label=" ", texlbl="$-2$"];
"-1/2" [label=" ", texlbl="$-\frac{1}{2}$"];
"-1" [label=" ", texlbl="$-1$"];
<BLANKLINE>
"1/2" -> "-2" [color = "#ff0000"];
"1/2" -> "2/3" [color = "#00ffff"];
"1" -> "-1" [color = "#ff0000"];
"1" -> "1/2" [color = "#00ffff"];
"1/4" -> "-4" [color = "#ff0000"];
"1/4" -> "4/5" [color = "#00ffff"];
"2" -> "-1/2" [color = "#ff0000"];
"2" -> "1/3" [color = "#00ffff"];
}
sage: print G.graphviz_string(labels="latex",color_by_label={ f: "red", g: "blue" })
digraph {
node [shape="plaintext"];
"2/3" [label=" ", texlbl="$\frac{2}{3}$"];
"1/3" [label=" ", texlbl="$\frac{1}{3}$"];
"1/2" [label=" ", texlbl="$\frac{1}{2}$"];
"1" [label=" ", texlbl="$1$"];
"1/4" [label=" ", texlbl="$\frac{1}{4}$"];
"4/5" [label=" ", texlbl="$\frac{4}{5}$"];
"-4" [label=" ", texlbl="$-4$"];
"2" [label=" ", texlbl="$2$"];
"-2" [label=" ", texlbl="$-2$"];
"-1/2" [label=" ", texlbl="$-\frac{1}{2}$"];
"-1" [label=" ", texlbl="$-1$"];
<BLANKLINE>
"1/2" -> "-2" [color = "red"];
"1/2" -> "2/3" [color = "blue"];
"1" -> "-1" [color = "red"];
"1" -> "1/2" [color = "blue"];
"1/4" -> "-4" [color = "red"];
"1/4" -> "4/5" [color = "blue"];
"2" -> "-1/2" [color = "red"];
"2" -> "1/3" [color = "blue"];
}
Edge-specific options can also be specified by providing a
function (or tuple thereof) which maps each edge to a
dictionary of options. Valid options are "color", "backward"
(a boolean), "dot" (a string containing a sequence of options
in dot format), "label" (a string), "label_style" ("string" or
"latex"), "edge_string" ("--" or "->"). Here we state that the
graph should be laid out so that edges starting from ``1`` are
going backward (e.g. going up instead of down)::
sage: def edge_options((u,v,label)):
... return { "backward": u == 1 }
sage: print G.graphviz_string(edge_options = edge_options)
digraph {
"2/3" [label="2/3"];
"1/3" [label="1/3"];
"1/2" [label="1/2"];
"1" [label="1"];
"1/4" [label="1/4"];
"4/5" [label="4/5"];
"-4" [label="-4"];
"2" [label="2"];
"-2" [label="-2"];
"-1/2" [label="-1/2"];
"-1" [label="-1"];
<BLANKLINE>
"1/2" -> "-2";
"1/2" -> "2/3";
"-1" -> "1" [dir=back];
"1/2" -> "1" [dir=back];
"1/4" -> "-4";
"1/4" -> "4/5";
"2" -> "-1/2";
"2" -> "1/3";
}
We now test all options::
sage: def edge_options((u,v,label)):
... options = { "color": { f: "red", g: "blue" }[label] }
... if (u,v) == (1/2, -2): options["label"] = "coucou"; options["label_style"] = "string"
... if (u,v) == (1/2,2/3): options["dot"] = "x=1,y=2"
... if (u,v) == (1, -1): options["label_style"] = "latex"
... if (u,v) == (1, 1/2): options["edge_string"] = "<-"
... if (u,v) == (1/2, 1): options["backward"] = True
... return options
sage: print G.graphviz_string(edge_options = edge_options)
digraph {
"2/3" [label="2/3"];
"1/3" [label="1/3"];
"1/2" [label="1/2"];
"1" [label="1"];
"1/4" [label="1/4"];
"4/5" [label="4/5"];
"-4" [label="-4"];
"2" [label="2"];
"-2" [label="-2"];
"-1/2" [label="-1/2"];
"-1" [label="-1"];
<BLANKLINE>
"1/2" -> "-2" [label="coucou", color = "red"];
"1/2" -> "2/3" [x=1,y=2, color = "blue"];
"1" -> "-1" [label=" ", texlbl="$x \ {\mapsto}\ -\frac{1}{x}$", color = "red"];
"1" <- "1/2" [color = "blue"];
"1/4" -> "-4" [color = "red"];
"1/4" -> "4/5" [color = "blue"];
"2" -> "-1/2" [color = "red"];
"2" -> "1/3" [color = "blue"];
}
TESTS:
The following digraph has tuples as vertices::
sage: print digraphs.ButterflyGraph(1).graphviz_string()
digraph {
"1,1" [label="('1', 1)"];
"0,0" [label="('0', 0)"];
"1,0" [label="('1', 0)"];
"0,1" [label="('0', 1)"];
<BLANKLINE>
"0,0" -> "1,1";
"0,0" -> "0,1";
"1,0" -> "1,1";
"1,0" -> "0,1";
}
The following digraph has vertices with newlines in their
string representations::
sage: m1 = matrix(3,3)
sage: m2 = matrix(3,3, 1)
sage: m1.set_immutable()
sage: m2.set_immutable()
sage: g = DiGraph({ m1: [m2] })
sage: print g.graphviz_string()
digraph {
"000000000" [label="[0 0 0]\n\
[0 0 0]\n\
[0 0 0]"];
"100010001" [label="[1 0 0]\n\
[0 1 0]\n\
[0 0 1]"];
<BLANKLINE>
"000000000" -> "100010001";
}
REFERENCES:
.. [dotspec] http://www.graphviz.org/doc/info/lang.html
"""
import re
from sage.graphs.dot2tex_utils import quoted_latex, quoted_str
if self.is_directed():
graph_string = "digraph"
default_edge_string = "->"
else:
graph_string = "graph"
default_edge_string = "--"
edge_option_functions = options['edge_options']
if not isinstance(edge_option_functions, (tuple,list)):
edge_option_functions = [edge_option_functions]
else:
edge_option_functions = list(edge_option_functions)
if options['edge_color'] is not None:
default_color = options['edge_color']
else:
default_color = None
if options['color_by_label'] is not False:
color_by_label = self._color_by_label(format = options['color_by_label'], as_function = True, default_color=default_color)
edge_option_functions.append(lambda (u,v,label): {"color": color_by_label(label)})
elif options['edge_colors'] is not None:
if not isinstance(options['edge_colors'],dict):
raise ValueError, "incorrect format for edge_colors"
color_by_edge = {}
for color in options['edge_colors'].keys():
for edge in options['edge_colors'][color]:
assert isinstance(edge, tuple) and len(edge) >= 2 and len(edge) <= 3,\
"%s is not a valid format for edge"%(edge)
u = edge[0]
v = edge[1]
assert self.has_edge(*edge), "%s is not an edge"%(edge)
if len(edge) == 2:
if self.has_multiple_edges():
for label in self.edge_label(u,v):
color_by_edge[(u,v,label)] = color
else:
label = self.edge_label(u,v)
color_by_edge[(u,v,label)] = color
elif len(edge) == 3:
color_by_edge[edge] = color
edge_option_functions.append(lambda edge: {"color": color_by_edge[edge]} if edge in color_by_edge else {})
else:
edges_by_color = []
not_colored_edges = self.edge_iterator(labels=True)
key = self._keys_for_vertices()
s = '%s {\n' % graph_string
if (options['vertex_labels'] and
options['labels'] == "latex"):
s += ' node [shape="plaintext"];\n'
for v in self.vertex_iterator():
if not options['vertex_labels']:
node_options = ""
elif options['labels'] == "latex":
node_options = " [label=\" \", texlbl=\"$%s$\"]"%quoted_latex(v)
else:
node_options = " [label=\"%s\"]" %quoted_str(v)
s += ' "%s"%s;\n'%(key(v),node_options)
s += "\n"
if default_color is not None:
s += 'edge [color="%s"];\n'%default_color
for (u,v,label) in self.edge_iterator():
edge_options = {
'backward': False,
'dot': None,
'edge_string': default_edge_string,
'color' : default_color,
'label' : label,
'label_style': options['labels'] if options['edge_labels'] else None
}
for f in edge_option_functions:
edge_options.update(f((u,v,label)))
dot_options = []
if edge_options['dot'] is not None:
assert isinstance(edge_options['dot'], str)
dot_options.append(edge_options['dot'])
label = edge_options['label']
if label is not None and edge_options['label_style'] is not None:
if edge_options['label_style'] == 'latex':
dot_options.append('label=" ", texlbl="$%s$"'%quoted_latex(label))
else:
dot_options.append('label="%s"'% label)
if edge_options['color'] != default_color:
dot_options.append('color = "%s"'%edge_options['color'])
if edge_options['backward']:
v,u = u,v
dot_options.append('dir=back')
s+= ' "%s" %s "%s"' % (key(u), edge_options['edge_string'], key(v))
if len(dot_options) > 0:
s += " [" + ", ".join(dot_options)+"]"
s+= ";\n"
s += "}"
return s
def graphviz_to_file_named(self, filename, **options):
r"""
Write a representation in the dot in a file.
The dot language is a plaintext format for graph structures. See the
documentation of :meth:`.graphviz_string` for available options.
INPUT:
``filename`` - the name of the file to write in
``options`` - options for the graphviz string
EXAMPLES::
sage: G = Graph({0:{1:None,2:None}, 1:{0:None,2:None}, 2:{0:None,1:None,3:'foo'}, 3:{2:'foo'}},sparse=True)
sage: tempfile = os.path.join(SAGE_TMP, 'temp_graphviz')
sage: G.graphviz_to_file_named(tempfile, edge_labels=True)
sage: print open(tempfile).read()
graph {
"0" [label="0"];
"1" [label="1"];
"2" [label="2"];
"3" [label="3"];
<BLANKLINE>
"0" -- "1";
"0" -- "2";
"1" -- "2";
"2" -- "3" [label="foo"];
}
"""
return open(filename, 'wt').write(self.graphviz_string(**options))
def spectrum(self, laplacian=False):
r"""
Returns a list of the eigenvalues of the adjacency matrix.
INPUT:
- ``laplacian`` - if ``True``, use the Laplacian matrix
(see :meth:`kirchhoff_matrix`)
OUTPUT:
A list of the eigenvalues, including multiplicities, sorted
with the largest eigenvalue first.
EXAMPLES::
sage: P = graphs.PetersenGraph()
sage: P.spectrum()
[3, 1, 1, 1, 1, 1, -2, -2, -2, -2]
sage: P.spectrum(laplacian=True)
[5, 5, 5, 5, 2, 2, 2, 2, 2, 0]
sage: D = P.to_directed()
sage: D.delete_edge(7,9)
sage: D.spectrum()
[2.9032119259..., 1, 1, 1, 1, 0.8060634335..., -1.7092753594..., -2, -2, -2]
::
sage: C = graphs.CycleGraph(8)
sage: C.spectrum()
[2, 1.4142135623..., 1.4142135623..., 0, 0, -1.4142135623..., -1.4142135623..., -2]
A digraph may have complex eigenvalues. Previously, the complex parts
of graph eigenvalues were being dropped. For a 3-cycle, we have::
sage: T = DiGraph({0:[1], 1:[2], 2:[0]})
sage: T.spectrum()
[1, -0.5000000000... + 0.8660254037...*I, -0.5000000000... - 0.8660254037...*I]
TESTS:
The Laplacian matrix of a graph is the negative of the adjacency matrix with the degree of each vertex on the diagonal. So for a regular graph, if `\delta` is an eigenvalue of a regular graph of degree `r`, then `r-\delta` will be an eigenvalue of the Laplacian. The Hoffman-Singleton graph is regular of degree 7, so the following will test both the Laplacian construction and the computation of eigenvalues. ::
sage: H = graphs.HoffmanSingletonGraph()
sage: evals = H.spectrum()
sage: lap = map(lambda x : 7 - x, evals)
sage: lap.sort(reverse=True)
sage: lap == H.spectrum(laplacian=True)
True
"""
if laplacian:
M = self.kirchhoff_matrix()
else:
M = self.adjacency_matrix()
evals = M.eigenvalues()
evals.sort(reverse=True)
return evals
def characteristic_polynomial(self, var='x', laplacian=False):
r"""
Returns the characteristic polynomial of the adjacency matrix of
the (di)graph.
Let `G` be a (simple) graph with adjacency matrix `A`. Let `I` be the
identity matrix of dimensions the same as `A`. The characteristic
polynomial of `G` is defined as the determinant `\det(xI - A)`.
.. note::
``characteristic_polynomial`` and ``charpoly`` are aliases and
thus provide exactly the same method.
INPUT:
- ``x`` -- (default: ``'x'``) the variable of the characteristic
polynomial.
- ``laplacian`` -- (default: ``False``) if ``True``, use the
Laplacian matrix.
.. SEEALSO::
- :meth:`kirchhoff_matrix`
- :meth:`laplacian_matrix`
EXAMPLES::
sage: P = graphs.PetersenGraph()
sage: P.characteristic_polynomial()
x^10 - 15*x^8 + 75*x^6 - 24*x^5 - 165*x^4 + 120*x^3 + 120*x^2 - 160*x + 48
sage: P.charpoly()
x^10 - 15*x^8 + 75*x^6 - 24*x^5 - 165*x^4 + 120*x^3 + 120*x^2 - 160*x + 48
sage: P.characteristic_polynomial(laplacian=True)
x^10 - 30*x^9 + 390*x^8 - 2880*x^7 + 13305*x^6 -
39882*x^5 + 77640*x^4 - 94800*x^3 + 66000*x^2 - 20000*x
"""
if laplacian:
return self.kirchhoff_matrix().charpoly(var=var)
else:
return self.adjacency_matrix().charpoly(var=var)
charpoly = characteristic_polynomial
def eigenvectors(self, laplacian=False):
r"""
Returns the *right* eigenvectors of the adjacency matrix of the graph.
INPUT:
- ``laplacian`` - if True, use the Laplacian matrix
(see :meth:`kirchhoff_matrix`)
OUTPUT:
A list of triples. Each triple begins with an eigenvalue of
the adjacency matrix of the graph. This is followed by
a list of eigenvectors for the eigenvalue, when the
eigenvectors are placed on the right side of the matrix.
Together, the eigenvectors form a basis for the eigenspace.
The triple concludes with the algebraic multiplicity of
the eigenvalue.
For some graphs, the exact eigenspaces provided by
:meth:`eigenspaces` provide additional insight into
the structure of the eigenspaces.
EXAMPLES::
sage: P = graphs.PetersenGraph()
sage: P.eigenvectors()
[(3, [
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
], 1), (-2, [
(1, 0, 0, 0, -1, -1, -1, 0, 1, 1),
(0, 1, 0, 0, -1, 0, -2, -1, 1, 2),
(0, 0, 1, 0, -1, 1, -1, -2, 0, 2),
(0, 0, 0, 1, -1, 1, 0, -1, -1, 1)
], 4), (1, [
(1, 0, 0, 0, 0, 1, -1, 0, 0, -1),
(0, 1, 0, 0, 0, -1, 1, -1, 0, 0),
(0, 0, 1, 0, 0, 0, -1, 1, -1, 0),
(0, 0, 0, 1, 0, 0, 0, -1, 1, -1),
(0, 0, 0, 0, 1, -1, 0, 0, -1, 1)
], 5)]
Eigenspaces for the Laplacian should be identical since the
Petersen graph is regular. However, since the output also
contains the eigenvalues, the two outputs are slightly
different. ::
sage: P.eigenvectors(laplacian=True)
[(0, [
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
], 1), (5, [
(1, 0, 0, 0, -1, -1, -1, 0, 1, 1),
(0, 1, 0, 0, -1, 0, -2, -1, 1, 2),
(0, 0, 1, 0, -1, 1, -1, -2, 0, 2),
(0, 0, 0, 1, -1, 1, 0, -1, -1, 1)
], 4), (2, [
(1, 0, 0, 0, 0, 1, -1, 0, 0, -1),
(0, 1, 0, 0, 0, -1, 1, -1, 0, 0),
(0, 0, 1, 0, 0, 0, -1, 1, -1, 0),
(0, 0, 0, 1, 0, 0, 0, -1, 1, -1),
(0, 0, 0, 0, 1, -1, 0, 0, -1, 1)
], 5)]
::
sage: C = graphs.CycleGraph(8)
sage: C.eigenvectors()
[(2, [
(1, 1, 1, 1, 1, 1, 1, 1)
], 1), (-2, [
(1, -1, 1, -1, 1, -1, 1, -1)
], 1), (0, [
(1, 0, -1, 0, 1, 0, -1, 0),
(0, 1, 0, -1, 0, 1, 0, -1)
], 2), (-1.4142135623..., [(1, 0, -1, 1.4142135623..., -1, 0, 1, -1.4142135623...), (0, 1, -1.4142135623..., 1, 0, -1, 1.4142135623..., -1)], 2), (1.4142135623..., [(1, 0, -1, -1.4142135623..., -1, 0, 1, 1.4142135623...), (0, 1, 1.4142135623..., 1, 0, -1, -1.4142135623..., -1)], 2)]
A digraph may have complex eigenvalues. Previously, the complex parts
of graph eigenvalues were being dropped. For a 3-cycle, we have::
sage: T = DiGraph({0:[1], 1:[2], 2:[0]})
sage: T.eigenvectors()
[(1, [
(1, 1, 1)
], 1), (-0.5000000000... - 0.8660254037...*I, [(1, -0.5000000000... - 0.8660254037...*I, -0.5000000000... + 0.8660254037...*I)], 1), (-0.5000000000... + 0.8660254037...*I, [(1, -0.5000000000... + 0.8660254037...*I, -0.5000000000... - 0.8660254037...*I)], 1)]
"""
if laplacian:
M = self.kirchhoff_matrix()
else:
M = self.adjacency_matrix()
return M.right_eigenvectors()
def eigenspaces(self, laplacian=False):
r"""
Returns the *right* eigenspaces of the adjacency matrix of the graph.
INPUT:
- ``laplacian`` - if True, use the Laplacian matrix
(see :meth:`kirchhoff_matrix`)
OUTPUT:
A list of pairs. Each pair is an eigenvalue of the
adjacency matrix of the graph, followed by
the vector space that is the eigenspace for that eigenvalue,
when the eigenvectors are placed on the right of the matrix.
For some graphs, some of the the eigenspaces are described
exactly by vector spaces over a
:class:`~sage.rings.number_field.number_field.NumberField`.
For numerical eigenvectors use :meth:`eigenvectors`.
EXAMPLES::
sage: P = graphs.PetersenGraph()
sage: P.eigenspaces()
[
(3, Vector space of degree 10 and dimension 1 over Rational Field
User basis matrix:
[1 1 1 1 1 1 1 1 1 1]),
(-2, Vector space of degree 10 and dimension 4 over Rational Field
User basis matrix:
[ 1 0 0 0 -1 -1 -1 0 1 1]
[ 0 1 0 0 -1 0 -2 -1 1 2]
[ 0 0 1 0 -1 1 -1 -2 0 2]
[ 0 0 0 1 -1 1 0 -1 -1 1]),
(1, Vector space of degree 10 and dimension 5 over Rational Field
User basis matrix:
[ 1 0 0 0 0 1 -1 0 0 -1]
[ 0 1 0 0 0 -1 1 -1 0 0]
[ 0 0 1 0 0 0 -1 1 -1 0]
[ 0 0 0 1 0 0 0 -1 1 -1]
[ 0 0 0 0 1 -1 0 0 -1 1])
]
Eigenspaces for the Laplacian should be identical since the
Petersen graph is regular. However, since the output also
contains the eigenvalues, the two outputs are slightly
different. ::
sage: P.eigenspaces(laplacian=True)
[
(0, Vector space of degree 10 and dimension 1 over Rational Field
User basis matrix:
[1 1 1 1 1 1 1 1 1 1]),
(5, Vector space of degree 10 and dimension 4 over Rational Field
User basis matrix:
[ 1 0 0 0 -1 -1 -1 0 1 1]
[ 0 1 0 0 -1 0 -2 -1 1 2]
[ 0 0 1 0 -1 1 -1 -2 0 2]
[ 0 0 0 1 -1 1 0 -1 -1 1]),
(2, Vector space of degree 10 and dimension 5 over Rational Field
User basis matrix:
[ 1 0 0 0 0 1 -1 0 0 -1]
[ 0 1 0 0 0 -1 1 -1 0 0]
[ 0 0 1 0 0 0 -1 1 -1 0]
[ 0 0 0 1 0 0 0 -1 1 -1]
[ 0 0 0 0 1 -1 0 0 -1 1])
]
Notice how one eigenspace below is described with a square root of
2. For the two possible values (positive and negative) there is a
corresponding eigenspace. ::
sage: C = graphs.CycleGraph(8)
sage: C.eigenspaces()
[
(2, Vector space of degree 8 and dimension 1 over Rational Field
User basis matrix:
[1 1 1 1 1 1 1 1]),
(-2, Vector space of degree 8 and dimension 1 over Rational Field
User basis matrix:
[ 1 -1 1 -1 1 -1 1 -1]),
(0, Vector space of degree 8 and dimension 2 over Rational Field
User basis matrix:
[ 1 0 -1 0 1 0 -1 0]
[ 0 1 0 -1 0 1 0 -1]),
(a3, Vector space of degree 8 and dimension 2 over Number Field in a3 with defining polynomial x^2 - 2
User basis matrix:
[ 1 0 -1 -a3 -1 0 1 a3]
[ 0 1 a3 1 0 -1 -a3 -1])
]
A digraph may have complex eigenvalues and eigenvectors.
For a 3-cycle, we have::
sage: T = DiGraph({0:[1], 1:[2], 2:[0]})
sage: T.eigenspaces()
[
(1, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[1 1 1]),
(a1, Vector space of degree 3 and dimension 1 over Number Field in a1 with defining polynomial x^2 + x + 1
User basis matrix:
[ 1 a1 -a1 - 1])
]
"""
if laplacian:
M = self.kirchhoff_matrix()
else:
M = self.adjacency_matrix()
return M.right_eigenspaces(format='galois', algebraic_multiplicity=False)
def relabel(self, perm=None, inplace=True, return_map=False):
r"""
Relabels the vertices of ``self``
INPUT:
- ``perm`` -- a function, dictionary, list, permutation, or
``None`` (default: ``None``)
- ``inplace`` -- a boolean (default: ``True``)
- ``return_map`` -- a boolean (default: ``False``)
If ``perm`` is a function ``f``, then each vertex ``v`` is
relabeled to ``f(v)``.
If ``perm`` is a dictionary ``d``, then each vertex ``v``
(which should be a key of ``d``) is relabeled to ``d[v]``.
Similarly, if ``perm`` is a list or tuple ``l`` of length
``n``, then each vertex (which should be in `\{0,1,...,n-1\}`)
is relabeled to ``l[v]``.
If ``perm`` is a permutation, then each vertex ``v`` is
relabeled to ``perm(v)``. Caveat: this assumes that the
vertices are labelled `\{0,1,...,n-1\}`; since permutations
act by default on the set `\{1,2,...,n\}`, this is achieved by
identifying `n` and `0`.
If ``perm`` is ``None``, the graph is relabeled to be on the
vertices `\{0,1,...,n-1\}`.
.. note:: at this point, only injective relabeling are supported.
If ``inplace`` is ``True``, the graph is modified in place and
``None`` is returned. Otherwise a relabeled copy of the graph
is returned.
If ``return_map`` is ``True`` a dictionary representing the
relabelling map is returned (incompatible with ``inplace==False``).
EXAMPLES::
sage: G = graphs.PathGraph(3)
sage: G.am()
[0 1 0]
[1 0 1]
[0 1 0]
Relabeling using a dictionary::
sage: G.relabel({1:2,2:1}, inplace=False).am()
[0 0 1]
[0 0 1]
[1 1 0]
Relabeling using a list::
sage: G.relabel([0,2,1], inplace=False).am()
[0 0 1]
[0 0 1]
[1 1 0]
Relabeling using a tuple::
sage: G.relabel((0,2,1), inplace=False).am()
[0 0 1]
[0 0 1]
[1 1 0]
Relabeling using a Sage permutation::
sage: from sage.groups.perm_gps.permgroup_named import SymmetricGroup
sage: S = SymmetricGroup(3)
sage: gamma = S('(1,2)')
sage: G.relabel(gamma, inplace=False).am()
[0 0 1]
[0 0 1]
[1 1 0]
Relabeling using an injective function::
sage: G.edges()
[(0, 1, None), (1, 2, None)]
sage: H = G.relabel(lambda i: i+10, inplace=False)
sage: H.vertices()
[10, 11, 12]
sage: H.edges()
[(10, 11, None), (11, 12, None)]
Relabeling using a non injective function is not yet supported::
sage: G.edges()
[(0, 1, None), (1, 2, None)]
sage: G.relabel(lambda i: 0, inplace=False)
Traceback (most recent call last):
...
NotImplementedError: Non injective relabeling
Relabeling to simpler labels::
sage: G = graphs.CubeGraph(3)
sage: G.vertices()
['000', '001', '010', '011', '100', '101', '110', '111']
sage: G.relabel()
sage: G.vertices()
[0, 1, 2, 3, 4, 5, 6, 7]
Recovering the relabeling with ``return_map``::
sage: G = graphs.CubeGraph(3)
sage: expecting = {'000': 0, '001': 1, '010': 2, '011': 3, '100': 4, '101': 5, '110': 6, '111': 7}
sage: G.relabel(return_map=True) == expecting
True
::
sage: G = graphs.PathGraph(3)
sage: G.relabel(lambda i: i+10, return_map=True)
{0: 10, 1: 11, 2: 12}
TESTS::
sage: P = Graph(graphs.PetersenGraph())
sage: P.delete_edge([0,1])
sage: P.add_edge((4,5))
sage: P.add_edge((2,6))
sage: P.delete_vertices([0,1])
sage: P.relabel()
The attributes are properly updated too
::
sage: G = graphs.PathGraph(5)
sage: G.set_vertices({0: 'before', 1: 'delete', 2: 'after'})
sage: G.set_boundary([1,2,3])
sage: G.delete_vertex(1)
sage: G.relabel()
sage: G.get_vertices()
{0: 'before', 1: 'after', 2: None, 3: None}
sage: G.get_boundary()
[1, 2]
sage: G.get_pos()
{0: (0, 0), 1: (2, 0), 2: (3, 0), 3: (4, 0)}
Check that #12477 is fixed::
sage: g = Graph({1:[2,3]})
sage: rel = {1:'a', 2:'b'}
sage: g.relabel(rel)
sage: g.vertices()
[3, 'a', 'b']
sage: rel
{1: 'a', 2: 'b'}
"""
from sage.groups.perm_gps.permgroup_element import PermutationGroupElement
if perm is None:
verts = self.vertices()
perm = {}; i = 0
for v in verts:
perm[v] = i
i += 1
elif isinstance(perm, dict):
from copy import copy
perm = copy(perm)
elif isinstance(perm, (list, tuple)):
perm = dict( [ [i,perm[i]] for i in xrange(len(perm)) ] )
elif isinstance(perm, PermutationGroupElement):
n = self.order()
ddict = {}
llist = perm.list()
for i in xrange(1,n):
ddict[i] = llist[i-1]%n
if n > 0:
ddict[0] = llist[n-1]%n
perm = ddict
elif callable(perm):
perm = dict( [ i, perm(i) ] for i in self.vertices() )
else:
raise TypeError("Type of perm is not supported for relabeling.")
if not inplace:
from copy import copy
G = copy(self)
G.relabel(perm)
if return_map:
return G, perm
return G
keys = perm.keys()
verts = self.vertices()
if len(set(perm.values())) < len(keys):
raise NotImplementedError, "Non injective relabeling"
for v in verts:
if v not in keys:
perm[v] = v
for v in perm.iterkeys():
if v in verts:
try:
hash(perm[v])
except TypeError:
raise ValueError("perm dictionary must be of the format {a:a1, b:b1, ...} where a,b,... are vertices and a1,b1,... are hashable")
self._backend.relabel(perm, self._directed)
attributes_to_update = ('_pos', '_assoc', '_embedding')
for attr in attributes_to_update:
if hasattr(self, attr) and getattr(self, attr) is not None:
new_attr = {}
for v,value in getattr(self, attr).iteritems():
new_attr[perm[v]] = value
setattr(self, attr, new_attr)
self._boundary = [perm[v] for v in self._boundary]
if return_map:
return perm
def degree_to_cell(self, vertex, cell):
"""
Returns the number of edges from vertex to an edge in cell. In the
case of a digraph, returns a tuple (in_degree, out_degree).
EXAMPLES::
sage: G = graphs.CubeGraph(3)
sage: cell = G.vertices()[:3]
sage: G.degree_to_cell('011', cell)
2
sage: G.degree_to_cell('111', cell)
0
::
sage: D = DiGraph({ 0:[1,2,3], 1:[3,4], 3:[4,5]})
sage: cell = [0,1,2]
sage: D.degree_to_cell(5, cell)
(0, 0)
sage: D.degree_to_cell(3, cell)
(2, 0)
sage: D.degree_to_cell(0, cell)
(0, 2)
"""
if self._directed:
in_neighbors_in_cell = set([a for a,_,_ in self.incoming_edges(vertex)]) & set(cell)
out_neighbors_in_cell = set([a for _,a,_ in self.outgoing_edges(vertex)]) & set(cell)
return (len(in_neighbors_in_cell), len(out_neighbors_in_cell))
else:
neighbors_in_cell = set(self.neighbors(vertex)) & set(cell)
return len(neighbors_in_cell)
def is_equitable(self, partition, quotient_matrix=False):
"""
Checks whether the given partition is equitable with respect to
self.
A partition is equitable with respect to a graph if for every pair
of cells C1, C2 of the partition, the number of edges from a vertex
of C1 to C2 is the same, over all vertices in C1.
INPUT:
- ``partition`` - a list of lists
- ``quotient_matrix`` - (default False) if True, and
the partition is equitable, returns a matrix over the integers
whose rows and columns represent cells of the partition, and whose
i,j entry is the number of vertices in cell j adjacent to each
vertex in cell i (since the partition is equitable, this is well
defined)
EXAMPLES::
sage: G = graphs.PetersenGraph()
sage: G.is_equitable([[0,4],[1,3,5,9],[2,6,8],[7]])
False
sage: G.is_equitable([[0,4],[1,3,5,9],[2,6,8,7]])
True
sage: G.is_equitable([[0,4],[1,3,5,9],[2,6,8,7]], quotient_matrix=True)
[1 2 0]
[1 0 2]
[0 2 1]
::
sage: ss = (graphs.WheelGraph(6)).line_graph(labels=False)
sage: prt = [[(0, 1)], [(0, 2), (0, 3), (0, 4), (1, 2), (1, 4)], [(2, 3), (3, 4)]]
::
sage: ss.is_equitable(prt)
Traceback (most recent call last):
...
TypeError: Partition ([[(0, 1)], [(0, 2), (0, 3), (0, 4), (1, 2), (1, 4)], [(2, 3), (3, 4)]]) is not valid for this graph: vertices are incorrect.
::
sage: ss = (graphs.WheelGraph(5)).line_graph(labels=False)
sage: ss.is_equitable(prt)
False
"""
from sage.misc.flatten import flatten
from sage.misc.misc import uniq
if sorted(flatten(partition, max_level=1)) != self.vertices():
raise TypeError("Partition (%s) is not valid for this graph: vertices are incorrect."%partition)
if any(len(cell)==0 for cell in partition):
raise TypeError("Partition (%s) is not valid for this graph: there is a cell of length 0."%partition)
if quotient_matrix:
from sage.matrix.constructor import Matrix
from sage.rings.integer_ring import IntegerRing
n = len(partition)
M = Matrix(IntegerRing(), n)
for i in xrange(n):
for j in xrange(n):
cell_i = partition[i]
cell_j = partition[j]
degrees = [self.degree_to_cell(u, cell_j) for u in cell_i]
if len(uniq(degrees)) > 1:
return False
if self._directed:
M[i, j] = degrees[0][0]
else:
M[i, j] = degrees[0]
return M
else:
for cell1 in partition:
for cell2 in partition:
degrees = [self.degree_to_cell(u, cell2) for u in cell1]
if len(uniq(degrees)) > 1:
return False
return True
def coarsest_equitable_refinement(self, partition, sparse=True):
"""
Returns the coarsest partition which is finer than the input
partition, and equitable with respect to self.
A partition is equitable with respect to a graph if for every pair
of cells C1, C2 of the partition, the number of edges from a vertex
of C1 to C2 is the same, over all vertices in C1.
A partition P1 is finer than P2 (P2 is coarser than P1) if every
cell of P1 is a subset of a cell of P2.
INPUT:
- ``partition`` - a list of lists
- ``sparse`` - (default False) whether to use sparse
or dense representation- for small graphs, use dense for speed
EXAMPLES::
sage: G = graphs.PetersenGraph()
sage: G.coarsest_equitable_refinement([[0],range(1,10)])
[[0], [2, 3, 6, 7, 8, 9], [1, 4, 5]]
sage: G = graphs.CubeGraph(3)
sage: verts = G.vertices()
sage: Pi = [verts[:1], verts[1:]]
sage: Pi
[['000'], ['001', '010', '011', '100', '101', '110', '111']]
sage: G.coarsest_equitable_refinement(Pi)
[['000'], ['011', '101', '110'], ['111'], ['001', '010', '100']]
Note that given an equitable partition, this function returns that
partition::
sage: P = graphs.PetersenGraph()
sage: prt = [[0], [1, 4, 5], [2, 3, 6, 7, 8, 9]]
sage: P.coarsest_equitable_refinement(prt)
[[0], [1, 4, 5], [2, 3, 6, 7, 8, 9]]
::
sage: ss = (graphs.WheelGraph(6)).line_graph(labels=False)
sage: prt = [[(0, 1)], [(0, 2), (0, 3), (0, 4), (1, 2), (1, 4)], [(2, 3), (3, 4)]]
sage: ss.coarsest_equitable_refinement(prt)
Traceback (most recent call last):
...
TypeError: Partition ([[(0, 1)], [(0, 2), (0, 3), (0, 4), (1, 2), (1, 4)], [(2, 3), (3, 4)]]) is not valid for this graph: vertices are incorrect.
::
sage: ss = (graphs.WheelGraph(5)).line_graph(labels=False)
sage: ss.coarsest_equitable_refinement(prt)
[[(0, 1)], [(1, 2), (1, 4)], [(0, 3)], [(0, 2), (0, 4)], [(2, 3), (3, 4)]]
ALGORITHM: Brendan D. McKay's Master's Thesis, University of
Melbourne, 1976.
"""
from sage.misc.flatten import flatten
if sorted(flatten(partition, max_level=1)) != self.vertices():
raise TypeError("Partition (%s) is not valid for this graph: vertices are incorrect."%partition)
if any(len(cell)==0 for cell in partition):
raise TypeError("Partition (%s) is not valid for this graph: there is a cell of length 0."%partition)
if self.has_multiple_edges():
raise TypeError("Refinement function does not support multiple edges.")
from copy import copy
G = copy(self)
perm_to = G.relabel(return_map=True)
partition = [[perm_to[b] for b in cell] for cell in partition]
perm_from = {}
for v in self:
perm_from[perm_to[v]] = v
n = G.num_verts()
if sparse:
from sage.graphs.base.sparse_graph import SparseGraph
CG = SparseGraph(n)
else:
from sage.graphs.base.dense_graph import DenseGraph
CG = DenseGraph(n)
for i in range(n):
for j in range(n):
if G.has_edge(i,j):
CG.add_arc(i,j)
from sage.groups.perm_gps.partn_ref.refinement_graphs import coarsest_equitable_refinement
result = coarsest_equitable_refinement(CG, partition, G._directed)
return [[perm_from[b] for b in cell] for cell in result]
def automorphism_group(self, partition=None, translation=False,
verbosity=0, edge_labels=False, order=False,
return_group=True, orbits=False):
"""
Returns the largest subgroup of the automorphism group of the
(di)graph whose orbit partition is finer than the partition given.
If no partition is given, the unit partition is used and the entire
automorphism group is given.
INPUT:
- ``translation`` - if True, then output includes a
dictionary translating from keys == vertices to entries == elements
of 1,2,...,n (since permutation groups can currently only act on
positive integers).
- ``partition`` - default is the unit partition,
otherwise computes the subgroup of the full automorphism group
respecting the partition.
- ``edge_labels`` - default False, otherwise allows
only permutations respecting edge labels.
- ``order`` - (default False) if True, compute the
order of the automorphism group
- ``return_group`` - default True
- ``orbits`` - returns the orbits of the group acting
on the vertices of the graph
OUTPUT: The order of the output is group, translation, order,
orbits. However, there are options to turn each of these on or
off.
EXAMPLES: Graphs::
sage: graphs_query = GraphQuery(display_cols=['graph6'],num_vertices=4)
sage: L = graphs_query.get_graphs_list()
sage: graphs_list.show_graphs(L)
sage: for g in L:
... G = g.automorphism_group()
... G.order(), G.gens()
(24, [(2,3), (1,2), (1,4)])
(4, [(2,3), (1,4)])
(2, [(1,2)])
(8, [(1,2), (1,4)(2,3)])
(6, [(1,2), (1,4)])
(6, [(2,3), (1,2)])
(2, [(1,4)(2,3)])
(2, [(1,2)])
(8, [(2,3), (1,3)(2,4), (1,4)])
(4, [(2,3), (1,4)])
(24, [(2,3), (1,2), (1,4)])
sage: C = graphs.CubeGraph(4)
sage: G = C.automorphism_group()
sage: M = G.character_table() # random order of rows, thus abs() below
sage: QQ(M.determinant()).abs()
712483534798848
sage: G.order()
384
::
sage: D = graphs.DodecahedralGraph()
sage: G = D.automorphism_group()
sage: A5 = AlternatingGroup(5)
sage: Z2 = CyclicPermutationGroup(2)
sage: H = A5.direct_product(Z2)[0] #see documentation for direct_product to explain the [0]
sage: G.is_isomorphic(H)
True
Multigraphs::
sage: G = Graph(multiedges=True,sparse=True)
sage: G.add_edge(('a', 'b'))
sage: G.add_edge(('a', 'b'))
sage: G.add_edge(('a', 'b'))
sage: G.automorphism_group()
Permutation Group with generators [(1,2)]
Digraphs::
sage: D = DiGraph( { 0:[1], 1:[2], 2:[3], 3:[4], 4:[0] } )
sage: D.automorphism_group()
Permutation Group with generators [(1,2,3,4,5)]
Edge labeled graphs::
sage: G = Graph(sparse=True)
sage: G.add_edges( [(0,1,'a'),(1,2,'b'),(2,3,'c'),(3,4,'b'),(4,0,'a')] )
sage: G.automorphism_group(edge_labels=True)
Permutation Group with generators [(1,4)(2,3)]
::
sage: G = Graph({0 : {1 : 7}})
sage: G.automorphism_group(translation=True, edge_labels=True)
(Permutation Group with generators [(1,2)], {0: 2, 1: 1})
sage: foo = Graph(sparse=True)
sage: bar = Graph(implementation='c_graph',sparse=True)
sage: foo.add_edges([(0,1,1),(1,2,2), (2,3,3)])
sage: bar.add_edges([(0,1,1),(1,2,2), (2,3,3)])
sage: foo.automorphism_group(translation=True, edge_labels=True)
(Permutation Group with generators [()], {0: 4, 1: 1, 2: 2, 3: 3})
sage: foo.automorphism_group(translation=True)
(Permutation Group with generators [(1,2)(3,4)], {0: 4, 1: 1, 2: 2, 3: 3})
sage: bar.automorphism_group(translation=True, edge_labels=True)
(Permutation Group with generators [()], {0: 4, 1: 1, 2: 2, 3: 3})
sage: bar.automorphism_group(translation=True)
(Permutation Group with generators [(1,2)(3,4)], {0: 4, 1: 1, 2: 2, 3: 3})
You can also ask for just the order of the group::
sage: G = graphs.PetersenGraph()
sage: G.automorphism_group(return_group=False, order=True)
120
Or, just the orbits (note that each graph here is vertex transitive)
::
sage: G = graphs.PetersenGraph()
sage: G.automorphism_group(return_group=False, orbits=True)
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]
sage: G.automorphism_group(partition=[[0],range(1,10)], return_group=False, orbits=True)
[[0], [2, 3, 6, 7, 8, 9], [1, 4, 5]]
sage: C = graphs.CubeGraph(3)
sage: C.automorphism_group(orbits=True, return_group=False)
[['000', '001', '010', '011', '100', '101', '110', '111']]
TESTS:
We get a KeyError when given an invalid partition (trac #6087)::
sage: g=graphs.CubeGraph(3)
sage: g.relabel()
sage: g.automorphism_group(partition=[[0,1,2],[3,4,5]])
Traceback (most recent call last):
...
KeyError: 6
"""
from sage.groups.perm_gps.partn_ref.refinement_graphs import perm_group_elt, search_tree
from sage.groups.perm_gps.permgroup import PermutationGroup
dig = (self._directed or self.has_loops())
if partition is None:
partition = [self.vertices()]
if edge_labels or self.has_multiple_edges():
G, partition, relabeling = graph_isom_equivalent_non_edge_labeled_graph(self, partition, return_relabeling=True, ignore_edge_labels=(not edge_labels))
G_vertices = sum(partition, [])
G_to = {}
for i in xrange(len(G_vertices)):
G_to[G_vertices[i]] = i
from sage.graphs.all import Graph, DiGraph
DoDG = DiGraph if self._directed else Graph
H = DoDG(len(G_vertices), implementation='c_graph', loops=G.allows_loops())
HB = H._backend
for u,v in G.edge_iterator(labels=False):
u = G_to[u]; v = G_to[v]
HB.add_edge(u,v,None,G._directed)
GC = HB._cg
partition = [[G_to[v] for v in cell] for cell in partition]
A = search_tree(GC, partition, lab=False, dict_rep=True, dig=dig, verbosity=verbosity, order=order)
if order:
a,b,c = A
else:
a,b = A
b_new = {}
for v in G_to:
b_new[v] = b[G_to[v]]
b = b_new
acting_vertices = {}
translation_d = {}
m = G.order()
for v in self:
if b[relabeling[v]] == m:
translation_d[v] = self.order()
acting_vertices[v] = 0
else:
translation_d[v] = b[relabeling[v]]
acting_vertices[v] = b[relabeling[v]]
real_aut_gp = []
n = self.order()
for gen in a:
gen_restr = [0]*n
for v in self.vertex_iterator():
gen_restr[acting_vertices[v]] = gen[acting_vertices[v]]
if gen_restr not in real_aut_gp:
real_aut_gp.append(gen_restr)
id = range(n)
if id in real_aut_gp:
real_aut_gp.remove(id)
a = real_aut_gp
b = translation_d
else:
G_vertices = sum(partition, [])
G_to = {}
for i in xrange(len(G_vertices)):
G_to[G_vertices[i]] = i
from sage.graphs.all import Graph, DiGraph
DoDG = DiGraph if self._directed else Graph
H = DoDG(len(G_vertices), implementation='c_graph', loops=self.allows_loops())
HB = H._backend
for u,v in self.edge_iterator(labels=False):
u = G_to[u]; v = G_to[v]
HB.add_edge(u,v,None,self._directed)
GC = HB._cg
partition = [[G_to[v] for v in cell] for cell in partition]
if translation:
A = search_tree(GC, partition, dict_rep=True, lab=False, dig=dig, verbosity=verbosity, order=order)
if order:
a,b,c = A
else:
a,b = A
b_new = {}
for v in G_to:
b_new[v] = b[G_to[v]]
b = b_new
else:
a = search_tree(GC, partition, dict_rep=False, lab=False, dig=dig, verbosity=verbosity, order=order)
if order:
a,c = a
output = []
if return_group:
if len(a) != 0:
output.append(PermutationGroup([perm_group_elt(aa) for aa in a]))
else:
output.append(PermutationGroup([[]]))
if translation:
output.append(b)
if order:
output.append(c)
if orbits:
G_from = {}
for v in G_to:
G_from[G_to[v]] = v
from sage.groups.perm_gps.partn_ref.refinement_graphs import get_orbits
output.append([[G_from[v] for v in W] for W in get_orbits(a, self.num_verts())])
return { 0: None,
1: output[0],
2: tuple(output),
3: tuple(output),
4: tuple(output)
}[len(output)]
def is_vertex_transitive(self, partition=None, verbosity=0,
edge_labels=False, order=False,
return_group=True, orbits=False):
"""
Returns whether the automorphism group of self is transitive within
the partition provided, by default the unit partition of the
vertices of self (thus by default tests for vertex transitivity in
the usual sense).
EXAMPLES::
sage: G = Graph({0:[1],1:[2]})
sage: G.is_vertex_transitive()
False
sage: P = graphs.PetersenGraph()
sage: P.is_vertex_transitive()
True
sage: D = graphs.DodecahedralGraph()
sage: D.is_vertex_transitive()
True
sage: R = graphs.RandomGNP(2000, .01)
sage: R.is_vertex_transitive()
False
"""
if partition is None:
partition = [self.vertices()]
new_partition = self.automorphism_group(partition,
verbosity=verbosity, edge_labels=edge_labels,
order=False, return_group=False, orbits=True)
for cell in partition:
for new_cell in new_partition:
if cell[0] in new_cell:
if any([c not in new_cell for c in cell[1:]]):
return False
return True
def is_hamiltonian(self):
r"""
Tests whether the current graph is Hamiltonian.
A graph (resp. digraph) is said to be Hamiltonian
if it contains as a subgraph a cycle (resp. a circuit)
going through all the vertices.
Testing for Hamiltonicity being NP-Complete, this
algorithm could run for some time depending on
the instance.
ALGORITHM:
See ``Graph.traveling_salesman_problem``.
OUTPUT:
Returns ``True`` if a Hamiltonian cycle/circuit exists, and
``False`` otherwise.
NOTE:
This function, as ``hamiltonian_cycle`` and
``traveling_salesman_problem``, computes a Hamiltonian
cycle if it exists : the user should *NOT* test for
Hamiltonicity using ``is_hamiltonian`` before calling
``hamiltonian_cycle`` or ``traveling_salesman_problem``
as it would result in computing it twice.
EXAMPLES:
The Heawood Graph is known to be Hamiltonian ::
sage: g = graphs.HeawoodGraph()
sage: g.is_hamiltonian()
True
The Petergraph, though, is not ::
sage: g = graphs.PetersenGraph()
sage: g.is_hamiltonian()
False
TESTS:
When no solver is installed, a
``OptionalPackageNotFoundError`` exception is raised::
sage: from sage.misc.exceptions import OptionalPackageNotFoundError
sage: try:
... g = graphs.ChvatalGraph()
... if not g.is_hamiltonian():
... print "There is something wrong here !"
... except OptionalPackageNotFoundError:
... pass
"""
try:
tsp = self.traveling_salesman_problem(use_edge_labels = False)
return True
except ValueError:
return False
def is_isomorphic(self, other, certify=False, verbosity=0, edge_labels=False):
"""
Tests for isomorphism between self and other.
INPUT:
- ``certify`` - if True, then output is (a,b), where a
is a boolean and b is either a map or None.
- ``edge_labels`` - default False, otherwise allows
only permutations respecting edge labels.
EXAMPLES: Graphs::
sage: from sage.groups.perm_gps.permgroup_named import SymmetricGroup
sage: D = graphs.DodecahedralGraph()
sage: E = copy(D)
sage: gamma = SymmetricGroup(20).random_element()
sage: E.relabel(gamma)
sage: D.is_isomorphic(E)
True
::
sage: D = graphs.DodecahedralGraph()
sage: S = SymmetricGroup(20)
sage: gamma = S.random_element()
sage: E = copy(D)
sage: E.relabel(gamma)
sage: a,b = D.is_isomorphic(E, certify=True); a
True
sage: from sage.plot.graphics import GraphicsArray
sage: from sage.graphs.generic_graph_pyx import spring_layout_fast
sage: position_D = spring_layout_fast(D)
sage: position_E = {}
sage: for vert in position_D:
... position_E[b[vert]] = position_D[vert]
sage: GraphicsArray([D.plot(pos=position_D), E.plot(pos=position_E)]).show() # long time
::
sage: g=graphs.HeawoodGraph()
sage: g.is_isomorphic(g)
True
Multigraphs::
sage: G = Graph(multiedges=True,sparse=True)
sage: G.add_edge((0,1,1))
sage: G.add_edge((0,1,2))
sage: G.add_edge((0,1,3))
sage: G.add_edge((0,1,4))
sage: H = Graph(multiedges=True,sparse=True)
sage: H.add_edge((3,4))
sage: H.add_edge((3,4))
sage: H.add_edge((3,4))
sage: H.add_edge((3,4))
sage: G.is_isomorphic(H)
True
Digraphs::
sage: A = DiGraph( { 0 : [1,2] } )
sage: B = DiGraph( { 1 : [0,2] } )
sage: A.is_isomorphic(B, certify=True)
(True, {0: 1, 1: 0, 2: 2})
Edge labeled graphs::
sage: G = Graph(sparse=True)
sage: G.add_edges( [(0,1,'a'),(1,2,'b'),(2,3,'c'),(3,4,'b'),(4,0,'a')] )
sage: H = G.relabel([1,2,3,4,0], inplace=False)
sage: G.is_isomorphic(H, edge_labels=True)
True
Edge labeled digraphs::
sage: G = DiGraph()
sage: G.add_edges( [(0,1,'a'),(1,2,'b'),(2,3,'c'),(3,4,'b'),(4,0,'a')] )
sage: H = G.relabel([1,2,3,4,0], inplace=False)
sage: G.is_isomorphic(H, edge_labels=True)
True
sage: G.is_isomorphic(H, edge_labels=True, certify=True)
(True, {0: 1, 1: 2, 2: 3, 3: 4, 4: 0})
TESTS::
sage: g1 = '~?A[~~{ACbCwV_~__OOcCW_fAA{CF{CCAAAC__bCCCwOOV___~____OOOOcCCCW___fAAAA'+\
... '{CCCF{CCCCAAAAAC____bCCCCCwOOOOV_____~_O@ACG_@ACGOo@ACG?{?`A?GV_GO@AC}@?_OGC'+\
... 'C?_OI@?K?I@?_OM?_OGD?F_A@OGC@{A@?_OG?O@?gCA?@_GCA@O?B_@OGCA?BoA@?gC?@{A?GO`?'+\
... '??_GO@AC??E?O`?CG??[?O`A?G??{?GO`A???|A?_GOC`AC@_OCGACEAGS?HA?_SA`aO@G?cOC_N'+\
... 'G_C@AOP?GnO@_GACOE?g?`OGACCOGaGOc?HA?`GORCG_AO@B?K@[`A?OCI@A@By?_K@?SCABA?H?'+\
... 'SA?a@GC`CH?Q?C_c?cGRC@G_AOCOa@Ax?QC?_GOo_CNg@A?oC@CaCGO@CGA_O`?GSGPAGOC_@OO_'+\
... 'aCHaG?cO@CB?_`Ax?GQC?_cAOCG^OGAC@_D?IGO`?D?O_I?HAOO`AGOHA?cC?oAO`AW_Q?HCACAC'+\
... 'GO`[_OCHA?_cCACG^O_@CAGO`A?GCOGc@?I?OQOC?IGC_o@CAGCCE?A@DBG_OA@C_CP?OG_VA_CO'+\
... 'G@D?_OA_DFgA@CO?aH?Ga@?a?_I?S@A@@Oa@?@P@GCO_AACO_a_?`K_GCQ@?cAOG_OGAwQ@?K?cC'+\
... 'GH?I?ABy@C?G_S@@GCA@C`?OI?_D?OP@G?IGGP@O_AGCP?aG?GCPAX?cA?OGSGCGCAGCJ`?oAGCC'+\
... 'HAA?A_CG^O@CAG_GCSCAGCCGOCG@OA_`?`?g_OACG_`CAGOAO_H?a_?`AXA?OGcAAOP?a@?CGVAC'+\
... 'OG@_AGG`OA_?O`|?Ga?COKAAGCA@O`A?a?S@?HCG`?_?gO`AGGaC?PCAOGI?A@GO`K_CQ@?GO_`O'+\
... 'GCAACGVAG@_COOCQ?g?I?O`ByC?G_P?O`A?H@G?_P?`OAGC?gD?_C@_GCAGDG_OA@CCPC?AOQ??g'+\
... '_R@_AGCO____OCC_@OAbaOC?g@C_H?AOOC@?a`y?PC?G`@OOH??cOG_OOAG@_COAP?WA?_KAGC@C'+\
... '_CQ@?HAACH??c@P?_AWGaC?P?gA_C_GAD?I?Awa?S@?K?`C_GAOGCS?@|?COGaA@CAAOQ?AGCAGO'+\
... 'ACOG@_G_aC@_G@CA@@AHA?OGc?WAAH@G?P?_?cH_`CAGOGACc@@GA?S?CGVCG@OA_CICAOOC?PO?'+\
... 'OG^OG_@CAC_cC?AOP?_OICG@?oAGCO_GO_GB@?_OG`AH?cA?OH?`P??cC_O?SCGR@O_AGCAI?Q?_'+\
... 'GGS?D?O`[OI?_D@@CCA?cCA_?_O`By?_PC?IGAGOQ?@A@?aO`A?Q@?K?__`_E?_GCA@CGO`C_GCQ'+\
... '@A?gAOQ?@C?DCACGR@GCO_AGPA@@GAA?A_CO`Aw_I?S@?SCB@?OC_?_P@ACNgOC@A?aCGOCAGCA@'+\
... 'CA?H@GG_C@AOGa?OOG_O?g_OA?oDC_AO@GOCc?@P?_A@D??cC``O?cGAOGD?@OA_CAGCA?_cwKA?'+\
... '`?OWGG?_PO?I?S?H@?^OGAC@_Aa@CAGC?a@?_Q?@H?_OCHA?OQA_P?_G_O?WA?_IG_Q?HC@A@ADC'+\
... 'A?AI?AC_?QAWOHA?cAGG_I?S?G_OG@GA?`[D?O_IA?`GGCS?OA_?c@?Q?^OAC@_G_Ca@CA@?OGCO'+\
... 'H@G@A@?GQC?_Q@GP?_OG?IGGB?OCGaG?cO@A__QGC?E?A@CH@G?GRAGOC_@GGOW@O?O_OGa?_c?G'+\
... 'V@CGA_OOaC?a_?a?A_CcC@?CNgA?oC@GGE@?_OH?a@?_?QA`A@?QC?_KGGO_OGCAa@?A?_KCGPC@'+\
... 'G_AOAGPGC?D@?a_A?@GGO`KH?Q?C_QGAA_?gOG_OA?_GG`AwH?SA?`?cAI?A@D?I?@?QA?`By?K@'+\
... '?O`GGACA@CGCA@CC_?WO`?`A?OCH?`OCA@COG?I?oC@ACGPCG_AO@_aAA?Aa?g?GD@G?CO`AWOc?'+\
... 'HA?OcG_?g@OGCAAAOC@ACJ_`OGACAGCS?CAGI?A`@?OCACG^'
sage: g2 = '~?A[??osR?WARSETCJ_QWASehOXQg`QwChK?qSeFQ_sTIaWIV?XIR?KAC?B?`?COCG?o?O_'+\
... '@_?`??B?`?o@_O_WCOCHC@_?`W?E?AD_O?WCCeO?WCSEGAGAIaA@_?aw?OK?ER?`?@_HQXA?B@Q_'+\
... 'pA?a@Qg_`?o?h[?GOK@IR?@A?BEQcoCG?K\IB?GOCWiTC?GOKWIV??CGEKdH_H_?CB?`?DC??_WC'+\
... 'G?SO?AP?O_?g_?D_?`?C__?D_?`?CCo??@_O_XDC???WCGEGg_??a?`G_aa??E?AD_@cC??K?CJ?'+\
... '@@K?O?WCCe?aa?G?KAIB?Gg_A?a?ag_@DC?OK?CV??EOO@?o?XK??GH`A?B?Qco?Gg`A?B@Q_o?C'+\
... 'SO`?P?hSO?@DCGOK?IV???K_`A@_HQWC??_cCG?KXIRG?@D?GO?WySEG?@D?GOCWiTCC??a_CGEK'+\
... 'DJ_@??K_@A@bHQWAW?@@K??_WCG?g_?CSO?A@_O_@P??Gg_?Ca?`?@P??Gg_?D_?`?C__?EOO?Ao'+\
... '?O_AAW?@@K???WCGEPP??Gg_??B?`?pDC??aa??AGACaAIG?@DC??K?CJ?BGG?@cC??K?CJ?@@K?'+\
... '?_e?G?KAAR?PP??Gg_A?B?a_oAIG?@DC?OCOCTC?Gg_?CSO@?o?P[??X@??K__A@_?qW??OR??GH'+\
... '`A?B?Qco?Gg_?CSO`?@_hOW?AIG?@DCGOCOITC??PP??Gg`A@_@Qw??@cC??qACGE?dH_O?AAW?@'+\
... '@GGO?WqSeO?AIG?@D?GO?WySEG?@DC??a_CGAKTIaA??PP??Gg@A@b@Qw?O?BGG?@c?GOKXIR?KA'+\
... 'C?H_?CCo?A@_O_?WCG@P??Gg_?CB?`?COCG@P??Gg_?Ca?`?E?AC?g_?CSO?Ao?O_@_?`@GG?@cC'+\
... '??k?CG??WCGOR??GH_??B?`?o@_O`DC??aa???KACB?a?`AIG?@DC??COCHC@_?`AIG?@DC??K?C'+\
... 'J??o?O`cC??qA??E?AD_O?WC?OR??GH_A?B?_cq?B?_AIG?@DC?O?WCSEGAGA?Gg_?CSO@?P?PSO'+\
... 'OK?C?PP??Gg_A@_?aw?OK?C?X@??K__A@_?qWCG?K??GH_?CCo`?@_HQXA?B??AIG?@DCGO?WISE'+\
... 'GOCO??PP??Gg`A?a@Qg_`?o??@DC??aaCGE?DJ_@A@_??BGG?@cCGOK@IR?@A?BO?AAW?@@GGO?W'+\
... 'qSe?`?@g?@DC??a_CG?K\IB?GOCQ??PP??Gg@A?bDQg_@A@_O?AIG?@D?GOKWIV??CGE@??K__?E'+\
... 'O?`?pchK?_SA_OI@OGD?gCA_SA@OI?c@H?Q?c_H?QOC_HGAOCc?QOC_HGAOCc@GAQ?c@H?QD?gCA'+\
... '_SA@OI@?gD?_SA_OKA_SA@OI@?gD?_SA_OI@OHI?c_H?QOC_HGAOCc@GAQ?eC_H?QOC_HGAOCc@G'+\
... 'AQ?c@XD?_SA_OI@OGD?gCA_SA@PKGO`A@ACGSGO`?`ACICGO_?ACGOcGO`?O`AC`ACHACGO???^?'+\
... '????}Bw????Fo^???????Fo?}?????Bw?^?Bw?????GO`AO`AC`ACGACGOcGO`??aCGO_O`ADACG'+\
... 'OGO`A@ACGOA???@{?N_@{?????Fo?}????OFo????N_}????@{????Bw?OACGOgO`A@ACGSGO`?`'+\
... 'ACG?OaCGO_GO`AO`AC`ACGACGO_@G???Fo^?????}Bw????Fo??AC@{?????Fo?}?Fo?????^??A'+\
... 'OGO`AO`AC@ACGQCGO_GO`A?HAACGOgO`A@ACGOGO`A`ACG?GQ??^?Bw?????N_@{?????Fo?QC??'+\
... 'Fo^?????}????@{Fo???CHACGO_O`ACACGOgO`A@ACGO@AOcGO`?O`AC`ACGACGOcGO`?@GQFo??'+\
... '??N_????^@{????Bw??`GRw?????N_@{?????Fo?}???HAO_OI@OGD?gCA_SA@OI@?gDK_??C@GA'+\
... 'Q?c@H?Q?c_H?QOC_HEW????????????????????????~~~~~'
sage: G1 = Graph(g1)
sage: G2 = Graph(g2)
sage: G1.is_isomorphic(G2)
True
Ensure that isomorphic looped graphs with non-range vertex labels report
correctly (trac #10814, fixed by #8395)::
sage: G1 = Graph([(0,1), (1,1)])
sage: G2 = Graph([(0,2), (2,2)])
sage: G1.is_isomorphic(G2)
True
sage: G = Graph(multiedges = True, loops = True)
sage: H = Graph(multiedges = True, loops = True)
sage: G.add_edges([(0,1,0),(1,0,1),(1,1,2),(0,0,3)])
sage: H.add_edges([(0,1,3),(1,0,2),(1,1,1),(0,0,0)])
sage: G.is_isomorphic(H, certify=True)
(True, {0: 0, 1: 1})
sage: set_random_seed(0)
sage: D = digraphs.RandomDirectedGNP(6, .2)
sage: D.is_isomorphic(D, certify = True)
(True, {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5})
sage: D.is_isomorphic(D,edge_labels=True, certify = True)
(True, {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5})
Ensure that trac #11620 is fixed::
sage: G1 = DiGraph([(0, 0, 'c'), (0, 4, 'b'), (0, 5, 'c'),
... (0, 5, 't'), (1, 1, 'c'), (1, 3,'c'), (1, 3, 't'), (1, 5, 'b'),
... (2, 2, 'c'), (2, 3, 'b'), (2, 4, 'c'),(2, 4, 't'), (3, 1, 't'),
... (3, 2, 'b'), (3, 2, 'c'), (3, 4, 'c'), (4, 0,'b'), (4, 0, 'c'),
... (4, 2, 't'), (4, 5, 'c'), (5, 0, 't'), (5, 1, 'b'), (5, 1, 'c'),
... (5, 3, 'c')], loops=True, multiedges=True)
sage: G2 = G1.relabel({0:4, 1:5, 2:3, 3:2, 4:1,5:0}, inplace=False)
sage: G1.canonical_label(edge_labels=True) == G2.canonical_label(edge_labels=True)
True
sage: G1.is_isomorphic(G2,edge_labels=True)
True
"""
possible = True
if self._directed != other._directed:
possible = False
if self.order() != other.order():
possible = False
if self.size() != other.size():
possible = False
if not possible and certify:
return False, None
elif not possible:
return False
self_vertices = self.vertices()
other_vertices = other.vertices()
if edge_labels or self.has_multiple_edges():
if edge_labels and sorted(self.edge_labels()) != sorted(other.edge_labels()):
return False, None if certify else False
else:
G, partition, relabeling = graph_isom_equivalent_non_edge_labeled_graph(self, return_relabeling=True, ignore_edge_labels=(not edge_labels))
self_vertices = sum(partition,[])
G2, partition2, relabeling2 = graph_isom_equivalent_non_edge_labeled_graph(other, return_relabeling=True, ignore_edge_labels=(not edge_labels))
partition2 = sum(partition2,[])
other_vertices = partition2
else:
G = self; partition = [self_vertices]
G2 = other; partition2 = other_vertices
G_to = {}
for i in xrange(len(self_vertices)):
G_to[self_vertices[i]] = i
from sage.graphs.all import Graph, DiGraph
DoDG = DiGraph if self._directed else Graph
H = DoDG(len(self_vertices), implementation='c_graph', loops=G.allows_loops())
HB = H._backend
for u,v in G.edge_iterator(labels=False):
u = G_to[u]; v = G_to[v]
HB.add_edge(u,v,None,G._directed)
G = HB._cg
partition = [[G_to[v] for v in cell] for cell in partition]
GC = G
G2_to = {}
for i in xrange(len(other_vertices)):
G2_to[other_vertices[i]] = i
H2 = DoDG(len(other_vertices), implementation='c_graph', loops=G2.allows_loops())
H2B = H2._backend
for u,v in G2.edge_iterator(labels=False):
u = G2_to[u]; v = G2_to[v]
H2B.add_edge(u,v,None,G2._directed)
G2 = H2B._cg
partition2 = [G2_to[v] for v in partition2]
GC2 = G2
isom = isomorphic(GC, GC2, partition, partition2, (self._directed or self.has_loops()), 1)
if not isom and certify:
return False, None
elif not isom:
return False
elif not certify:
return True
else:
isom_trans = {}
if edge_labels:
relabeling2_inv = {}
for x in relabeling2:
relabeling2_inv[relabeling2[x]] = x
for v in self.vertices():
isom_trans[v] = relabeling2_inv[other_vertices[isom[G_to[relabeling[v]]]]]
else:
for v in self.vertices():
isom_trans[v] = other_vertices[isom[G_to[v]]]
return True, isom_trans
def canonical_label(self, partition=None, certify=False, verbosity=0, edge_labels=False):
"""
Returns the unique graph on `\{0,1,...,n-1\}` ( ``n = self.order()`` ) which
- is isomorphic to self,
- is invariant in the isomorphism class.
In other words, given two graphs ``G`` and ``H`` which are isomorphic,
suppose ``G_c`` and ``H_c`` are the graphs returned by
``canonical_label``. Then the following hold:
- ``G_c == H_c``
- ``G_c.adjacency_matrix() == H_c.adjacency_matrix()``
- ``G_c.graph6_string() == H_c.graph6_string()``
INPUT:
- ``partition`` - if given, the canonical label with
respect to this set partition will be computed. The default is the unit
set partition.
- ``certify`` - if True, a dictionary mapping from the
(di)graph to its canonical label will be given.
- ``verbosity`` - gets passed to nice: prints helpful
output.
- ``edge_labels`` - default False, otherwise allows
only permutations respecting edge labels.
EXAMPLES::
sage: D = graphs.DodecahedralGraph()
sage: E = D.canonical_label(); E
Dodecahedron: Graph on 20 vertices
sage: D.canonical_label(certify=True)
(Dodecahedron: Graph on 20 vertices, {0: 0, 1: 19, 2: 16, 3: 15, 4: 9, 5: 1, 6: 10, 7: 8, 8: 14, 9: 12, 10: 17, 11: 11, 12: 5, 13: 6, 14: 2, 15: 4, 16: 3, 17: 7, 18: 13, 19: 18})
sage: D.is_isomorphic(E)
True
Multigraphs::
sage: G = Graph(multiedges=True,sparse=True)
sage: G.add_edge((0,1))
sage: G.add_edge((0,1))
sage: G.add_edge((0,1))
sage: G.canonical_label()
Multi-graph on 2 vertices
sage: Graph('A?', implementation='c_graph').canonical_label()
Graph on 2 vertices
Digraphs::
sage: P = graphs.PetersenGraph()
sage: DP = P.to_directed()
sage: DP.canonical_label().adjacency_matrix()
[0 0 0 0 0 0 0 1 1 1]
[0 0 0 0 1 0 1 0 0 1]
[0 0 0 1 0 0 1 0 1 0]
[0 0 1 0 0 1 0 0 0 1]
[0 1 0 0 0 1 0 0 1 0]
[0 0 0 1 1 0 0 1 0 0]
[0 1 1 0 0 0 0 1 0 0]
[1 0 0 0 0 1 1 0 0 0]
[1 0 1 0 1 0 0 0 0 0]
[1 1 0 1 0 0 0 0 0 0]
Edge labeled graphs::
sage: G = Graph(sparse=True)
sage: G.add_edges( [(0,1,'a'),(1,2,'b'),(2,3,'c'),(3,4,'b'),(4,0,'a')] )
sage: G.canonical_label(edge_labels=True)
Graph on 5 vertices
sage: G.canonical_label(edge_labels=True,certify=True)
(Graph on 5 vertices, {0: 4, 1: 3, 2: 0, 3: 1, 4: 2})
"""
import sage.groups.perm_gps.partn_ref.refinement_graphs
from sage.groups.perm_gps.partn_ref.refinement_graphs import search_tree
from copy import copy
dig = (self.has_loops() or self._directed)
if partition is None:
partition = [self.vertices()]
if edge_labels or self.has_multiple_edges():
G, partition, relabeling = graph_isom_equivalent_non_edge_labeled_graph(self, partition, return_relabeling=True)
G_vertices = sum(partition, [])
G_to = {}
for i in xrange(len(G_vertices)):
G_to[G_vertices[i]] = i
from sage.graphs.all import Graph, DiGraph
DoDG = DiGraph if self._directed else Graph
H = DoDG(len(G_vertices), implementation='c_graph', loops=G.allows_loops())
HB = H._backend
for u,v in G.edge_iterator(labels=False):
u = G_to[u]; v = G_to[v]
HB.add_edge(u,v,None,G._directed)
GC = HB._cg
partition = [[G_to[v] for v in cell] for cell in partition]
a,b,c = search_tree(GC, partition, certify=True, dig=dig, verbosity=verbosity)
H = copy(self)
c_new = {}
for v in self.vertices():
c_new[v] = c[G_to[relabeling[v]]]
H.relabel(c_new)
if certify:
return H, c_new
else:
return H
G_vertices = sum(partition, [])
G_to = {}
for i in xrange(len(G_vertices)):
G_to[G_vertices[i]] = i
from sage.graphs.all import Graph, DiGraph
DoDG = DiGraph if self._directed else Graph
H = DoDG(len(G_vertices), implementation='c_graph', loops=self.allows_loops())
HB = H._backend
for u,v in self.edge_iterator(labels=False):
u = G_to[u]; v = G_to[v]
HB.add_edge(u,v,None,self._directed)
GC = HB._cg
partition = [[G_to[v] for v in cell] for cell in partition]
a,b,c = search_tree(GC, partition, certify=True, dig=dig, verbosity=verbosity)
H = copy(self)
c_new = {}
for v in G_to:
c_new[v] = c[G_to[v]]
H.relabel(c_new)
if certify:
return H, c_new
else:
return H
def tachyon_vertex_plot(g, bgcolor=(1,1,1),
vertex_colors=None,
vertex_size=0.06,
pos3d=None,
**kwds):
"""
Helper function for plotting graphs in 3d with Tachyon. Returns a
plot containing only the vertices, as well as the 3d position
dictionary used for the plot.
INPUT:
- `pos3d` - a 3D layout of the vertices
- various rendering options
EXAMPLES::
sage: G = graphs.TetrahedralGraph()
sage: from sage.graphs.generic_graph import tachyon_vertex_plot
sage: T,p = tachyon_vertex_plot(G, pos3d = G.layout(dim=3))
sage: type(T)
<class 'sage.plot.plot3d.tachyon.Tachyon'>
sage: type(p)
<type 'dict'>
"""
assert pos3d is not None
from math import sqrt
from sage.plot.plot3d.tachyon import Tachyon
c = [0,0,0]
r = []
verts = g.vertices()
if vertex_colors is None:
vertex_colors = { (1,0,0) : verts }
try:
for v in verts:
c[0] += pos3d[v][0]
c[1] += pos3d[v][1]
c[2] += pos3d[v][2]
except KeyError:
raise KeyError, "Oops! You haven't specified positions for all the vertices."
order = g.order()
c[0] = c[0]/order
c[1] = c[1]/order
c[2] = c[2]/order
for v in verts:
pos3d[v][0] = pos3d[v][0] - c[0]
pos3d[v][1] = pos3d[v][1] - c[1]
pos3d[v][2] = pos3d[v][2] - c[2]
r.append(abs(sqrt((pos3d[v][0])**2 + (pos3d[v][1])**2 + (pos3d[v][2])**2)))
r = max(r)
if r == 0:
r = 1
for v in verts:
pos3d[v][0] = pos3d[v][0]/r
pos3d[v][1] = pos3d[v][1]/r
pos3d[v][2] = pos3d[v][2]/r
TT = Tachyon(camera_center=(1.4,1.4,1.4), antialiasing=13, **kwds)
TT.light((4,3,2), 0.02, (1,1,1))
TT.texture('bg', ambient=1, diffuse=1, specular=0, opacity=1.0, color=bgcolor)
TT.plane((-1.6,-1.6,-1.6), (1.6,1.6,1.6), 'bg')
i = 0
for color in vertex_colors:
i += 1
TT.texture('node_color_%d'%i, ambient=0.1, diffuse=0.9,
specular=0.03, opacity=1.0, color=color)
for v in vertex_colors[color]:
TT.sphere((pos3d[v][0],pos3d[v][1],pos3d[v][2]), vertex_size, 'node_color_%d'%i)
return TT, pos3d
def graph_isom_equivalent_non_edge_labeled_graph(g, partition=None, standard_label=None, return_relabeling=False, return_edge_labels=False, inplace=False, ignore_edge_labels=False):
"""
Helper function for canonical labeling of edge labeled (di)graphs.
Translates to a bipartite incidence-structure type graph
appropriate for computing canonical labels of edge labeled and/or multi-edge graphs.
Note that this is actually computationally equivalent to
implementing a change on an inner loop of the main algorithm-
namely making the refinement procedure sort for each label.
If the graph is a multigraph, it is translated to a non-multigraph,
where each edge is labeled with a dictionary describing how many
edges of each label were originally there. Then in either case we
are working on a graph without multiple edges. At this point, we
create another (bipartite) graph, whose left vertices are the
original vertices of the graph, and whose right vertices represent
the edges. We partition the left vertices as they were originally,
and the right vertices by common labels: only automorphisms taking
edges to like-labeled edges are allowed, and this additional
partition information enforces this on the bipartite graph.
INPUT:
- ``g`` -- Graph or DiGraph
- ``partition`` -- (default:None) if given, the partition of the vertices is as well relabeled
- ``standard_label`` -- (default:None) the standard label is not considered to be changed
- ``return_relabeling`` -- (defaut:False) if True, a dictionary containing the relabeling is returned
- ``return_edge_labels`` -- (defaut:False) if True, the different edge_labels are returned (useful if inplace is True)
- ``inplace`` -- (default:False) if True, g is modified, otherwise the result is returned. Note that attributes of g are *not* copied for speed issues, only edges and vertices.
OUTPUT:
- if not inplace: the unlabeled graph without multiple edges
- the partition of the vertices
- if return_relabeling: a dictionary containing the relabeling
- if return_edge_labels: the list of (former) edge labels is returned
EXAMPLES::
sage: from sage.graphs.generic_graph import graph_isom_equivalent_non_edge_labeled_graph
sage: G = Graph(multiedges=True,sparse=True)
sage: G.add_edges( (0,1,i) for i in range(10) )
sage: G.add_edge(1,2,'string')
sage: G.add_edge(2,123)
sage: g = graph_isom_equivalent_non_edge_labeled_graph(G, partition=[[0,123],[1,2]]); g
[Graph on 6 vertices, [[0, 3], [1, 2], [4], [5]]]
sage: g = graph_isom_equivalent_non_edge_labeled_graph(G); g
[Graph on 6 vertices, [[0, 1, 2, 3], [4], [5]]]
sage: g[0].edges()
[(0, 4, None), (1, 4, None), (1, 5, None), (2, 3, None), (2, 5, None)]
sage: g = graph_isom_equivalent_non_edge_labeled_graph(G,standard_label='string',return_edge_labels=True); g
[Graph on 6 vertices, [[0, 1, 2, 3], [5], [4]], [[[None, 1]], [[0, 1], [1, 1], [2, 1], [3, 1], [4, 1], [5, 1], [6, 1], [7, 1], [8, 1], [9, 1]], [['string', 1]]]]
sage: g[0].edges()
[(0, 4, None), (1, 2, None), (1, 4, None), (2, 5, None), (3, 5, None)]
sage: graph_isom_equivalent_non_edge_labeled_graph(G,inplace=True)
[[[0, 1, 2, 3], [4], [5]]]
sage: G.edges()
[(0, 4, None), (1, 4, None), (1, 5, None), (2, 3, None), (2, 5, None)]
"""
from copy import copy
from sage.graphs.all import Graph, DiGraph
g_has_multiple_edges = g.has_multiple_edges()
if g_has_multiple_edges:
if g._directed:
G = DiGraph(loops=g.allows_loops(),sparse=True)
edge_iter = g._backend.iterator_in_edges(g,True)
else:
G = Graph(loops=g.allows_loops(),sparse=True)
edge_iter = g._backend.iterator_edges(g,True)
for u,v,l in edge_iter:
if not G.has_edge(u,v):
G.add_edge(u,v,[[l,1]])
else:
label_list = copy( G.edge_label(u,v) )
seen_label = False
for i in xrange(len(label_list)):
if label_list[i][0] == l:
label_list[i][1] += 1
G.set_edge_label(u,v,label_list)
seen_label = True
break
if not seen_label:
label_list.append([l,1])
label_list.sort()
G.set_edge_label(u,v,label_list)
if G.order() < g.order():
G.add_vertices(g)
if inplace:
g._backend = G._backend
elif not inplace:
G = copy( g )
else:
G = g
G_order = G.order()
V = range(G_order)
if G.vertices() != V:
relabel_dict = G.relabel(return_map=True)
else:
relabel_dict = dict( (i,i) for i in xrange(G_order) )
if partition is None:
partition = [V]
else:
partition = [ [ relabel_dict[i] for i in part ] for part in partition ]
if G._directed:
edge_iter = G._backend.iterator_in_edges(G,True)
else:
edge_iter = G._backend.iterator_edges(G,True)
edges = [ edge for edge in edge_iter ]
edge_labels = sorted([ label for v1,v2,label in edges if not label == standard_label])
i = 1
while i < len(edge_labels):
if edge_labels[i] == edge_labels[i-1]:
edge_labels.pop(i)
else:
i += 1
i = G_order
edge_partition = [(el,[]) for el in edge_labels]
if g_has_multiple_edges: standard_label = [[standard_label,1]]
for u,v,l in edges:
if not l == standard_label:
index = edge_labels.index(l)
for el, part in edge_partition:
if el == l:
part.append(i)
break
G._backend.add_edge(u,i,None,True)
G._backend.add_edge(i,v,None,True)
G.delete_edge(u,v)
i += 1
elif standard_label is not None:
G._backend.set_edge_label(u,v,None,True)
edge_partition = [el[1] for el in sorted(edge_partition)]
if ignore_edge_labels:
edge_partition = [sum(edge_partition,[])]
new_partition = [ part for part in partition + edge_partition if not part == [] ]
return_data = []
if not inplace:
return_data.append( G )
return_data.append( new_partition )
if return_relabeling:
return_data.append( relabel_dict )
if return_edge_labels:
return_data.append( edge_labels )
return return_data