"""
Dokchitser's L-functions Calculator
AUTHORS:
- Tim Dokchitser (2002): original PARI code and algorithm (and the
documentation below is based on Dokchitser's docs).
- William Stein (2006-03-08): Sage interface
TODO:
- add more examples from data/extcode/pari/dokchitser that illustrate
use with Eisenstein series, number fields, etc.
- plug this code into number fields and modular forms code (elliptic
curves are done).
"""
import copy
from sage.structure.sage_object import SageObject
from sage.rings.all import ComplexField, Integer
from sage.misc.all import verbose, sage_eval
import sage.interfaces.gp
class Dokchitser(SageObject):
r"""
Dokchitser's `L`-functions Calculator
Create a Dokchitser `L`-series with
Dokchitser(conductor, gammaV, weight, eps, poles, residues, init,
prec)
where
- ``conductor`` - integer, the conductor
- ``gammaV`` - list of Gamma-factor parameters, e.g. [0] for
Riemann zeta, [0,1] for ell.curves, (see examples).
- ``weight`` - positive real number, usually an integer e.g. 1 for
Riemann zeta, 2 for `H^1` of curves/`\QQ`
- ``eps`` - complex number; sign in functional equation
- ``poles`` - (default: []) list of points where `L^*(s)` has
(simple) poles; only poles with `Re(s)>weight/2` should be
included
- ``residues`` - vector of residues of `L^*(s)` in those poles or
set residues='automatic' (default value)
- ``prec`` - integer (default: 53) number of *bits* of precision
RIEMANN ZETA FUNCTION:
We compute with the Riemann Zeta function.
::
sage: L = Dokchitser(conductor=1, gammaV=[0], weight=1, eps=1, poles=[1], residues=[-1], init='1')
sage: L
Dokchitser L-series of conductor 1 and weight 1
sage: L(1)
Traceback (most recent call last):
...
ArithmeticError
sage: L(2)
1.64493406684823
sage: L(2, 1.1)
1.64493406684823
sage: L.derivative(2)
-0.937548254315844
sage: h = RR('0.0000000000001')
sage: (zeta(2+h) - zeta(2.))/h
-0.937028232783632
sage: L.taylor_series(2, k=5)
1.64493406684823 - 0.937548254315844*z + 0.994640117149451*z^2 - 1.00002430047384*z^3 + 1.00006193307...*z^4 + O(z^5)
RANK 1 ELLIPTIC CURVE:
We compute with the `L`-series of a rank `1`
curve.
::
sage: E = EllipticCurve('37a')
sage: L = E.lseries().dokchitser(); L
Dokchitser L-function associated to Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: L(1)
0.000000000000000
sage: L.derivative(1)
0.305999773834052
sage: L.derivative(1,2)
0.373095594536324
sage: L.num_coeffs()
48
sage: L.taylor_series(1,4)
0.000000000000000 + 0.305999773834052*z + 0.186547797268162*z^2 - 0.136791463097188*z^3 + O(z^4)
sage: L.check_functional_equation()
6.11218974800000e-18 # 32-bit
6.04442711160669e-18 # 64-bit
RANK 2 ELLIPTIC CURVE:
We compute the leading coefficient and Taylor expansion of the
`L`-series of a rank `2` curve.
::
sage: E = EllipticCurve('389a')
sage: L = E.lseries().dokchitser()
sage: L.num_coeffs ()
156
sage: L.derivative(1,E.rank())
1.51863300057685
sage: L.taylor_series(1,4)
2.90759778535572e-20 + (-1.64772676916085e-20)*z + 0.759316500288427*z^2 - 0.430302337583362*z^3 + O(z^4) # 32-bit
-3.11623283109075e-21 + (1.76595961125962e-21)*z + 0.759316500288427*z^2 - 0.430302337583362*z^3 + O(z^4) # 64-bit
RAMANUJAN DELTA L-FUNCTION:
The coefficients are given by Ramanujan's tau function::
sage: L = Dokchitser(conductor=1, gammaV=[0,1], weight=12, eps=1)
sage: pari_precode = 'tau(n)=(5*sigma(n,3)+7*sigma(n,5))*n/12 - 35*sum(k=1,n-1,(6*k-4*(n-k))*sigma(k,3)*sigma(n-k,5))'
sage: L.init_coeffs('tau(k)', pari_precode=pari_precode)
We redefine the default bound on the coefficients: Deligne's
estimate on tau(n) is better than the default
coefgrow(n)=`(4n)^{11/2}` (by a factor 1024), so
re-defining coefgrow() improves efficiency (slightly faster).
::
sage: L.num_coeffs()
12
sage: L.set_coeff_growth('2*n^(11/2)')
sage: L.num_coeffs()
11
Now we're ready to evaluate, etc.
::
sage: L(1)
0.0374412812685155
sage: L(1, 1.1)
0.0374412812685155
sage: L.taylor_series(1,3)
0.0374412812685155 + 0.0709221123619322*z + 0.0380744761270520*z^2 + O(z^3)
"""
def __init__(self, conductor, gammaV, weight, eps, \
poles=[], residues='automatic', prec=53,
init=None):
"""
Initialization of Dokchitser calculator EXAMPLES::
sage: L = Dokchitser(conductor=1, gammaV=[0], weight=1, eps=1, poles=[1], residues=[-1], init='1')
sage: L.num_coeffs()
4
"""
self.conductor = conductor
self.gammaV = gammaV
self.weight = weight
self.eps = eps
self.poles = poles
self.residues = residues
self.prec = prec
self.__CC = ComplexField(self.prec)
self.__RR = self.__CC._real_field()
if not init is None:
self.init_coeffs(init)
self.__init = init
else:
self.__init = False
def __reduce__(self):
D = copy.copy(self.__dict__)
if D.has_key('_Dokchitser__gp'):
del D['_Dokchitser__gp']
return reduce_load_dokchitser, (D, )
def _repr_(self):
z = "Dokchitser L-series of conductor %s and weight %s"%(
self.conductor, self.weight)
return z
def __del__(self):
self.gp().quit()
def gp(self):
"""
Return the gp interpreter that is used to implement this Dokchitser
L-function.
EXAMPLES::
sage: E = EllipticCurve('11a')
sage: L = E.lseries().dokchitser()
sage: L(2)
0.546048036215014
sage: L.gp()
PARI/GP interpreter
"""
try:
return self.__gp
except AttributeError:
logfile = None
g = sage.interfaces.gp.Gp(script_subdirectory='dokchitser', logfile=logfile)
g.read('computel.gp')
self.__gp = g
self._gp_eval('default(realprecision, %s)'%(self.prec//3 + 2))
self._gp_eval('conductor = %s'%self.conductor)
self._gp_eval('gammaV = %s'%self.gammaV)
self._gp_eval('weight = %s'%self.weight)
self._gp_eval('sgn = %s'%self.eps)
self._gp_eval('Lpoles = %s'%self.poles)
self._gp_eval('Lresidues = %s'%self.residues)
g._dokchitser = True
return g
def _gp_eval(self, s):
try:
t = self.gp().eval(s)
except (RuntimeError, TypeError):
raise RuntimeError, "Unable to create L-series, due to precision or other limits in PARI."
if '***' in t:
raise RuntimeError, "Unable to create L-series, due to precision or other limits in PARI."
return t
def __check_init(self):
if not self.__init:
raise ValueError, "you must call init_coeffs on the L-function first"
def num_coeffs(self, T=1):
"""
Return number of coefficients `a_n` that are needed in
order to perform most relevant `L`-function computations to
the desired precision.
EXAMPLES::
sage: E = EllipticCurve('11a')
sage: L = E.lseries().dokchitser()
sage: L.num_coeffs()
26
sage: E = EllipticCurve('5077a')
sage: L = E.lseries().dokchitser()
sage: L.num_coeffs()
568
sage: L = Dokchitser(conductor=1, gammaV=[0], weight=1, eps=1, poles=[1], residues=[-1], init='1')
sage: L.num_coeffs()
4
"""
return Integer(self.gp().eval('cflength(%s)'%T))
def init_coeffs(self, v, cutoff=1,
w=None,
pari_precode='',
max_imaginary_part=0,
max_asymp_coeffs=40):
"""
Set the coefficients `a_n` of the `L`-series. If
`L(s)` is not equal to its dual, pass the coefficients of
the dual as the second optional argument.
INPUT:
- ``v`` - list of complex numbers or string (pari
function of k)
- ``cutoff`` - real number = 1 (default: 1)
- ``w`` - list of complex numbers or string (pari
function of k)
- ``pari_precode`` - some code to execute in pari
before calling initLdata
- ``max_imaginary_part`` - (default: 0): redefine if
you want to compute L(s) for s having large imaginary part,
- ``max_asymp_coeffs`` - (default: 40): at most this
many terms are generated in asymptotic series for phi(t) and
G(s,t).
EXAMPLES::
sage: L = Dokchitser(conductor=1, gammaV=[0,1], weight=12, eps=1)
sage: pari_precode = 'tau(n)=(5*sigma(n,3)+7*sigma(n,5))*n/12 - 35*sum(k=1,n-1,(6*k-4*(n-k))*sigma(k,3)*sigma(n-k,5))'
sage: L.init_coeffs('tau(k)', pari_precode=pari_precode)
Evaluate the resulting L-function at a point, and compare with the answer that
one gets "by definition" (of L-function attached to a modular form)::
sage: L(14)
0.998583063162746
sage: a = delta_qexp(1000)
sage: sum(a[n]/float(n)^14 for n in range(1,1000))
0.9985830631627459
Illustrate that one can give a list of complex numbers for v (see trac 10937)::
sage: L2 = Dokchitser(conductor=1, gammaV=[0,1], weight=12, eps=1)
sage: L2.init_coeffs(list(delta_qexp(1000))[1:])
sage: L2(14)
0.998583063162746
TESTS:
Verify that setting the `w` parameter does not raise an error
(see trac 10937). Note that the meaning of `w` does not seem to
be documented anywhere in Dokchitser's package yet, so there is
no claim that the example below is meaningful! ::
sage: L2 = Dokchitser(conductor=1, gammaV=[0,1], weight=12, eps=1)
sage: L2.init_coeffs(list(delta_qexp(1000))[1:], w=[1..1000])
"""
if isinstance(v, tuple) and w is None:
v, cutoff, w, pari_precode, max_imaginary_part, max_asymp_coeffs = v
self.__init = (v, cutoff, w, pari_precode, max_imaginary_part, max_asymp_coeffs)
gp = self.gp()
if pari_precode != '':
self._gp_eval(pari_precode)
RR = self.__CC._real_field()
cutoff = RR(cutoff)
if isinstance(v, str):
if w is None:
self._gp_eval('initLdata("%s", %s)'%(v, cutoff))
return
self._gp_eval('initLdata("%s",%s,"%s")'%(v,cutoff,w))
return
if not isinstance(v, (list, tuple)):
raise TypeError, "v (=%s) must be a list, tuple, or string"%v
CC = self.__CC
v = ','.join([CC(a)._pari_init_() for a in v])
self._gp_eval('Avec = [%s]'%v)
if w is None:
self._gp_eval('initLdata("Avec[k]", %s)'%cutoff)
return
w = ','.join([CC(a)._pari_init_() for a in w])
self._gp_eval('Bvec = [%s]'%w)
self._gp_eval('initLdata("Avec[k]",%s,"Bvec[k]")'%cutoff)
def __to_CC(self, s):
s = s.replace('.E','.0E').replace(' ','')
return self.__CC(sage_eval(s, locals={'I':self.__CC.gen(0)}))
def _clear_value_cache(self):
del self.__values
def __call__(self, s, c=None):
r"""
INPUT:
- ``s`` - complex number
.. note::
Evaluation of the function takes a long time, so each
evaluation is cached. Call ``self._clear_value_cache()`` to
clear the evaluation cache.
EXAMPLES::
sage: E = EllipticCurve('5077a')
sage: L = E.lseries().dokchitser(100)
sage: L(1)
0.00000000000000000000000000000
sage: L(1+I)
-1.3085436607849493358323930438 + 0.81298000036784359634835412129*I
"""
self.__check_init()
s = self.__CC(s)
try:
return self.__values[s]
except AttributeError:
self.__values = {}
except KeyError:
pass
z = self.gp().eval('L(%s)'%s)
if 'pole' in z:
print z
raise ArithmeticError
elif '***' in z:
print z
raise RuntimeError
elif 'Warning' in z:
i = z.rfind('\n')
msg = z[:i].replace('digits','decimal digits')
verbose(msg, level=-1)
ans = self.__to_CC(z[i+1:])
self.__values[s] = ans
return ans
ans = self.__to_CC(z)
self.__values[s] = ans
return ans
def derivative(self, s, k=1):
r"""
Return the `k`-th derivative of the `L`-series at
`s`.
.. warning::
If `k` is greater than the order of vanishing of
`L` at `s` you may get nonsense.
EXAMPLES::
sage: E = EllipticCurve('389a')
sage: L = E.lseries().dokchitser()
sage: L.derivative(1,E.rank())
1.51863300057685
"""
self.__check_init()
s = self.__CC(s)
k = Integer(k)
z = self.gp().eval('L(%s,,%s)'%(s,k))
if 'pole' in z:
raise ArithmeticError, z
elif 'Warning' in z:
i = z.rfind('\n')
msg = z[:i].replace('digits','decimal digits')
verbose(msg, level=-1)
return self.__CC(z[i:])
return self.__CC(z)
def taylor_series(self, a=0, k=6, var='z'):
r"""
Return the first `k` terms of the Taylor series expansion
of the `L`-series about `a`.
This is returned as a series in ``var``, where you
should view ``var`` as equal to `s-a`. Thus
this function returns the formal power series whose coefficients
are `L^{(n)}(a)/n!`.
INPUT:
- ``a`` - complex number (default: 0); point about
which to expand
- ``k`` - integer (default: 6), series is
`O(``var``^k)`
- ``var`` - string (default: 'z'), variable of power
series
EXAMPLES::
sage: L = Dokchitser(conductor=1, gammaV=[0], weight=1, eps=1, poles=[1], residues=[-1], init='1')
sage: L.taylor_series(2, 3)
1.64493406684823 - 0.937548254315844*z + 0.994640117149451*z^2 + O(z^3)
sage: E = EllipticCurve('37a')
sage: L = E.lseries().dokchitser()
sage: L.taylor_series(1)
0.000000000000000 + 0.305999773834052*z + 0.186547797268162*z^2 - 0.136791463097188*z^3 + 0.0161066468496401*z^4 + 0.0185955175398802*z^5 + O(z^6)
We compute a Taylor series where each coefficient is to high
precision.
::
sage: E = EllipticCurve('389a')
sage: L = E.lseries().dokchitser(200)
sage: L.taylor_series(1,3)
6.2240188634103774348273446965620801288836328651973234573133e-73 + (-3.527132447498646306292650465494647003849868770...e-73)*z + 0.75931650028842677023019260789472201907809751649492435158581*z^2 + O(z^3)
"""
self.__check_init()
a = self.__CC(a)
k = Integer(k)
try:
z = self.gp()('Vec(Lseries(%s,,%s))'%(a,k-1))
except TypeError, msg:
raise RuntimeError, "%s\nUnable to compute Taylor expansion (try lowering the number of terms)"%msg
r = repr(z)
if 'pole' in r:
raise ArithmeticError, r
elif 'Warning' in r:
i = r.rfind('\n')
msg = r[:i].replace('digits','decimal digits')
verbose(msg, level=-1)
v = list(z)
K = self.__CC
v = [K(repr(x)) for x in v]
R = self.__CC[[var]]
return R(v,len(v))
def check_functional_equation(self, T=1.2):
r"""
Verifies how well numerically the functional equation is satisfied,
and also determines the residues if ``self.poles !=
[]`` and residues='automatic'.
More specifically: for `T>1` (default 1.2),
``self.check_functional_equation(T)`` should ideally
return 0 (to the current precision).
- if what this function returns does not look like 0 at all,
probably the functional equation is wrong (i.e. some of the
parameters gammaV, conductor etc., or the coefficients are wrong),
- if checkfeq(T) is to be used, more coefficients have to be
generated (approximately T times more), e.g. call cflength(1.3),
initLdata("a(k)",1.3), checkfeq(1.3)
- T=1 always (!) returns 0, so T has to be away from 1
- default value `T=1.2` seems to give a reasonable
balance
- if you don't have to verify the functional equation or the
L-values, call num_coeffs(1) and initLdata("a(k)",1), you need
slightly less coefficients.
EXAMPLES::
sage: L = Dokchitser(conductor=1, gammaV=[0], weight=1, eps=1, poles=[1], residues=[-1], init='1')
sage: L.check_functional_equation()
-1.35525271600000e-20 # 32-bit
-2.71050543121376e-20 # 64-bit
If we choose the sign in functional equation for the
`\zeta` function incorrectly, the functional equation
doesn't check out.
::
sage: L = Dokchitser(conductor=1, gammaV=[0], weight=1, eps=-11, poles=[1], residues=[-1], init='1')
sage: L.check_functional_equation()
-9.73967861488124
"""
self.__check_init()
z = self.gp().eval('checkfeq(%s)'%T).replace(' ','')
return self.__CC(z)
def set_coeff_growth(self, coefgrow):
r"""
You might have to redefine the coefficient growth function if the
`a_n` of the `L`-series are not given by the
following PARI function::
coefgrow(n) = if(length(Lpoles),
1.5*n^(vecmax(real(Lpoles))-1),
sqrt(4*n)^(weight-1));
INPUT:
- ``coefgrow`` - string that evaluates to a PARI
function of n that defines a coefgrow function.
EXAMPLE::
sage: L = Dokchitser(conductor=1, gammaV=[0,1], weight=12, eps=1)
sage: pari_precode = 'tau(n)=(5*sigma(n,3)+7*sigma(n,5))*n/12 - 35*sum(k=1,n-1,(6*k-4*(n-k))*sigma(k,3)*sigma(n-k,5))'
sage: L.init_coeffs('tau(k)', pari_precode=pari_precode)
sage: L.set_coeff_growth('2*n^(11/2)')
sage: L(1)
0.0374412812685155
"""
if not isinstance(coefgrow, str):
raise TypeError, "coefgrow must be a string"
g = self.gp()
g.eval('coefgrow(n) = %s'%(coefgrow.replace('\n',' ')))
def reduce_load_dokchitser(D):
X = Dokchitser(1,1,1,1)
X.__dict__ = D
X.init_coeffs(X._Dokchitser__init)
return X