r"""
Cython wrapper for the Parma Polyhedra Library (PPL)
The Parma Polyhedra Library (PPL) is a library for polyhedral
computations over `\QQ`. This interface tries to reproduce the C++ API
as faithfully as possible in Cython/Sage. For example, the following
C++ excerpt:
.. code-block:: c++
Variable x(0);
Variable y(1);
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);
C_Polyhedron poly_from_constraints(cs);
translates into::
sage: from sage.libs.ppl import Variable, Constraint_System, C_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System()
sage: cs.insert(x >= 0)
sage: cs.insert(x <= 3)
sage: cs.insert(y >= 0)
sage: cs.insert(y <= 3)
sage: poly_from_constraints = C_Polyhedron(cs)
The same polyhedron constructed from generators::
sage: from sage.libs.ppl import Variable, Generator_System, C_Polyhedron, point
sage: gs = Generator_System()
sage: gs.insert(point(0*x + 0*y))
sage: gs.insert(point(0*x + 3*y))
sage: gs.insert(point(3*x + 0*y))
sage: gs.insert(point(3*x + 3*y))
sage: poly_from_generators = C_Polyhedron(gs)
Rich comparisons test equality/inequality and strict/non-strict
containment::
sage: poly_from_generators == poly_from_constraints
True
sage: poly_from_generators >= poly_from_constraints
True
sage: poly_from_generators < poly_from_constraints
False
sage: poly_from_constraints.minimized_generators()
Generator_System {point(0/1, 0/1), point(0/1, 3/1), point(3/1, 0/1), point(3/1, 3/1)}
sage: poly_from_constraints.minimized_constraints()
Constraint_System {-x0+3>=0, -x1+3>=0, x0>=0, x1>=0}
As we see above, the library is generally easy to use. There are a few
pitfalls that are not entirely obvious without consulting the
documentation, in particular:
* There are no vectors used to describe :class:`Generator` (points,
closure points, rays, lines) or :class:`Constraint` (strict
inequalities, non-strict inequalities, or equations). Coordinates
are always specified via linear polynomials in :class:`Variable`
* All coordinates of rays and lines as well as all coefficients of
constraint relations are (arbitrary precision) integers. Only the
generators :func:`point` and :func:`closure_point` allow one to
specify an overall divisor of the otherwise integral
coordinates. For example::
sage: from sage.libs.ppl import Variable, point
sage: x = Variable(0); y = Variable(1)
sage: p = point( 2*x+3*y, 5 ); p
point(2/5, 3/5)
sage: p.coefficient(x)
2
sage: p.coefficient(y)
3
sage: p.divisor()
5
* PPL supports (topologically) closed polyhedra
(:class:`C_Polyhedron`) as well as not neccesarily closed polyhedra
(:class:`NNC_Polyhedron`). Only the latter allows closure points
(=points of the closure but not of the actual polyhedron) and strict
inequalities (``>`` and ``<``)
The naming convention for the C++ classes is that they start with
``PPL_``, for example, the original ``Linear_Expression`` becomes
``PPL_Linear_Expression``. The Python wrapper has the same name as the
original library class, that is, just ``Linear_Expression``. In short:
* If you are using the Python wrapper (if in doubt: thats you), then
you use the same names as the PPL C++ class library.
* If you are writing your own Cython code, you can access the
underlying C++ classes by adding the prefix ``PPL_``.
Finally, PPL is fast. For example, here is the permutahedron of 5
basis vectors::
sage: from sage.libs.ppl import Variable, Generator_System, point, C_Polyhedron
sage: basis = range(0,5)
sage: x = [ Variable(i) for i in basis ]
sage: gs = Generator_System();
sage: for coeff in permutations(basis):
... gs.insert(point( sum( (coeff[i]+1)*x[i] for i in basis ) ))
...
sage: C_Polyhedron(gs)
A 4-dimensional polyhedron in QQ^5 defined as the convex hull of 120 points
The above computation (using PPL) finishes without noticeable delay (timeit
measures it to be 90 microseconds on sage.math). Below we do the same
computation with cddlib, which needs more than 3 seconds on the same
hardware::
sage: basis = range(0,5)
sage: gs = [ tuple(coeff) for coeff in permutations(basis) ]
sage: Polyhedron(vertices=gs, backend='cddr') # long time (3s on sage.math, 2011)
A 4-dimensional polyhedron in QQ^5 defined as the convex hull of 120 vertices
DIFFERENCES VS. C++
Since Python and C++ syntax are not always compatible, there are
necessarily some differences. The main ones are:
* The :class:`Linear_Expression` also accepts an iterable as input for
the homogeneous cooefficients.
* :class:`Polyhedron` and its subclasses as well as
:class:`Generator_System` and :class:`Constraint_System` can be set
immutable via a ``set_immutable()`` method. This is the analog of
declaring a C++ instance ``const``. All other classes are immutable
by themselves.
AUTHORS:
- Volker Braun (2010-10-08): initial version.
"""
from sage.libs.gmp.mpz cimport mpz_t, mpz_set
from sage.rings.integer cimport Integer
include '../ext/interrupt.pxi'
include "../ext/stdsage.pxi"
include "../ext/cdefs.pxi"
from libcpp cimport bool as cppbool
cdef extern from "gmpxx.h":
cdef cppclass mpz_class:
mpz_class()
mpz_class(int i)
mpz_class(mpz_t z)
mpz_class(mpz_class)
mpz_t* get_mpz_t()
cdef extern from "ppl.hh" namespace "Parma_Polyhedra_Library":
cdef void set_rounding_for_PPL()
cdef void restore_pre_PPL_rounding()
restore_pre_PPL_rounding()
cdef extern from "ppl.hh" namespace "Parma_Polyhedra_Library::Generator":
ctypedef enum PPL_GeneratorType:
LINE, RAY, POINT, CLOSURE_POINT
cdef extern from "ppl.hh" namespace "Parma_Polyhedra_Library::Constraint":
ctypedef enum PPL_ConstraintType:
EQUALITY, NONSTRICT_INEQUALITY, STRICT_INEQUALITY
cdef extern from "ppl.hh" namespace "Parma_Polyhedra_Library":
ctypedef size_t PPL_dimension_type "Parma_Polyhedra_Library::dimension_type"
ctypedef mpz_class PPL_Coefficient "Parma_Polyhedra_Library::Coefficient"
cdef cppclass PPL_Variable "Parma_Polyhedra_Library::Variable"
cdef cppclass PPL_Linear_Expression "Parma_Polyhedra_Library::Linear_Expression"
cdef cppclass PPL_Generator "Parma_Polyhedra_Library::Generator"
cdef cppclass PPL_Generator_System "Parma_Polyhedra_Library::Generator_System"
cdef cppclass PPL_Constraint "Parma_Polyhedra_Library::Constraint"
cdef cppclass PPL_Constraint_System "Parma_Polyhedra_Library::Constraint_System"
cdef cppclass PPL_Polyhedron "Parma_Polyhedra_Library::Polyhedron"
cdef cppclass PPL_C_Polyhedron "Parma_Polyhedra_Library::C_Polyhedron" (PPL_Polyhedron)
cdef cppclass PPL_NNC_Polyhedron "Parma_Polyhedra_Library::NNC_Polyhedron" (PPL_Polyhedron)
cdef cppclass PPL_Poly_Gen_Relation "Parma_Polyhedra_Library::Poly_Gen_Relation"
cdef cppclass PPL_Poly_Con_Relation "Parma_Polyhedra_Library::Poly_Con_Relation"
cdef cppclass PPL_Variable:
PPL_Variable(PPL_dimension_type i)
PPL_dimension_type id()
bint OK()
PPL_dimension_type space_dimension()
cdef cppclass PPL_Linear_Expression:
PPL_Linear_Expression()
PPL_Linear_Expression(PPL_Linear_Expression &e)
PPL_Linear_Expression(PPL_Coefficient n)
PPL_Linear_Expression(PPL_Variable v)
PPL_dimension_type space_dimension()
PPL_Coefficient coefficient(PPL_Variable v)
PPL_Coefficient inhomogeneous_term()
bint is_zero()
bint all_homogeneous_terms_are_zero()
void ascii_dump()
bint OK()
PPL_Linear_Expression operator+(PPL_Linear_Expression& e)
PPL_Linear_Expression operator-(PPL_Linear_Expression& e)
PPL_Linear_Expression operator*(PPL_Coefficient n)
PPL_Constraint operator> (PPL_Linear_Expression& e)
PPL_Constraint operator>=(PPL_Linear_Expression& e)
PPL_Constraint operator==(PPL_Linear_Expression& e)
PPL_Constraint operator<=(PPL_Linear_Expression& e)
PPL_Constraint operator< (PPL_Linear_Expression& e)
cdef cppclass PPL_Generator:
PPL_Generator(PPL_Generator &g)
PPL_dimension_type space_dimension()
PPL_GeneratorType type()
bint is_line()
bint is_ray()
bint is_line_or_ray()
bint is_point()
bint is_closure_point()
PPL_Coefficient coefficient(PPL_Variable v)
PPL_Coefficient divisor() except +
bint is_equivalent_to(PPL_Generator &y)
void ascii_dump()
bint OK()
cdef cppclass PPL_Constraint:
PPL_Constraint(PPL_Constraint &g)
PPL_dimension_type space_dimension()
PPL_ConstraintType type()
bint is_equality()
bint is_inequality()
bint is_nonstrict_inequality()
bint is_strict_inequality()
PPL_Coefficient coefficient(PPL_Variable v)
PPL_Coefficient inhomogeneous_term()
bint is_tautological()
bint is_inconsistent()
bint is_equivalent_to(PPL_Constraint &y)
void ascii_dump()
bint OK()
cdef cppclass PPL_Generator_System:
PPL_Generator_System()
PPL_Generator_System(PPL_Generator &g)
PPL_Generator_System(PPL_Generator_System &gs)
PPL_dimension_type space_dimension()
void clear()
void insert(PPL_Generator &g)
bint empty()
void ascii_dump()
bint OK()
cdef cppclass PPL_Constraint_System:
PPL_Constraint_System()
PPL_Constraint_System(PPL_Constraint &g)
PPL_Constraint_System(PPL_Constraint_System &gs)
PPL_dimension_type space_dimension()
bint has_equalities()
bint has_strict_inequalities()
void clear()
void insert(PPL_Constraint &g)
bint empty()
void ascii_dump()
bint OK()
cdef enum PPL_Degenerate_Element:
UNIVERSE, EMPTY
cdef cppclass PPL_Polyhedron:
PPL_dimension_type space_dimension()
PPL_dimension_type affine_dimension()
PPL_Constraint_System& constraints()
PPL_Constraint_System& minimized_constraints()
PPL_Generator_System& generators()
PPL_Generator_System& minimized_generators()
PPL_Poly_Con_Relation relation_with(PPL_Constraint &c) except +ValueError
PPL_Poly_Gen_Relation relation_with(PPL_Generator &g) except +ValueError
bint is_empty()
bint is_universe()
bint is_topologically_closed()
bint is_disjoint_from(PPL_Polyhedron &y) except +ValueError
bint is_discrete()
bint is_bounded()
bint contains_integer_point()
bint constrains(PPL_Variable var) except +ValueError
bint bounds_from_above(PPL_Linear_Expression &expr) except +ValueError
bint bounds_from_below(PPL_Linear_Expression &expr) except +ValueError
bint maximize(PPL_Linear_Expression &expr, PPL_Coefficient &sup_n, PPL_Coefficient &sup_d,
cppbool &maximum)
bint maximize(PPL_Linear_Expression &expr, PPL_Coefficient &sup_n, PPL_Coefficient &sup_d,
cppbool &maximum, PPL_Generator &g)
bint minimize(PPL_Linear_Expression &expr, PPL_Coefficient &inf_n, PPL_Coefficient &inf_d,
cppbool &minimum)
bint minimize(PPL_Linear_Expression &expr, PPL_Coefficient &inf_n, PPL_Coefficient &inf_d,
cppbool &minimum, PPL_Generator &g)
bint frequency(PPL_Linear_Expression &expr, PPL_Coefficient &freq_n, PPL_Coefficient &freq_d,
PPL_Coefficient &val_n, PPL_Coefficient &val_d)
bint contains(PPL_Polyhedron &y) except +ValueError
bint strictly_contains(PPL_Polyhedron &y) except +ValueError
void add_constraint(PPL_Constraint &c) except +ValueError
void add_generator(PPL_Generator &g) except +ValueError
void add_constraints(PPL_Constraint_System &cs) except +ValueError
void add_generators(PPL_Generator_System &gs) except +ValueError
void refine_with_constraint(PPL_Constraint &c) except +ValueError
void refine_with_constraints(PPL_Constraint_System &cs) except +ValueError
void unconstrain(PPL_Variable var) except +ValueError
void intersection_assign(PPL_Polyhedron &y) except +ValueError
void poly_hull_assign(PPL_Polyhedron &y) except +ValueError
void upper_bound_assign(PPL_Polyhedron &y) except +ValueError
void poly_difference_assign(PPL_Polyhedron &y) except +ValueError
void difference_assign(PPL_Polyhedron &y) except +ValueError
void drop_some_non_integer_points()
void topological_closure_assign()
void add_space_dimensions_and_embed(PPL_dimension_type m) except +ValueError
void add_space_dimensions_and_project(PPL_dimension_type m) except +ValueError
void concatenate_assign(PPL_Polyhedron &y) except +ValueError
void remove_higher_space_dimensions(PPL_dimension_type new_dimension) except +ValueError
void ascii_dump()
int hash_code()
PPL_dimension_type max_space_dimension()
bint OK(cppbool check_not_empty=false)
bint operator!=(PPL_Polyhedron &y)
bint operator==(PPL_Polyhedron &y)
cdef cppclass PPL_C_Polyhedron(PPL_Polyhedron):
PPL_C_Polyhedron(PPL_dimension_type num_dimensions, PPL_Degenerate_Element)
PPL_C_Polyhedron(PPL_Constraint_System &cs) except +ValueError
PPL_C_Polyhedron(PPL_Generator_System &gs) except +ValueError
PPL_C_Polyhedron(PPL_C_Polyhedron &y)
cdef cppclass PPL_NNC_Polyhedron(PPL_Polyhedron):
PPL_NNC_Polyhedron(PPL_dimension_type num_dimensions, PPL_Degenerate_Element kind)
PPL_NNC_Polyhedron(PPL_Constraint_System &cs) except +ValueError
PPL_NNC_Polyhedron(PPL_Generator_System &gs) except +ValueError
PPL_NNC_Polyhedron(PPL_NNC_Polyhedron &y)
PPL_NNC_Polyhedron(PPL_C_Polyhedron &y)
cdef cppclass PPL_Poly_Gen_Relation:
PPL_Poly_Gen_Relation(PPL_Poly_Gen_Relation &cpy_from)
bint implies(PPL_Poly_Gen_Relation &y)
void ascii_dump()
bint OK()
cdef cppclass PPL_Poly_Con_Relation:
PPL_Poly_Con_Relation(PPL_Poly_Con_Relation &cpy_from)
bint implies(PPL_Poly_Con_Relation &y)
void ascii_dump()
bint OK()
cdef extern from "ppl.hh":
PPL_Generator PPL_line "Parma_Polyhedra_Library::line" (PPL_Linear_Expression &e) except +ValueError
PPL_Generator PPL_ray "Parma_Polyhedra_Library::ray" (PPL_Linear_Expression &e) except +ValueError
PPL_Generator PPL_point "Parma_Polyhedra_Library::point" (PPL_Linear_Expression &e, PPL_Coefficient &d) except +ValueError
PPL_Generator PPL_closure_point "Parma_Polyhedra_Library::closure_point" (PPL_Linear_Expression &e, PPL_Coefficient &d) except +ValueError
cdef extern from "ppl.hh":
PPL_Poly_Gen_Relation PPL_Poly_Gen_Relation_nothing "Parma_Polyhedra_Library::Poly_Gen_Relation::nothing" ()
PPL_Poly_Gen_Relation PPL_Poly_Gen_Relation_subsumes "Parma_Polyhedra_Library::Poly_Gen_Relation::subsumes" ()
PPL_Poly_Con_Relation PPL_Poly_Con_Relation_nothing "Parma_Polyhedra_Library::Poly_Con_Relation::nothing" ()
PPL_Poly_Con_Relation PPL_Poly_Con_Relation_is_disjoint "Parma_Polyhedra_Library::Poly_Con_Relation::is_disjoint" ()
PPL_Poly_Con_Relation PPL_Poly_Con_Relation_strictly_intersects "Parma_Polyhedra_Library::Poly_Con_Relation::strictly_intersects" ()
PPL_Poly_Con_Relation PPL_Poly_Con_Relation_is_included "Parma_Polyhedra_Library::Poly_Con_Relation::is_included" ()
PPL_Poly_Con_Relation PPL_Poly_Con_Relation_saturates "Parma_Polyhedra_Library::Poly_Con_Relation::saturates" ()
cdef extern from "ppl_shim.hh":
PPL_Poly_Gen_Relation* new_relation_with(PPL_Polyhedron &p, PPL_Generator &g) except +ValueError
PPL_Poly_Con_Relation* new_relation_with(PPL_Polyhedron &p, PPL_Constraint &c) except +ValueError
cdef class _mutable_or_immutable(object)
cdef class Variable(object)
cdef class Linear_Expression(object)
cdef class Generator(object)
cdef class Generator_System(_mutable_or_immutable)
cdef class Generator_System_iterator(object)
cdef class Constraint(object)
cdef class Constraint_System(_mutable_or_immutable)
cdef class Constraint_System_iterator(object)
cdef class Polyhedron(_mutable_or_immutable)
cdef class C_Polyhedron(Polyhedron)
cdef class NNC_Polyhedron(Polyhedron)
cdef class Poly_Gen_Relation(object)
cdef class Poly_Con_Relation(object)
cdef class _mutable_or_immutable(object):
r"""
A base class for mutable or immutable objects.
By default, any object is mutable. It can then be
:meth:`set_immutable`.
EXAMPLES::
sage: from sage.libs.ppl import _mutable_or_immutable as ExampleObj
sage: x = ExampleObj()
sage: x.is_mutable()
True
sage: x.is_immutable()
False
sage: x.set_immutable()
sage: x.is_mutable()
False
"""
cdef bint _is_mutable
def __cinit__(self):
"""
The Cython constructor.
TESTS::
sage: from sage.libs.ppl import _mutable_or_immutable as ExampleObj
sage: x = ExampleObj() # indirect doctest
sage: x.is_mutable()
True
"""
self._is_mutable = True
def set_immutable(self):
"""
Make this object immutable.
This operation cannot be undone.
EXAMPLES::
sage: from sage.libs.ppl import _mutable_or_immutable as ExampleObj
sage: x = ExampleObj()
sage: x.is_mutable()
True
sage: x.set_immutable()
sage: x.is_mutable()
False
"""
self._is_mutable = False
def is_mutable(self):
"""
Return whether this object is mutable.
The data members of the object can only be modified if the
object is mutable.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.libs.ppl import _mutable_or_immutable as ExampleObj
sage: x = ExampleObj()
sage: x.is_mutable()
True
"""
return self._is_mutable
def is_immutable(self):
"""
Return whether this object is immutable.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.libs.ppl import _mutable_or_immutable as ExampleObj
sage: x = ExampleObj()
sage: x.is_immutable()
False
"""
return not self._is_mutable
def assert_mutable(self, msg):
r"""
Raise ``ValueError`` if the object is not mutable.
INPUT:
- ``msg`` -- a string. The message to be returned together
with the ``ValueError``
OUTPUT:
This method returns no output. A ``ValueError``` is raised if
the object is not mutable.
EXAMPLES::
sage: from sage.libs.ppl import _mutable_or_immutable as ExampleObj
sage: x = ExampleObj()
sage: x.assert_mutable("this will not trigger")
sage: x.set_immutable()
sage: x.assert_mutable("this will trigger")
Traceback (most recent call last):
...
ValueError: this will trigger
"""
if not self._is_mutable:
raise ValueError(msg)
cdef class Polyhedron(_mutable_or_immutable):
r"""
Wrapper for PPL's ``Polyhedron`` class.
An object of the class Polyhedron represents a convex polyhedron
in the vector space.
A polyhedron can be specified as either a finite system of
constraints or a finite system of generators (see Section
Representations of Convex Polyhedra) and it is always possible to
obtain either representation. That is, if we know the system of
constraints, we can obtain from this the system of generators that
define the same polyhedron and vice versa. These systems can
contain redundant members: in this case we say that they are not
in the minimal form.
INPUT/OUTPUT:
This is an abstract base for :class:`C_Polyhedron` and
:class:`NNC_Polyhedron`. You cannot instantiate this class.
"""
cdef PPL_Polyhedron *thisptr
def __init__(self):
r"""
The Python constructor.
See also :class:`C_Polyhedron` and
:class:`NNC_Polyhedron`. You must not instantiate
:class:`Polyhedron` objects.
TESTS::
sage: from sage.libs.ppl import Polyhedron
sage: Polyhedron()
Traceback (most recent call last):
...
NotImplementedError: The Polyhedron class is abstract, you must not instantiate it.
"""
raise NotImplementedError, 'The Polyhedron class is abstract, you must not instantiate it.'
def __repr__(self):
"""
Return a string representation.
OUTPUT:
String.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: C_Polyhedron( 5*x-2*y >= x+y-1 ).__repr__()
'A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 ray, 1 line'
Special cases::
sage: C_Polyhedron(3, 'empty').__repr__()
'The empty polyhedron in QQ^3'
sage: C_Polyhedron(3, 'universe').__repr__()
'The space-filling polyhedron in QQ^3'
"""
dim = self.affine_dimension()
ambient_dim = self.space_dimension()
gs = self.minimized_generators()
n_points = 0
n_closure_points = 0
n_lines = 0
n_rays = 0
for g in gs:
if g.is_line():
n_lines += 1
elif g.is_ray():
n_rays += 1
elif g.is_point():
n_points += 1
elif g.is_closure_point():
n_closure_points += 1
else:
assert False
if self.is_empty():
return 'The empty polyhedron in QQ^'+str(ambient_dim)
if self.is_universe():
return 'The space-filling polyhedron in QQ^'+str(ambient_dim)
desc = 'A ' + str(dim) + '-dimensional polyhedron'
desc += ' in QQ'
desc += '^' + str(ambient_dim)
desc += ' defined as the convex hull of '
first = True
if n_points>0:
if not first:
desc += ", "
first = False
desc += str(n_points)
if n_points==1: desc += ' point'
else: desc += ' points'
if n_closure_points>0:
if not first:
desc += ", "
first = False
desc += str(n_closure_points)
if n_closure_points==1: desc += ' closure_point'
else: desc += ' closure_points'
if n_rays>0:
if not first:
desc += ", "
first = False
desc += str(n_rays)
if n_rays==1: desc += ' ray'
else: desc += ' rays'
if n_lines>0:
if not first:
desc += ", "
first = False
desc += repr(n_lines)
if n_lines==1: desc +=' line'
else: desc +=' lines'
return desc;
def space_dimension(self):
r"""
Return the dimension of the vector space enclosing ``self``.
OUTPUT:
Integer.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron( 5*x-2*y >= x+y-1 )
sage: p.space_dimension()
2
"""
return self.thisptr.space_dimension()
def affine_dimension(self):
r"""
Return the affine dimension of ``self``.
OUTPUT:
An integer. Returns 0 if ``self`` is empty. Otherwise, returns
the affine dimension of ``self``.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron( 5*x-2*y == x+y-1 )
sage: p.affine_dimension()
1
"""
sig_on()
cdef size_t dim = self.thisptr.affine_dimension()
sig_off()
return dim
def constraints(self):
r"""
Returns the system of constraints.
See also :meth:`minimized_constraints`.
OUTPUT:
A :class:`Constraint_System`.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron( y>=0 )
sage: p.add_constraint( x>=0 )
sage: p.add_constraint( x+y>=0 )
sage: p.constraints()
Constraint_System {x1>=0, x0>=0, x0+x1>=0}
sage: p.minimized_constraints()
Constraint_System {x1>=0, x0>=0}
"""
sig_on()
cdef PPL_Constraint_System cs = self.thisptr.constraints()
sig_off()
return _wrap_Constraint_System(cs)
def minimized_constraints(self):
r"""
Returns the minimized system of constraints.
See also :meth:`constraints`.
OUTPUT:
A :class:`Constraint_System`.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron( y>=0 )
sage: p.add_constraint( x>=0 )
sage: p.add_constraint( x+y>=0 )
sage: p.constraints()
Constraint_System {x1>=0, x0>=0, x0+x1>=0}
sage: p.minimized_constraints()
Constraint_System {x1>=0, x0>=0}
"""
sig_on()
cdef PPL_Constraint_System cs = self.thisptr.minimized_constraints()
sig_off()
return _wrap_Constraint_System(cs)
def generators(self):
r"""
Returns the system of generators.
See also :meth:`minimized_generators`.
OUTPUT:
A :class:`Generator_System`.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, point
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron(3,'empty')
sage: p.add_generator( point(-x-y) )
sage: p.add_generator( point(0) )
sage: p.add_generator( point(+x+y) )
sage: p.generators()
Generator_System {point(-1/1, -1/1, 0/1), point(0/1, 0/1, 0/1), point(1/1, 1/1, 0/1)}
sage: p.minimized_generators()
Generator_System {point(-1/1, -1/1, 0/1), point(1/1, 1/1, 0/1)}
"""
sig_on()
cdef PPL_Generator_System gs = self.thisptr.generators()
sig_off()
return _wrap_Generator_System(gs)
def minimized_generators(self):
r"""
Returns the minimized system of generators.
See also :meth:`generators`.
OUTPUT:
A :class:`Generator_System`.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, point
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron(3,'empty')
sage: p.add_generator( point(-x-y) )
sage: p.add_generator( point(0) )
sage: p.add_generator( point(+x+y) )
sage: p.generators()
Generator_System {point(-1/1, -1/1, 0/1), point(0/1, 0/1, 0/1), point(1/1, 1/1, 0/1)}
sage: p.minimized_generators()
Generator_System {point(-1/1, -1/1, 0/1), point(1/1, 1/1, 0/1)}
"""
sig_on()
cdef PPL_Generator_System gs = self.thisptr.minimized_generators()
sig_off()
return _wrap_Generator_System(gs)
cdef _relation_with_generator(Polyhedron self, Generator g):
r"""
Helper method for :meth:`relation_with`.
"""
rel = Poly_Gen_Relation(True)
try:
sig_on()
rel.thisptr = new_relation_with(self.thisptr[0], g.thisptr[0])
except ValueError, msg:
rel.thisptr = new PPL_Poly_Gen_Relation(PPL_Poly_Gen_Relation_nothing())
raise ValueError, msg
finally:
sig_off()
return rel
cdef _relation_with_constraint(Polyhedron self, Constraint c):
r"""
Helper method for :meth:`relation_with`.
"""
rel = Poly_Con_Relation(True)
try:
sig_on()
rel.thisptr = new_relation_with(self.thisptr[0], c.thisptr[0])
except ValueError, msg:
rel.thisptr = new PPL_Poly_Con_Relation(PPL_Poly_Con_Relation_nothing())
raise ValueError, msg
finally:
sig_off()
return rel
def relation_with(self, arg):
r"""
Return the relations holding between the polyhedron ``self``
and the generator or constraint ``arg``.
INPUT:
- ``arg`` -- a :class:`Generator` or a :class:`Constraint`.
OUTPUT:
A :class:`Poly_Gen_Relation` or a :class:`Poly_Con_Relation`
according to the type of the input.
Raises ``ValueError`` if ``self`` and the generator/constraint
``arg`` are dimension-incompatible.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, point, ray, Poly_Con_Relation
sage: x = Variable(0); y = Variable(1)
sage: p = C_Polyhedron(2, 'empty')
sage: p.add_generator( point(1*x+0*y) )
sage: p.add_generator( point(0*x+1*y) )
sage: p.minimized_constraints()
Constraint_System {x0+x1-1==0, -x1+1>=0, x1>=0}
sage: p.relation_with( point(1*x+1*y) )
nothing
sage: p.relation_with( point(1*x+1*y, 2) )
subsumes
sage: p.relation_with( x+y==-1 )
is_disjoint
sage: p.relation_with( x==y )
strictly_intersects
sage: p.relation_with( x+y<=1 )
is_included, saturates
sage: p.relation_with( x+y<1 )
is_disjoint, saturates
In a Sage program you will usually use :meth:`relation_with`
together with :meth:`~sage.libs.ppl.Poly_Gen_Relation.implies`
or :meth:`~sage.libs.ppl.Poly_Con_Relation.implies`, for
example::
sage: p.relation_with( x+y<1 ).implies(Poly_Con_Relation.saturates())
True
You can only get relations with dimension-compatible
generators or constraints::
sage: z = Variable(2)
sage: p.relation_with( point(x+y+z) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::relation_with(g):
this->space_dimension() == 2, g.space_dimension() == 3.
sage: p.relation_with( z>0 )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::relation_with(c):
this->space_dimension() == 2, c.space_dimension() == 3.
"""
if isinstance(arg, Generator):
return self._relation_with_generator(arg)
if isinstance(arg, Constraint):
return self._relation_with_constraint(arg)
else:
raise TypeError, 'Argument must be Generator or a Constraint'
def is_empty(self):
"""
Test if ``self`` is an empty polyhedron.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.libs.ppl import C_Polyhedron
sage: C_Polyhedron(3, 'empty').is_empty()
True
sage: C_Polyhedron(3, 'universe').is_empty()
False
"""
sig_on()
cdef bint result = self.thisptr.is_empty()
sig_off()
return result
def is_universe(self):
"""
Test if ``self`` is a universe (space-filling) polyhedron.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.libs.ppl import C_Polyhedron
sage: C_Polyhedron(3, 'empty').is_universe()
False
sage: C_Polyhedron(3, 'universe').is_universe()
True
"""
sig_on()
cdef bint result = self.thisptr.is_universe()
sig_off()
return result
def is_topologically_closed(self):
"""
Tests if ``self`` is topologically closed.
OUTPUT:
Returns ``True`` if and only if ``self`` is a topologically
closed subset of the ambient vector space.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, NNC_Polyhedron
sage: x = Variable(0); y = Variable(1)
sage: C_Polyhedron(3, 'universe').is_topologically_closed()
True
sage: C_Polyhedron( x>=1 ).is_topologically_closed()
True
sage: NNC_Polyhedron( x>1 ).is_topologically_closed()
False
"""
sig_on()
cdef bint result = self.thisptr.is_topologically_closed()
sig_off()
return result
def is_disjoint_from(self, Polyhedron y):
r"""
Tests whether ``self`` and ``y`` are disjoint.
INPUT:
- ``y`` -- a :class:`Polyhedron`.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` and ``y``
are disjoint.
Rayises a ``ValueError`` if ``self`` and ``y`` are
topology-incompatible or dimension-incompatible.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, NNC_Polyhedron
sage: x = Variable(0); y = Variable(1)
sage: C_Polyhedron(x<=0).is_disjoint_from( C_Polyhedron(x>=1) )
True
This is not allowed::
sage: x = Variable(0); y = Variable(1)
sage: poly_1d = C_Polyhedron(x<=0)
sage: poly_2d = C_Polyhedron(x+0*y>=1)
sage: poly_1d.is_disjoint_from(poly_2d)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::intersection_assign(y):
this->space_dimension() == 1, y.space_dimension() == 2.
Nor is this::
sage: x = Variable(0); y = Variable(1)
sage: c_poly = C_Polyhedron( x<=0 )
sage: nnc_poly = NNC_Polyhedron( x >0 )
sage: c_poly.is_disjoint_from(nnc_poly)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::intersection_assign(y):
y is a NNC_Polyhedron.
sage: NNC_Polyhedron(c_poly).is_disjoint_from(nnc_poly)
True
"""
cdef bint result
try:
sig_on()
result = self.thisptr.is_disjoint_from(y.thisptr[0])
finally:
sig_off()
return result
def is_discrete(self):
r"""
Test whether ``self`` is discrete.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` is discrete.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, point, ray
sage: x = Variable(0); y = Variable(1)
sage: p = C_Polyhedron( point(1*x+2*y) )
sage: p.is_discrete()
True
sage: p.add_generator( point(x) )
sage: p.is_discrete()
False
"""
sig_on()
cdef bint result = self.thisptr.is_discrete()
sig_off()
return result
def is_bounded(self):
r"""
Test whether ``self`` is bounded.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` is a bounded polyhedron.
EXAMPLES::
sage: from sage.libs.ppl import Variable, NNC_Polyhedron, point, closure_point, ray
sage: x = Variable(0)
sage: p = NNC_Polyhedron( point(0*x) )
sage: p.add_generator( closure_point(1*x) )
sage: p.is_bounded()
True
sage: p.add_generator( ray(1*x) )
sage: p.is_bounded()
False
"""
sig_on()
cdef bint result = self.thisptr.is_bounded()
sig_off()
return result
def contains_integer_point(self):
r"""
Test whether ``self`` contains an integer point.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` contains an
integer point.
EXAMPLES::
sage: from sage.libs.ppl import Variable, NNC_Polyhedron
sage: x = Variable(0)
sage: p = NNC_Polyhedron(x>0)
sage: p.add_constraint(x<1)
sage: p.contains_integer_point()
False
sage: p.topological_closure_assign()
sage: p.contains_integer_point()
True
"""
sig_on()
cdef bint result = self.thisptr.contains_integer_point()
sig_off()
return result
def constrains(self, Variable var):
r"""
Test whether ``var`` is constrained in ``self``.
INPUT:
- ``var`` -- a :class:`Variable`.
OUTPUT:
Boolean. Returns ``True`` if and only if ``var`` is
constrained in ``self``.
Raises a ``ValueError`` if ``var`` is not a space dimension of
``self``.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron
sage: x = Variable(0)
sage: p = C_Polyhedron(1, 'universe')
sage: p.constrains(x)
False
sage: p = C_Polyhedron(x>=0)
sage: p.constrains(x)
True
sage: y = Variable(1)
sage: p.constrains(y)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::constrains(v):
this->space_dimension() == 1, v.space_dimension() == 2.
"""
cdef bint result
try:
sig_on()
result = self.thisptr.constrains(var.thisptr[0])
finally:
sig_off()
return result
def bounds_from_above(self, Linear_Expression expr):
r"""
Test whether the ``expr`` is bounded from above.
INPUT:
- ``expr`` -- a :class:`Linear_Expression`
OUTPUT:
Boolean. Returns ``True`` if and only if ``expr`` is bounded
from above in ``self``.
Raises a ``ValueError`` if ``expr`` and ``this`` are
dimension-incompatible.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, Linear_Expression
sage: x = Variable(0); y = Variable(1)
sage: p = C_Polyhedron(y<=0)
sage: p.bounds_from_above(x+1)
False
sage: p.bounds_from_above(Linear_Expression(y))
True
sage: p = C_Polyhedron(x<=0)
sage: p.bounds_from_above(y+1)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::bounds_from_above(e):
this->space_dimension() == 1, e.space_dimension() == 2.
"""
cdef bint result
try:
sig_on()
result = self.thisptr.bounds_from_above(expr.thisptr[0])
finally:
sig_off()
return result
def bounds_from_below(self, Linear_Expression expr):
r"""
Test whether the ``expr`` is bounded from above.
INPUT:
- ``expr`` -- a :class:`Linear_Expression`
OUTPUT:
Boolean. Returns ``True`` if and only if ``expr`` is bounded
from above in ``self``.
Raises a ``ValueError`` if ``expr`` and ``this`` are
dimension-incompatible.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, Linear_Expression
sage: x = Variable(0); y = Variable(1)
sage: p = C_Polyhedron(y>=0)
sage: p.bounds_from_below(x+1)
False
sage: p.bounds_from_below(Linear_Expression(y))
True
sage: p = C_Polyhedron(x<=0)
sage: p.bounds_from_below(y+1)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::bounds_from_below(e):
this->space_dimension() == 1, e.space_dimension() == 2.
"""
cdef bint result
try:
sig_on()
result = self.thisptr.bounds_from_below(expr.thisptr[0])
finally:
sig_off()
return result
def maximize(self, Linear_Expression expr):
r"""
Maximize ``expr``.
INPUT:
- ``expr`` -- a :class:`Linear_Expression`.
OUTPUT:
A dictionary with the following keyword:value pair:
* ``'bounded'``: Boolean. Whether the linear expression
``expr`` is bounded from above on ``self``.
If ``expr`` is bounded from above, the following additional
keyword:value pairs are set to provide information about the
supremum:
* ``'sup_n'``: Integer. The numerator of the supremum value.
* ``'sup_d'``: Non-zero integer. The denominator of the supremum
value.
* ``'maximum'``: Boolean. ``True`` if and only if the supremum
is also the maximum value.
* ``'generator'``: a :class:`Generator`. A point or closure
point where expr reaches its supremum value.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, NNC_Polyhedron, Constraint_System, Linear_Expression
sage: x = Variable(0); y = Variable(1)
sage: cs = Constraint_System()
sage: cs.insert( x>=0 )
sage: cs.insert( y>=0 )
sage: cs.insert( 3*x+5*y<=10 )
sage: p = C_Polyhedron(cs)
sage: p.maximize( x+y )
{'sup_d': 3, 'sup_n': 10, 'bounded': True, 'maximum': True, 'generator': point(10/3, 0/3)}
Unbounded case::
sage: cs = Constraint_System()
sage: cs.insert( x>0 )
sage: p = NNC_Polyhedron(cs)
sage: p.maximize( +x )
{'bounded': False}
sage: p.maximize( -x )
{'sup_d': 1, 'sup_n': 0, 'bounded': True, 'maximum': False, 'generator': closure_point(0/1)}
"""
cdef PPL_Coefficient sup_n
cdef PPL_Coefficient sup_d
cdef Generator g = point()
cdef cppbool maximum
sig_on()
rc = self.thisptr.maximize(<PPL_Linear_Expression&>expr.thisptr[0], sup_n, sup_d, maximum, g.thisptr[0])
sig_off()
cdef Integer Int_sup_n = Integer(0)
mpz_set(Int_sup_n.value, sup_n.get_mpz_t())
cdef Integer Int_sup_d = Integer(0)
mpz_set(Int_sup_d.value, sup_d.get_mpz_t())
if rc:
return { 'bounded':True, 'sup_n':Int_sup_n, 'sup_d':Int_sup_d, 'maximum':maximum, 'generator':g }
else:
return { 'bounded':False }
def minimize(self, Linear_Expression expr):
r"""
Minimize ``expr``.
INPUT:
- ``expr`` -- a :class:`Linear_Expression`.
OUTPUT:
A dictionary with the following keyword:value pair:
* ``'bounded'``: Boolean. Whether the linear expression
``expr`` is bounded from below on ``self``.
If ``expr`` is bounded from below, the following additional
keyword:value pairs are set to provide information about the
infimum:
* ``'inf_n'``: Integer. The numerator of the infimum value.
* ``'inf_d'``: Non-zero integer. The denominator of the infimum
value.
* ``'minimum'``: Boolean. ``True`` if and only if the infimum
is also the minimum value.
* ``'generator'``: a :class:`Generator`. A point or closure
point where expr reaches its infimum value.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, NNC_Polyhedron, Constraint_System, Linear_Expression
sage: x = Variable(0); y = Variable(1)
sage: cs = Constraint_System()
sage: cs.insert( x>=0 )
sage: cs.insert( y>=0 )
sage: cs.insert( 3*x+5*y<=10 )
sage: p = C_Polyhedron(cs)
sage: p.minimize( x+y )
{'minimum': True, 'bounded': True, 'inf_d': 1, 'generator': point(0/1, 0/1), 'inf_n': 0}
Unbounded case::
sage: cs = Constraint_System()
sage: cs.insert( x>0 )
sage: p = NNC_Polyhedron(cs)
sage: p.minimize( +x )
{'minimum': False, 'bounded': True, 'inf_d': 1, 'generator': closure_point(0/1), 'inf_n': 0}
sage: p.minimize( -x )
{'bounded': False}
"""
cdef PPL_Coefficient inf_n
cdef PPL_Coefficient inf_d
cdef Generator g = point()
cdef cppbool minimum
sig_on()
rc = self.thisptr.minimize(<PPL_Linear_Expression&>expr.thisptr[0], inf_n, inf_d, minimum, g.thisptr[0])
sig_off()
cdef Integer Int_inf_n = Integer(0)
mpz_set(Int_inf_n.value, inf_n.get_mpz_t())
cdef Integer Int_inf_d = Integer(0)
mpz_set(Int_inf_d.value, inf_d.get_mpz_t())
if rc:
return { 'bounded':True, 'inf_n':Int_inf_n, 'inf_d':Int_inf_d, 'minimum':minimum, 'generator':g }
else:
return { 'bounded':False }
def contains(self, Polyhedron y):
r"""
Test whether ``self`` contains ``y``.
INPUT:
- ``y`` -- a :class:`Polyhedron`.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` contains ``y``.
Raises a ``ValueError`` if ``self`` and ``y`` are
topology-incompatible or dimension-incompatible.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, NNC_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: p0 = C_Polyhedron( x>=0 )
sage: p1 = C_Polyhedron( x>=1 )
sage: p0.contains(p1)
True
sage: p1.contains(p0)
False
Errors are raised if the dimension or topology is not compatible::
sage: p0.contains(C_Polyhedron(y>=0))
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::contains(y):
this->space_dimension() == 1, y.space_dimension() == 2.
sage: p0.contains(NNC_Polyhedron(x>0))
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::contains(y):
y is a NNC_Polyhedron.
"""
cdef bint result
try:
sig_on()
result = self.thisptr.contains(y.thisptr[0])
finally:
sig_off()
return result
def strictly_contains(self, Polyhedron y):
r"""
Test whether ``self`` strictly contains ``y``.
INPUT:
- ``y`` -- a :class:`Polyhedron`.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` contains
``y`` and ``self`` does not equal ``y``.
Raises a ``ValueError`` if ``self`` and ``y`` are
topology-incompatible or dimension-incompatible.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, NNC_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: p0 = C_Polyhedron( x>=0 )
sage: p1 = C_Polyhedron( x>=1 )
sage: p0.strictly_contains(p1)
True
sage: p1.strictly_contains(p0)
False
Errors are raised if the dimension or topology is not compatible::
sage: p0.strictly_contains(C_Polyhedron(y>=0))
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::contains(y):
this->space_dimension() == 1, y.space_dimension() == 2.
sage: p0.strictly_contains(NNC_Polyhedron(x>0))
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::contains(y):
y is a NNC_Polyhedron.
"""
cdef bint result
try:
sig_on()
result = self.thisptr.strictly_contains(y.thisptr[0])
finally:
sig_off()
return result
def add_constraint(self, Constraint c):
r"""
Add a constraint to the polyhedron.
Adds a copy of constraint ``c`` to the system of constraints
of ``self``, without minimizing the result.
See alse :meth:`add_constraints`.
INPUT:
- ``c`` -- the :class:`Constraint` that will be added to the
system of constraints of ``self``.
OUTPUT:
This method modifies the polyhedron ``self`` and does not
return anything.
Raises a ``ValueError`` if ``self`` and the constraint ``c`` are
topology-incompatible or dimension-incompatible.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron( y>=0 )
sage: p.add_constraint( x>=0 )
We just added a 1-d constraint to a 2-d polyhedron, this is
fine. The other way is not::
sage: p = C_Polyhedron( x>=0 )
sage: p.add_constraint( y>=0 )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_constraint(c):
this->space_dimension() == 1, c.space_dimension() == 2.
The constraint must also be topology-compatible, that is,
:class:`C_Polyhedron` only allows non-strict inequalities::
sage: p = C_Polyhedron( x>=0 )
sage: p.add_constraint( x< 1 )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_constraint(c):
c is a strict inequality.
"""
self.assert_mutable('The Polyhedron is not mutable!')
try:
sig_on()
self.thisptr.add_constraint(c.thisptr[0])
finally:
sig_off()
def add_generator(self, Generator g):
r"""
Add a generator to the polyhedron.
Adds a copy of constraint ``c`` to the system of generators
of ``self``, without minimizing the result.
INPUT:
- ``g`` -- the :class:`Generator` that will be added to the
system of Generators of ``self``.
OUTPUT:
This method modifies the polyhedron ``self`` and does not
return anything.
Raises a ``ValueError`` if ``self`` and the generator ``g``
are topology-incompatible or dimension-incompatible, or if
``self`` is an empty polyhedron and ``g`` is not a point.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, point, closure_point, ray
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron(1, 'empty')
sage: p.add_generator( point(0*x) )
We just added a 1-d generator to a 2-d polyhedron, this is
fine. The other way is not::
sage: p = C_Polyhedron(1, 'empty')
sage: p.add_generator( point(0*y) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_generator(g):
this->space_dimension() == 1, g.space_dimension() == 2.
The constraint must also be topology-compatible, that is,
:class:`C_Polyhedron` does not allow :func:`closure_point`
generators::
sage: p = C_Polyhedron( point(0*x+0*y) )
sage: p.add_generator( closure_point(0*x) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_generator(g):
g is a closure point.
Finally, ever non-empty polyhedron must have at least one
point generator::
sage: p = C_Polyhedron(3, 'empty')
sage: p.add_generator( ray(x) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_generator(g):
*this is an empty polyhedron and g is not a point.
"""
self.assert_mutable('The Polyhedron is not mutable!')
try:
sig_on()
self.thisptr.add_generator(g.thisptr[0])
finally:
sig_off()
def add_constraints(self, Constraint_System cs):
r"""
Add constraints to the polyhedron.
Adds a copy of constraints in ``cs`` to the system of constraints
of ``self``, without minimizing the result.
See alse :meth:`add_constraint`.
INPUT:
- ``cs`` -- the :class:`Constraint_System` that will be added
to the system of constraints of ``self``.
OUTPUT:
This method modifies the polyhedron ``self`` and does not
return anything.
Raises a ``ValueError`` if ``self`` and the constraints in
``cs`` are topology-incompatible or dimension-incompatible.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, Constraint_System
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System()
sage: cs.insert(x>=0)
sage: cs.insert(y>=0)
sage: p = C_Polyhedron( y<=1 )
sage: p.add_constraints(cs)
We just added a 1-d constraint to a 2-d polyhedron, this is
fine. The other way is not::
sage: p = C_Polyhedron( x<=1 )
sage: p.add_constraints(cs)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_recycled_constraints(cs):
this->space_dimension() == 1, cs.space_dimension() == 2.
The constraints must also be topology-compatible, that is,
:class:`C_Polyhedron` only allows non-strict inequalities::
sage: p = C_Polyhedron( x>=0 )
sage: p.add_constraints( Constraint_System(x<0) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_recycled_constraints(cs):
cs contains strict inequalities.
"""
self.assert_mutable('The Polyhedron is not mutable!')
try:
sig_on()
self.thisptr.add_constraints(cs.thisptr[0])
finally:
sig_off()
def add_generators(self, Generator_System gs):
r"""
Add generators to the polyhedron.
Adds a copy of the generators in ``gs`` to the system of
generators of ``self``, without minimizing the result.
See alse :meth:`add_generator`.
INPUT:
- ``gs`` -- the :class:`Generator_System` that will be added
to the system of constraints of ``self``.
OUTPUT:
This method modifies the polyhedron ``self`` and does not
return anything.
Raises a ``ValueError`` if ``self`` and one of the generators
in ``gs`` are topology-incompatible or dimension-incompatible,
or if ``self`` is an empty polyhedron and ``gs`` does not
contain a point.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, Generator_System, point, ray, closure_point
sage: x = Variable(0)
sage: y = Variable(1)
sage: gs = Generator_System()
sage: gs.insert(point(0*x+0*y))
sage: gs.insert(point(1*x+1*y))
sage: p = C_Polyhedron(2, 'empty')
sage: p.add_generators(gs)
We just added a 1-d constraint to a 2-d polyhedron, this is
fine. The other way is not::
sage: p = C_Polyhedron(1, 'empty')
sage: p.add_generators(gs)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_recycled_generators(gs):
this->space_dimension() == 1, gs.space_dimension() == 2.
The constraints must also be topology-compatible, that is,
:class:`C_Polyhedron` does not allow :func:`closure_point`
generators::
sage: p = C_Polyhedron( point(0*x+0*y) )
sage: p.add_generators( Generator_System(closure_point(x) ))
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_recycled_generators(gs):
gs contains closure points.
"""
self.assert_mutable('The Polyhedron is not mutable!')
try:
sig_on()
self.thisptr.add_generators(gs.thisptr[0])
finally:
sig_off()
def unconstrain(self, Variable var):
r"""
Compute the cylindrification of ``self`` with respect to space
dimension ``var``.
INPUT:
- ``var`` -- a :class:`Variable`. The space dimension that
will be unconstrained. Exceptions:
OUTPUT:
This method assigns the cylindrification to ``self`` and does
not return anything.
Raises a ``ValueError`` if ``var`` is not a space dimension of
``self``.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, point
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron( point(x+y) ); p
A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point
sage: p.unconstrain(x); p
A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 line
sage: z = Variable(2)
sage: p.unconstrain(z)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::unconstrain(var):
this->space_dimension() == 2, required space dimension == 3.
"""
try:
sig_on()
self.thisptr.unconstrain(var.thisptr[0])
finally:
sig_off()
def intersection_assign(self, Polyhedron y):
r"""
Assign to ``self`` the intersection of ``self`` and ``y``.
INPUT:
- ``y`` -- a :class:`Polyhedron`
OUTPUT:
This method assigns the intersection to ``self`` and does not
return anything.
Raises a ``ValueError`` if ``self`` and and ``y`` are
topology-incompatible or dimension-incompatible.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, NNC_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron( 1*x+0*y >= 0 )
sage: p.intersection_assign( C_Polyhedron(y>=0) )
sage: p.constraints()
Constraint_System {x0>=0, x1>=0}
sage: z = Variable(2)
sage: p.intersection_assign( C_Polyhedron(z>=0) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::intersection_assign(y):
this->space_dimension() == 2, y.space_dimension() == 3.
sage: p.intersection_assign( NNC_Polyhedron(x+y<1) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::intersection_assign(y):
y is a NNC_Polyhedron.
"""
self.assert_mutable('The Polyhedron is not mutable!')
try:
sig_on()
self.thisptr.intersection_assign(y.thisptr[0])
finally:
sig_off()
def poly_hull_assign(self, Polyhedron y):
r"""
Assign to ``self`` the poly-hull of ``self`` and ``y``.
For any pair of NNC polyhedra `P_1` and `P_2`, the convex
polyhedral hull (or poly-hull) of is the smallest NNC
polyhedron that includes both `P_1` and `P_2`. The poly-hull
of any pair of closed polyhedra in is also closed.
INPUT:
- ``y`` -- a :class:`Polyhedron`
OUTPUT:
This method assigns the poly-hull to ``self`` and does not
return anything.
Raises a ``ValueError`` if ``self`` and and ``y`` are
topology-incompatible or dimension-incompatible.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, point, NNC_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron( point(1*x+0*y) )
sage: p.poly_hull_assign(C_Polyhedron( point(0*x+1*y) ))
sage: p.generators()
Generator_System {point(0/1, 1/1), point(1/1, 0/1)}
``self`` and ``y`` must be dimension- and topology-compatible,
or an exception is raised::
sage: z = Variable(2)
sage: p.poly_hull_assign( C_Polyhedron(z>=0) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::poly_hull_assign(y):
this->space_dimension() == 2, y.space_dimension() == 3.
sage: p.poly_hull_assign( NNC_Polyhedron(x+y<1) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::poly_hull_assign(y):
y is a NNC_Polyhedron.
"""
self.assert_mutable('The Polyhedron is not mutable!')
try:
sig_on()
self.thisptr.poly_hull_assign(y.thisptr[0])
finally:
sig_off()
upper_bound_assign = poly_hull_assign
def poly_difference_assign(self, Polyhedron y):
r"""
Assign to ``self`` the poly-difference of ``self`` and ``y``.
For any pair of NNC polyhedra `P_1` and `P_2` the convex
polyhedral difference (or poly-difference) of `P_1` and `P_2`
is defined as the smallest convex polyhedron containing the
set-theoretic difference `P_1\setminus P_2` of `P_1` and
`P_2`.
In general, even if `P_1` and `P_2` are topologically closed
polyhedra, their poly-difference may be a convex polyhedron
that is not topologically closed. For this reason, when
computing the poly-difference of two :class:`C_Polyhedron`,
the library will enforce the topological closure of the
result.
INPUT:
- ``y`` -- a :class:`Polyhedron`
OUTPUT:
This method assigns the poly-difference to ``self`` and does
not return anything.
Raises a ``ValueError`` if ``self`` and and ``y`` are
topology-incompatible or dimension-incompatible.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, point, closure_point, NNC_Polyhedron
sage: x = Variable(0)
sage: p = NNC_Polyhedron( point(0*x) )
sage: p.add_generator( point(1*x) )
sage: p.poly_difference_assign(NNC_Polyhedron( point(0*x) ))
sage: p.minimized_constraints()
Constraint_System {-x0+1>=0, x0>0}
The poly-difference of :class:`C_polyhedron` is really its closure::
sage: p = C_Polyhedron( point(0*x) )
sage: p.add_generator( point(1*x) )
sage: p.poly_difference_assign(C_Polyhedron( point(0*x) ))
sage: p.minimized_constraints()
Constraint_System {x0>=0, -x0+1>=0}
``self`` and ``y`` must be dimension- and topology-compatible,
or an exception is raised::
sage: y = Variable(1)
sage: p.poly_difference_assign( C_Polyhedron(y>=0) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::poly_difference_assign(y):
this->space_dimension() == 1, y.space_dimension() == 2.
sage: p.poly_difference_assign( NNC_Polyhedron(x+y<1) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::poly_difference_assign(y):
y is a NNC_Polyhedron.
"""
self.assert_mutable('The Polyhedron is not mutable!')
try:
sig_on()
self.thisptr.poly_difference_assign(y.thisptr[0])
finally:
sig_off()
difference_assign = poly_difference_assign
def drop_some_non_integer_points(self):
r"""
Possibly tighten ``self`` by dropping some points with
non-integer coordinates.
The modified polyhedron satisfies:
* it is (not necessarily strictly) contained in the original
polyhedron.
* integral vertices (generating points with integer
coordinates) of the original polyhedron are not removed.
.. NOTE::
The modified polyhedron is not neccessarily a lattice
polyhedron; Some vertices will, in general, still be
rational. Lattice points interior to the polyhedron may be
lost in the process.
EXAMPLES::
sage: from sage.libs.ppl import Variable, NNC_Polyhedron, Constraint_System
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System()
sage: cs.insert( x>=0 )
sage: cs.insert( y>=0 )
sage: cs.insert( 3*x+2*y<5 )
sage: p = NNC_Polyhedron(cs)
sage: p.minimized_generators()
Generator_System {point(0/1, 0/1), closure_point(0/2, 5/2), closure_point(5/3, 0/3)}
sage: p.drop_some_non_integer_points()
sage: p.minimized_generators()
Generator_System {point(0/1, 0/1), point(0/1, 2/1), point(4/3, 0/3)}
"""
self.assert_mutable('The Polyhedron is not mutable!')
sig_on()
self.thisptr.drop_some_non_integer_points()
sig_off()
def topological_closure_assign(self):
r"""
Assign to ``self`` its topological closure.
EXAMPLES::
sage: from sage.libs.ppl import Variable, NNC_Polyhedron
sage: x = Variable(0)
sage: p = NNC_Polyhedron(x>0)
sage: p.is_topologically_closed()
False
sage: p.topological_closure_assign()
sage: p.is_topologically_closed()
True
sage: p.minimized_constraints()
Constraint_System {x0>=0}
"""
self.assert_mutable('The Polyhedron is not mutable!')
sig_on()
self.thisptr.topological_closure_assign()
sig_off()
def add_space_dimensions_and_embed(self, m):
r"""
Add ``m`` new space dimensions and embed ``self`` in the new
vector space.
The new space dimensions will be those having the highest
indexes in the new polyhedron, which is characterized by a
system of constraints in which the variables running through
the new dimensions are not constrained. For instance, when
starting from the polyhedron `P` and adding a third space
dimension, the result will be the polyhedron
.. MATH::
\Big\{
(x,y,z)^T \in \RR^3
\Big|
(x,y)^T \in P
\Big\}
INPUT:
- ``m`` -- integer.
OUTPUT:
This method assigns the embedded polyhedron to ``self`` and
does not return anything.
Raises a ``ValueError`` if adding ``m`` new space dimensions
would cause the vector space to exceed dimension
``self.max_space_dimension()``.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, point
sage: x = Variable(0)
sage: p = C_Polyhedron( point(3*x) )
sage: p.add_space_dimensions_and_embed(1)
sage: p.minimized_generators()
Generator_System {line(0, 1), point(3/1, 0/1)}
sage: p.add_space_dimensions_and_embed( p.max_space_dimension() )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_space_dimensions_and_embed(m):
adding m new space dimensions exceeds the maximum allowed space dimension.
"""
self.assert_mutable('The Polyhedron is not mutable!')
m = int(m)
try:
sig_on()
self.thisptr.add_space_dimensions_and_embed(m)
finally:
sig_off()
def add_space_dimensions_and_project(self, m):
r"""
Add ``m`` new space dimensions and embed ``self`` in the new
vector space.
The new space dimensions will be those having the highest
indexes in the new polyhedron, which is characterized by a
system of constraints in which the variables running through
the new dimensions are all constrained to be equal to `0`.
For instance, when starting from the polyhedron `P` and adding
a third space dimension, the result will be the polyhedron
.. MATH::
\Big\{
(x,y,0)^T \in \RR^3
\Big|
(x,y)^T \in P
\Big\}
INPUT:
- ``m`` -- integer.
OUTPUT:
This method assigns the projected polyhedron to ``self`` and
does not return anything.
Raises a ``ValueError`` if adding ``m`` new space dimensions
would cause the vector space to exceed dimension
``self.max_space_dimension()``.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, point
sage: x = Variable(0)
sage: p = C_Polyhedron( point(3*x) )
sage: p.add_space_dimensions_and_project(1)
sage: p.minimized_generators()
Generator_System {point(3/1, 0/1)}
sage: p.add_space_dimensions_and_project( p.max_space_dimension() )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_space_dimensions_and_project(m):
adding m new space dimensions exceeds the maximum allowed space dimension.
"""
self.assert_mutable('The Polyhedron is not mutable!')
m = int(m)
try:
sig_on()
self.thisptr.add_space_dimensions_and_project(m)
finally:
sig_off()
def concatenate_assign(self, Polyhedron y):
r"""
Assign to ``self`` the concatenation of ``self`` and ``y``.
This functions returns the Cartiesian product of ``self`` and
``y``.
Viewing a polyhedron as a set of tuples (its points), it is
sometimes useful to consider the set of tuples obtained by
concatenating an ordered pair of polyhedra. Formally, the
concatenation of the polyhedra `P` and `Q` (taken in this
order) is the polyhedron such that
.. MATH::
R =
\Big\{
(x_0,\dots,x_{n-1},y_0,\dots,y_{m-1})^T \in \RR^{n+m}
\Big|
(x_0,\dots,x_{n-1})^T \in P
,~
(y_0,\dots,y_{m-1})^T \in Q
\Big\}
Another way of seeing it is as follows: first embed polyhedron
`P` into a vector space of dimension `n+m` and then add a
suitably renamed-apart version of the constraints defining
`Q`.
INPUT:
- ``m`` -- integer.
OUTPUT:
This method assigns the concatenated polyhedron to ``self`` and
does not return anything.
Raises a ``ValueError`` if ``self`` and ``y`` are
topology-incompatible or if adding ``y.space_dimension()`` new
space dimensions would cause the vector space to exceed
dimension ``self.max_space_dimension()``.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron, NNC_Polyhedron, point
sage: x = Variable(0)
sage: p1 = C_Polyhedron( point(1*x) )
sage: p2 = C_Polyhedron( point(2*x) )
sage: p1.concatenate_assign(p2)
sage: p1.minimized_generators()
Generator_System {point(1/1, 2/1)}
The polyhedra must be topology-compatible and not exceed the
maximum space dimension::
sage: p1.concatenate_assign( NNC_Polyhedron(1, 'universe') )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::concatenate_assign(y):
y is a NNC_Polyhedron.
sage: p1.concatenate_assign( C_Polyhedron(p1.max_space_dimension(), 'empty') )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::concatenate_assign(y):
concatenation exceeds the maximum allowed space dimension.
"""
self.assert_mutable('The Polyhedron is not mutable!')
try:
sig_on()
self.thisptr.concatenate_assign(y.thisptr[0])
finally:
sig_off()
def remove_higher_space_dimensions(self, new_dimension):
r"""
Remove the higher dimensions of the vector space so that the
resulting space will have dimension ``new_dimension``.
OUTPUT:
This method modifies ``self`` and does not return anything.
Raises a ``ValueError`` if ``new_dimensions`` is greater than
the space dimension of ``self``.
EXAMPLES::
sage: from sage.libs.ppl import C_Polyhedron, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron(3*x+0*y==2)
sage: p.remove_higher_space_dimensions(1)
sage: p.minimized_constraints()
Constraint_System {3*x0-2==0}
sage: p.remove_higher_space_dimensions(2)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::remove_higher_space_dimensions(nd):
this->space_dimension() == 1, required space dimension == 2.
"""
self.assert_mutable('The Polyhedron is not mutable!')
new_dimension = int(new_dimension)
try:
sig_on()
self.thisptr.remove_higher_space_dimensions(new_dimension)
finally:
sig_off()
def ascii_dump(self):
r"""
Write an ASCII dump to stderr.
EXAMPLES::
sage: sage_cmd = 'from sage.libs.ppl import C_Polyhedron, Variable\n'
sage: sage_cmd += 'x = Variable(0)\n'
sage: sage_cmd += 'y = Variable(1)\n'
sage: sage_cmd += 'p = C_Polyhedron(3*x+2*y==1)\n'
sage: sage_cmd += 'p.minimized_generators()\n'
sage: sage_cmd += 'p.ascii_dump()\n'
sage: from sage.tests.cmdline import test_executable
sage: (out, err, ret) = test_executable(['sage', '-c', sage_cmd], timeout=100); # long time, indirect doctest
sage: print err # long time
space_dim 2
-ZE -EM +CM +GM +CS +GS -CP -GP -SC +SG
con_sys (up-to-date)
topology NECESSARILY_CLOSED
2 x 3 (sorted)
index_first_pending 2
-1 3 2 =
1 0 0 >=
<BLANKLINE>
gen_sys (up-to-date)
topology NECESSARILY_CLOSED
2 x 3 (not_sorted)
index_first_pending 2
0 2 -3 L
2 0 1 P
<BLANKLINE>
sat_c
0 x 0
<BLANKLINE>
sat_g
2 x 2
0 0
0 1
"""
sig_on()
self.thisptr.ascii_dump()
sig_off()
def max_space_dimension(self):
r"""
Return the maximum space dimension all kinds of Polyhedron can handle.
OUTPUT:
Integer.
EXAMPLES::
sage: from sage.libs.ppl import C_Polyhedron
sage: C_Polyhedron(1, 'empty').max_space_dimension() # random output
1152921504606846973
sage: max_dim = C_Polyhedron(1, 'empty').max_space_dimension()
sage: max_dim in (357913939, 1152921504606846973) # 32 or 64 bit
True
"""
return self.thisptr.max_space_dimension()
def OK(self, check_non_empty=False):
"""
Check if all the invariants are satisfied.
The check is performed so as to intrude as little as
possible. If the library has been compiled with run-time
assertions enabled, error messages are written on std::cerr in
case invariants are violated. This is useful for the purpose
of debugging the library.
INPUT:
- ``check_not_empty`` -- boolean. ``True`` if and only if, in
addition to checking the invariants, ``self`` must be
checked to be not empty.
OUTPUT:
``True`` if and only if ``self`` satisfies all the invariants
and either ``check_not_empty`` is ``False`` or ``self`` is not
empty.
EXAMPLES::
sage: from sage.libs.ppl import Linear_Expression, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: e = 3*x+2*y+1
sage: e.OK()
True
"""
sig_on()
cdef bint result = self.thisptr.OK()
sig_off()
return result
def __richcmp__(Polyhedron lhs, Polyhedron rhs, op):
r"""
Comparison for polyhedra.
INPUT:
- ``lhs``, ``rhs`` -- :class:`Polyhedron`.
- ``op`` -- integer. The comparison operation to be performed.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.libs.ppl import Variable, C_Polyhedron
sage: x = Variable(0)
sage: C_Polyhedron(x>=0) > C_Polyhedron(x>=1) # indirect doctest
True
"""
cdef result
sig_on()
if op==0:
result = rhs.strictly_contains(lhs)
elif op==1:
result = rhs.contains(lhs)
elif op==2:
result = (lhs.thisptr[0] == rhs.thisptr[0])
elif op==4:
result = lhs.strictly_contains(rhs)
elif op==5:
result = lhs.contains(rhs)
elif op==3:
result = (lhs.thisptr[0] != rhs.thisptr[0])
else:
assert False
sig_off()
return result
cdef class C_Polyhedron(Polyhedron):
r"""
Wrapper for PPL's ``C_Polyhedron`` class.
An object of the class :class:`C_Polyhedron` represents a
topologically closed convex polyhedron in the vector space. See
:class:`NNC_Polyhedron` for more general (not necessarily closed)
polyhedra.
When building a closed polyhedron starting from a system of
constraints, an exception is thrown if the system contains a
strict inequality constraint. Similarly, an exception is thrown
when building a closed polyhedron starting from a system of
generators containing a closure point.
INPUT:
- ``arg`` -- the defining data of the polyhedron. Any one of the
following is accepted:
* A non-negative integer. Depending on ``degenerate_element``,
either the space-filling or the empty polytope in the given
dimension ``arg`` is constructed.
* A :class:`Constraint_System`.
* A :class:`Generator_System`.
* A single :class:`Constraint`.
* A single :class:`Generator`.
* A :class:`C_Polyhedron`.
- ``degenerate_element`` -- string, either ``'universe'`` or
``'empty'``. Only used if ``arg`` is an integer.
OUTPUT:
A :class:`C_Polyhedron`.
EXAMPLES::
sage: from sage.libs.ppl import Constraint, Constraint_System, Generator, Generator_System, Variable, C_Polyhedron, point, ray
sage: x = Variable(0)
sage: y = Variable(1)
sage: C_Polyhedron( 5*x-2*y >= x+y-1 )
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 ray, 1 line
sage: cs = Constraint_System()
sage: cs.insert( x >= 0 )
sage: cs.insert( y >= 0 )
sage: C_Polyhedron(cs)
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 2 rays
sage: C_Polyhedron( point(x+y) )
A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point
sage: gs = Generator_System()
sage: gs.insert( point(-x-y) )
sage: gs.insert( ray(x) )
sage: C_Polyhedron(gs)
A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 ray
The empty and universe polyhedra are constructed like this::
sage: C_Polyhedron(3, 'empty')
The empty polyhedron in QQ^3
sage: C_Polyhedron(3, 'empty').constraints()
Constraint_System {-1==0}
sage: C_Polyhedron(3, 'universe')
The space-filling polyhedron in QQ^3
sage: C_Polyhedron(3, 'universe').constraints()
Constraint_System {}
Note that, by convention, the generator system of a polyhedron is
either empty or contains at least one point. In particular, if you
define a polyhedron via a non-empty :class:`Generator_System` it
must contain a point (at any position). If you start with a single
generator, this generator must be a point::
sage: C_Polyhedron( ray(x) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::C_Polyhedron(gs):
*this is an empty polyhedron and
the non-empty generator system gs contains no points.
"""
def __cinit__(self, arg, degenerate_element='universe'):
"""
The Cython constructor.
See :class:`C_Polyhedron` for documentation.
TESTS::
sage: from sage.libs.ppl import C_Polyhedron
sage: C_Polyhedron(3, 'empty') # indirect doctest
The empty polyhedron in QQ^3
"""
if isinstance(arg, C_Polyhedron):
ph = <C_Polyhedron>arg
self.thisptr = new PPL_C_Polyhedron(<PPL_C_Polyhedron&>ph.thisptr[0])
return
if isinstance(arg, Generator):
arg = Generator_System(arg)
if isinstance(arg, Constraint):
arg = Constraint_System(arg)
if isinstance(arg, Generator_System):
gs = <Generator_System>arg
self.thisptr = new PPL_C_Polyhedron(gs.thisptr[0])
return
if isinstance(arg, Constraint_System):
cs = <Constraint_System>arg
self.thisptr = new PPL_C_Polyhedron(cs.thisptr[0])
return
try:
dim = int(arg)
assert dim>=0
except ValueError:
raise ValueError, 'Cannot initialize C_Polyhedron with '+str(arg)+'.'
degenerate_element = degenerate_element.lower()
if degenerate_element=='universe':
self.thisptr = new PPL_C_Polyhedron(<PPL_dimension_type>dim, UNIVERSE)
return
elif degenerate_element=='empty':
self.thisptr = new PPL_C_Polyhedron(<PPL_dimension_type>dim, EMPTY)
return
else:
raise ValueError, 'Unknown value: degenerate_element='+str(degenerate_element)+'.'
def __init__(self, *args):
"""
The Python destructor.
See :class:`C_Polyhedron` for documentation.
TESTS::
sage: from sage.libs.ppl import C_Polyhedron
sage: C_Polyhedron(3, 'empty') # indirect doctest
The empty polyhedron in QQ^3
"""
pass
def __dealloc__(self):
"""
The Cython destructor.
"""
del self.thisptr
def __reduce__(self):
"""
Pickle object
TESTS::
sage: from sage.libs.ppl import C_Polyhedron, Variable
sage: P = C_Polyhedron(3, 'empty')
sage: loads(dumps(P))
The empty polyhedron in QQ^3
sage: Q = C_Polyhedron(5, 'universe')
sage: loads(dumps(Q))
The space-filling polyhedron in QQ^5
sage: x = Variable(0)
sage: y = Variable(1)
sage: H = C_Polyhedron( 5*x-2*y >= x+y-1 )
sage: loads(dumps(H))
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 ray, 1 line
"""
if self.is_empty():
return (C_Polyhedron, (self.space_dimension(), 'empty'))
elif self.is_universe():
return (C_Polyhedron, (self.space_dimension(), 'universe'))
else:
return (C_Polyhedron, (self.generators(),))
cdef class NNC_Polyhedron(Polyhedron):
r"""
Wrapper for PPL's ``NNC_Polyhedron`` class.
An object of the class ``NNC_Polyhedron`` represents a not
necessarily closed (NNC) convex polyhedron in the vector space.
Note: Since NNC polyhedra are a generalization of closed
polyhedra, any object of the class :class:`C_Polyhedron` can be
(explicitly) converted into an object of the class
:class:`NNC_Polyhedron`. The reason for defining two different
classes is that objects of the class :class:`C_Polyhedron` are
characterized by a more efficient implementation, requiring less
time and memory resources.
INPUT:
- ``arg`` -- the defining data of the polyhedron. Any one of the
following is accepted:
* An non-negative integer. Depending on ``degenerate_element``,
either the space-filling or the empty polytope in the given
dimension ``arg`` is constructed.
* A :class:`Constraint_System`.
* A :class:`Generator_System`.
* A single :class:`Constraint`.
* A single :class:`Generator`.
* A :class:`NNC_Polyhedron`.
* A :class:`C_Polyhedron`.
- ``degenerate_element`` -- string, either ``'universe'`` or
``'empty'``. Only used if ``arg`` is an integer.
OUTPUT:
A :class:`C_Polyhedron`.
EXAMPLES::
sage: from sage.libs.ppl import Constraint, Constraint_System, Generator, Generator_System, Variable, NNC_Polyhedron, point, ray, closure_point
sage: x = Variable(0)
sage: y = Variable(1)
sage: NNC_Polyhedron( 5*x-2*y > x+y-1 )
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 closure_point, 1 ray, 1 line
sage: cs = Constraint_System()
sage: cs.insert( x > 0 )
sage: cs.insert( y > 0 )
sage: NNC_Polyhedron(cs)
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 closure_point, 2 rays
sage: NNC_Polyhedron( point(x+y) )
A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point
sage: gs = Generator_System()
sage: gs.insert( point(-y) )
sage: gs.insert( closure_point(-x-y) )
sage: gs.insert( ray(x) )
sage: p = NNC_Polyhedron(gs); p
A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 closure_point, 1 ray
sage: p.minimized_constraints()
Constraint_System {x1+1==0, x0+1>0}
Note that, by convention, every polyhedron must contain a point::
sage: NNC_Polyhedron( closure_point(x+y) )
Traceback (most recent call last):
...
ValueError: PPL::NNC_Polyhedron::NNC_Polyhedron(gs):
*this is an empty polyhedron and
the non-empty generator system gs contains no points.
"""
def __cinit__(self, arg, degenerate_element='universe'):
"""
The Cython constructor.
See :class:`NNC_Polyhedron` for documentation.
TESTS::
sage: from sage.libs.ppl import NNC_Polyhedron
sage: NNC_Polyhedron(3, 'empty') # indirect doctest
The empty polyhedron in QQ^3
"""
if isinstance(arg, NNC_Polyhedron):
p_nnc = <NNC_Polyhedron>arg
self.thisptr = new PPL_NNC_Polyhedron(<PPL_NNC_Polyhedron&>p_nnc.thisptr[0])
return
if isinstance(arg, C_Polyhedron):
p_c = <C_Polyhedron>arg
self.thisptr = new PPL_NNC_Polyhedron(<PPL_C_Polyhedron&>p_c.thisptr[0])
return
if isinstance(arg, Generator):
arg = Generator_System(arg)
if isinstance(arg, Constraint):
arg = Constraint_System(arg)
if isinstance(arg, Generator_System):
gs = <Generator_System>arg
self.thisptr = new PPL_NNC_Polyhedron(gs.thisptr[0])
return
if isinstance(arg, Constraint_System):
cs = <Constraint_System>arg
self.thisptr = new PPL_NNC_Polyhedron(cs.thisptr[0])
return
try:
dim = int(arg)
assert dim>=0
except ValueError:
raise ValueError, 'Cannot initialize NNC_Polyhedron with '+str(arg)+'.'
degenerate_element = degenerate_element.lower()
if degenerate_element=='universe':
self.thisptr = new PPL_NNC_Polyhedron(<PPL_dimension_type>dim, UNIVERSE)
return
elif degenerate_element=='empty':
self.thisptr = new PPL_NNC_Polyhedron(<PPL_dimension_type>dim, EMPTY)
return
else:
raise ValueError, 'Unknown value: degenerate_element='+str(degenerate_element)+'.'
def __init__(self, *args):
"""
The Python destructor.
See :class:`NNC_Polyhedron` for documentation.
TESTS::
sage: from sage.libs.ppl import NNC_Polyhedron
sage: NNC_Polyhedron(3, 'empty') # indirect doctest
The empty polyhedron in QQ^3
"""
pass
def __dealloc__(self):
"""
The Cython destructor.
"""
del self.thisptr
def __reduce__(self):
"""
Pickle object
TESTS::
sage: from sage.libs.ppl import NNC_Polyhedron, Variable
sage: P = NNC_Polyhedron(3, 'empty')
sage: loads(dumps(P))
The empty polyhedron in QQ^3
sage: Q = NNC_Polyhedron(5, 'universe')
sage: loads(dumps(Q))
The space-filling polyhedron in QQ^5
sage: x = Variable(0)
sage: y = Variable(1)
sage: H = NNC_Polyhedron( 5*x-2*y > x+y-1 )
sage: loads(dumps(H))
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point,
1 closure_point, 1 ray, 1 line
"""
if self.is_empty():
return (NNC_Polyhedron, (self.space_dimension(), 'empty'))
elif self.is_universe():
return (NNC_Polyhedron, (self.space_dimension(), 'universe'))
else:
return (NNC_Polyhedron, (self.generators(),))
cdef class Variable(object):
r"""
Wrapper for PPL's ``Variable`` class.
A dimension of the vector space.
An object of the class Variable represents a dimension of the
space, that is one of the Cartesian axes. Variables are used as
basic blocks in order to build more complex linear
expressions. Each variable is identified by a non-negative
integer, representing the index of the corresponding Cartesian
axis (the first axis has index 0). The space dimension of a
variable is the dimension of the vector space made by all the
Cartesian axes having an index less than or equal to that of the
considered variable; thus, if a variable has index `i`, its space
dimension is `i+1`.
INPUT:
- ``i`` -- integer. The index of the axis.
OUTPUT:
A :class:`Variable`
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(123)
sage: x.id()
123
sage: x
x123
Note that the "meaning" of an object of the class Variable is
completely specified by the integer index provided to its
constructor: be careful not to be mislead by C++ language variable
names. For instance, in the following example the linear
expressions ``e1`` and ``e2`` are equivalent, since the two
variables ``x`` and ``z`` denote the same Cartesian axis::
sage: x = Variable(0)
sage: y = Variable(1)
sage: z = Variable(0)
sage: e1 = x + y; e1
x0+x1
sage: e2 = y + z; e2
x0+x1
sage: e1 - e2
0
"""
cdef PPL_Variable *thisptr
def __cinit__(self, PPL_dimension_type i):
"""
The Cython constructor.
See :class:`Variable` for documentation.
TESTS::
sage: from sage.libs.ppl import Variable
sage: Variable(123) # indirect doctest
x123
"""
self.thisptr = new PPL_Variable(i)
def __dealloc__(self):
"""
The Cython destructor.
"""
del self.thisptr
def id(self):
"""
Return the index of the Cartesian axis associated to the variable.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(123)
sage: x.id()
123
"""
return self.thisptr.id()
def OK(self):
"""
Checks if all the invariants are satisfied.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: x.OK()
True
"""
return self.thisptr.OK()
def space_dimension(self):
r"""
Return the dimension of the vector space enclosing ``self``.
OUPUT:
Integer. The returned value is ``self.id()+1``.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: x.space_dimension()
1
"""
return self.thisptr.space_dimension()
def __repr__(self):
"""
Return a string representation.
OUTPUT:
String.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: x.__repr__()
'x0'
"""
return 'x{0}'.format(self.id())
def __add__(self, other):
r"""
Return the sum ``self`` + ``other``.
INPUT:
- ``self``, ``other`` -- anything convertible to
``Linear_Expression``: An integer, a :class:`Variable`, or a
:class:`Linear_Expression`.
OUTPUT:
A :class:`Linear_Expression` representing ``self`` + ``other``.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0); y = Variable(1)
sage: x + 15
x0+15
sage: 15 + y
x1+15
"""
return Linear_Expression(self)+Linear_Expression(other)
def __sub__(self, other):
r"""
Return the difference ``self`` - ``other``.
INPUT:
- ``self``, ``other`` -- anything convertible to
``Linear_Expression``: An integer, a :class:`Variable`, or a
:class:`Linear_Expression`.
OUTPUT:
A :class:`Linear_Expression` representing ``self`` - ``other``.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0); y = Variable(1)
sage: x - 15
x0-15
sage: 15 - y
-x1+15
"""
return Linear_Expression(self)-Linear_Expression(other)
def __mul__(self, other):
r"""
Return the product ``self`` * ``other``.
INPUT:
- ``self``, ``other`` -- One must be an integer, the other a
:class:`Variable`.
OUTPUT:
A :class:`Linear_Expression` representing ``self`` * ``other``.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0); y = Variable(1)
sage: x * 15
15*x0
sage: 15 * y
15*x1
"""
if isinstance(self, Variable):
return Linear_Expression(self) * other
else:
return Linear_Expression(other) * self
def __pos__(self):
r"""
Return ``self`` as :class:`Linear_Expression`
OUTPUT:
The :class:`Linear_Expression` ``+self``
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0); x
x0
sage: +x
x0
"""
return Linear_Expression(self)
def __neg__(self):
r"""
Return -``self`` as :class:`Linear_Expression`
OUTPUT:
The :class:`Linear_Expression` ``-self``
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0); x
x0
sage: -x
-x0
"""
return Linear_Expression(self)*(-1)
def __richcmp__(self, other, op):
"""
Construct :class:`Constraint` from equalities or inequalities.
INPUT:
- ``self``, ``other`` -- anything convertible to a
:class:`Linear_Expression`
- ``op`` -- the operation.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: x < y
-x0+x1>0
sage: x <= 0
-x0>=0
sage: x == y-y
x0==0
sage: x >= -2
x0+2>=0
sage: x > 0
x0>0
sage: 0 == 1 # watch out!
False
sage: 0*x == 1
-1==0
"""
return _make_Constraint_from_richcmp(self, other, op)
cdef class Linear_Expression(object):
r"""
Wrapper for PPL's ``PPL_Linear_Expression`` class.
INPUT:
The constructor accepts zero, one, or two arguments.
If there are two arguments ``Linear_Expression(a,b)``, they are
interpreted as
- ``a`` -- an iterable of integer coefficients, for example a
list.
- ``b`` -- an integer. The inhomogeneous term.
A single argument ``Linear_Expression(arg)`` is interpreted as
- ``arg`` -- something that determines a linear
expression. Possibilities are:
* a :class:`Variable`: The linear expression given by that
variable.
* a :class:`Linear_Expression`: The copy constructor.
* an integer: Constructs the constant linear expression.
No argument is the default constructor and returns the zero linear
expression.
OUTPUT:
A :class:`Linear_Expression`
EXAMPLES::
sage: from sage.libs.ppl import Variable, Linear_Expression
sage: Linear_Expression([1,2,3,4],5)
x0+2*x1+3*x2+4*x3+5
sage: Linear_Expression(10)
10
sage: Linear_Expression()
0
sage: Linear_Expression(10).inhomogeneous_term()
10
sage: x = Variable(123)
sage: expr = x+1; expr
x123+1
sage: expr.OK()
True
sage: expr.coefficient(x)
1
sage: expr.coefficient( Variable(124) )
0
"""
cdef PPL_Linear_Expression *thisptr
def __cinit__(self, *args):
"""
The Cython constructor.
See :class:`Linear_Expression` for documentation.
TESTS::
sage: from sage.libs.ppl import Linear_Expression
sage: Linear_Expression(10) # indirect doctest
10
"""
if len(args)==2:
a = args[0]
b = args[1]
ex = Linear_Expression(0)
for i in range(0,len(a)):
ex = ex + Variable(i).__mul__(Integer(a[i]))
arg = ex + b
elif len(args)==1:
arg = args[0]
elif len(args)==0:
self.thisptr = new PPL_Linear_Expression()
return
else:
assert False, 'Cannot initialize with more than 2 arguments.'
if isinstance(arg, Variable):
v = <Variable>arg
self.thisptr = new PPL_Linear_Expression(v.thisptr[0])
return
if isinstance(arg, Linear_Expression):
e = <Linear_Expression>arg
self.thisptr = new PPL_Linear_Expression(e.thisptr[0])
return
try:
c = Integer(arg)
self.thisptr = new PPL_Linear_Expression(PPL_Coefficient(c.value))
return
except ValueError:
raise ValueError, 'Cannot initialize with '+str(args)+'.'
def __dealloc__(self):
"""
The Cython destructor.
"""
del self.thisptr
def space_dimension(self):
"""
Return the dimension of the vector space necessary for the
linear expression.
OUTPUT:
Integer.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: ( x+y+1 ).space_dimension()
2
sage: ( x+y ).space_dimension()
2
sage: ( y+1 ).space_dimension()
2
sage: ( x +1 ).space_dimension()
1
sage: ( y+1-y ).space_dimension()
2
"""
return self.thisptr.space_dimension()
def coefficient(self, Variable v):
"""
Return the coefficient of the variable ``v``.
INPUT:
- ``v`` -- a :class:`Variable`.
OUTPUT:
An integer.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: e = 3*x+1
sage: e.coefficient(x)
3
"""
cdef Integer c = Integer(0)
mpz_set(c.value, self.thisptr.coefficient(v.thisptr[0]).get_mpz_t())
return c
def coefficients(self):
"""
Return the coefficients of the linear expression.
OUTPUT:
A tuple of integers of length :meth:`space_dimension`.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0); y = Variable(1)
sage: e = 3*x+5*y+1
sage: e.coefficients()
(3, 5)
"""
cdef int d = self.space_dimension()
cdef int i
cdef Integer c = Integer(0)
coeffs = []
for i in range(0,d):
mpz_set(c.value, self.thisptr.coefficient(PPL_Variable(i)).get_mpz_t())
coeffs.append(Integer(c))
return tuple(coeffs)
def inhomogeneous_term(self):
"""
Return the inhomogeneous term of the linear expression.
OUTPUT:
Integer.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Linear_Expression
sage: Linear_Expression(10).inhomogeneous_term()
10
"""
cdef Integer c = Integer(0)
mpz_set(c.value, self.thisptr.inhomogeneous_term().get_mpz_t())
return c
def is_zero(self):
"""
Test if ``self`` is the zero linear expression.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Linear_Expression
sage: Linear_Expression(0).is_zero()
True
sage: Linear_Expression(10).is_zero()
False
"""
return self.thisptr.is_zero()
def all_homogeneous_terms_are_zero(self):
"""
Test if ``self`` is a constant linear expression.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Linear_Expression
sage: Linear_Expression(10).all_homogeneous_terms_are_zero()
True
"""
return self.thisptr.all_homogeneous_terms_are_zero()
def ascii_dump(self):
r"""
Write an ASCII dump to stderr.
EXAMPLES::
sage: sage_cmd = 'from sage.libs.ppl import Linear_Expression, Variable\n'
sage: sage_cmd += 'x = Variable(0)\n'
sage: sage_cmd += 'y = Variable(1)\n'
sage: sage_cmd += 'e = 3*x+2*y+1\n'
sage: sage_cmd += 'e.ascii_dump()\n'
sage: from sage.tests.cmdline import test_executable
sage: (out, err, ret) = test_executable(['sage', '-c', sage_cmd], timeout=100); # long time, indirect doctest
sage: print err # long time
size 3 1 3 2 f -RPI_V -RPI -NNC_V -NNC
"""
self.thisptr.ascii_dump()
def OK(self):
"""
Check if all the invariants are satisfied.
EXAMPLES::
sage: from sage.libs.ppl import Linear_Expression, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: e = 3*x+2*y+1
sage: e.OK()
True
"""
return self.thisptr.OK()
def __repr__(self):
r"""
Return a string representation of the linear expression.
OUTPUT:
A string.
EXAMPLES::
sage: from sage.libs.ppl import Linear_Expression, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: x+1
x0+1
sage: x+1-x
1
sage: 2*x
2*x0
sage: x-x-1
-1
sage: x-x
0
"""
s = ''
first = True
for i in range(0,self.space_dimension()):
x = Variable(i)
coeff = self.coefficient(x)
if coeff==0: continue
if first and coeff==1:
s += '%r' % x
first = False
elif first and coeff==-1:
s += '-%r' % x
first = False
elif first and coeff!=1:
s += '%d*%r' % (coeff, x)
first = False
elif coeff==1:
s += '+%r' % x
elif coeff==-1:
s += '-%r' % x
else:
s += '%+d*%r' % (coeff, x)
inhomog = self.inhomogeneous_term()
if inhomog!=0:
if first:
s += '%d' % inhomog
first = False
else:
s += '%+d' % inhomog
if first:
s = '0'
return s
def __add__(self, other):
r"""
Add ``self`` and ``other``.
INPUT:
- ``self``, ``other`` -- anything that can be used to
construct a :class:`Linear_Expression`. One of them, not
necessarily ``self``, is guaranteed to be a
:class:``Linear_Expression``, otherwise Python would not
have called this method.
OUTPUT:
The sum as a :class:`Linear_Expression`
EXAMPLES::
sage: from sage.libs.ppl import Linear_Expression, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: 9+x+y+(1+x)+y+y
2*x0+3*x1+10
"""
cdef Linear_Expression lhs = Linear_Expression(self)
cdef Linear_Expression rhs = Linear_Expression(other)
cdef Linear_Expression result = Linear_Expression()
result.thisptr[0] = lhs.thisptr[0] + rhs.thisptr[0]
return result
def __sub__(self, other):
r"""
Subtract ``other`` from ``self``.
INPUT:
- ``self``, ``other`` -- anything that can be used to
construct a :class:`Linear_Expression`. One of them, not
necessarily ``self``, is guaranteed to be a
:class:``Linear_Expression``, otherwise Python would not
have called this method.
OUTPUT:
The difference as a :class:`Linear_Expression`
EXAMPLES::
sage: from sage.libs.ppl import Linear_Expression, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: 9-x-y-(1-x)-y-y
-3*x1+8
"""
cdef Linear_Expression lhs = Linear_Expression(self)
cdef Linear_Expression rhs = Linear_Expression(other)
cdef Linear_Expression result = Linear_Expression()
result.thisptr[0] = lhs.thisptr[0] - rhs.thisptr[0]
return result
def __mul__(self, other):
r"""
Multiply ``self`` with ``other``.
INPUT:
- ``self``, ``other`` -- anything that can be used to
construct a :class:`Linear_Expression`. One of them, not
necessarily ``self``, is guaranteed to be a
:class:``Linear_Expression``, otherwise Python would not
have called this method.
OUTPUT:
The product as a :class:`Linear_Expression`
EXAMPLES::
sage: from sage.libs.ppl import Linear_Expression, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: 8*(x+1)
8*x0+8
sage: y*8
8*x1
"""
cdef Linear_Expression e
cdef Integer c
if isinstance(self, Linear_Expression):
e = <Linear_Expression>self
c = Integer(other)
else:
e = <Linear_Expression>other
c = Integer(self)
cdef Linear_Expression result = Linear_Expression()
result.thisptr[0] = e.thisptr[0] * PPL_Coefficient(c.value)
return result
def __pos__(self):
"""
Return ``self``.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Linear_Expression
sage: +Linear_Expression(1)
1
sage: x = Variable(0)
sage: +(x+1)
x0+1
"""
return self
def __neg__(self):
"""
Return the negative of ``self``.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Linear_Expression
sage: -Linear_Expression(1)
-1
sage: x = Variable(0)
sage: -(x+1)
-x0-1
"""
return self*(-1)
def __richcmp__(self, other, int op):
"""
Construct :class:`Constraint`s
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: x+1 < y-2
-x0+x1-3>0
sage: x+1 <= y-2
-x0+x1-3>=0
sage: x+1 == y-2
x0-x1+3==0
sage: x+1 >= y-2
x0-x1+3>=0
sage: x+1 > y-2
x0-x1+3>0
"""
return _make_Constraint_from_richcmp(self, other, op)
def __reduce__(self):
"""
Pickle object
EXAMPLES::
sage: from sage.libs.ppl import Linear_Expression
sage: le = loads(dumps(Linear_Expression([1,2,3],4)))
sage: le.coefficients() == (1,2,3)
True
sage: le.inhomogeneous_term() == 4
True
"""
return (Linear_Expression, (self.coefficients(), self.inhomogeneous_term()))
cdef _wrap_Generator(PPL_Generator generator):
"""
Wrap a C++ ``PPL_Generator`` into a Cython ``Generator``.
"""
cdef Generator g = Generator(True)
g.thisptr = new PPL_Generator(generator)
return g
cdef extern from "ppl_shim.hh":
PPL_Generator* new_line(PPL_Linear_Expression &e) except +ValueError
PPL_Generator* new_ray(PPL_Linear_Expression &e) except +ValueError
PPL_Generator* new_point(PPL_Linear_Expression &e, PPL_Coefficient d) except +ValueError
PPL_Generator* new_closure_point(PPL_Linear_Expression &e, PPL_Coefficient d) except +ValueError
cdef class Generator(object):
r"""
Wrapper for PPL's ``Generator`` class.
An object of the class Generator is one of the following:
* a line `\ell = (a_0, \dots, a_{n-1})^T`
* a ray `r = (a_0, \dots, a_{n-1})^T`
* a point `p = (\tfrac{a_0}{d}, \dots, \tfrac{a_{n-1}}{d})^T`
* a closure point `c = (\tfrac{a_0}{d}, \dots, \tfrac{a_{n-1}}{d})^T`
where `n` is the dimension of the space and, for points and
closure points, `d` is the divisor.
INPUT/OUTPUT:
Use the helper functions :func:`line`, :func:`ray`, :func:`point`,
and :func:`closure_point` to construct generators. Analogous class
methods are also available, see :meth:`Generator.line`,
:meth:`Generator.ray`, :meth:`Generator.point`,
:meth:`Generator.closure_point`. Do not attempt to construct
generators manually.
.. NOTE::
The generators are constructed from linear expressions. The
inhomogeneous term is always silently discarded.
EXAMPLES::
sage: from sage.libs.ppl import Generator, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: Generator.line(5*x-2*y)
line(5, -2)
sage: Generator.ray(5*x-2*y)
ray(5, -2)
sage: Generator.point(5*x-2*y, 7)
point(5/7, -2/7)
sage: Generator.closure_point(5*x-2*y, 7)
closure_point(5/7, -2/7)
"""
cdef PPL_Generator *thisptr
def __cinit__(self, do_not_construct_manually=False):
"""
The Cython constructor.
See :class:`Variable` for documentation.
TESTS::
sage: from sage.libs.ppl import Variable, line
sage: x = Variable(0)
sage: line(x) # indirect doctest
line(1)
"""
assert(do_not_construct_manually)
self.thisptr = NULL
def __dealloc__(self):
"""
The Cython destructor.
"""
assert self.thisptr!=NULL, 'Do not construct Generators manually!'
del self.thisptr
@classmethod
def line(cls, expression):
"""
Construct a line.
INPUT:
- ``expression`` -- a :class:`Linear_Expression` or something
convertible to it (:class:`Variable` or integer).
OUTPUT:
A new :class:`Generator` representing the line.
Raises a ``ValueError` if the homogeneous part of
``expression`` represents the origin of the vector space.
EXAMPLES::
sage: from sage.libs.ppl import Generator, Variable
sage: y = Variable(1)
sage: Generator.line(2*y)
line(0, 1)
sage: Generator.line(y)
line(0, 1)
sage: Generator.line(1)
Traceback (most recent call last):
...
ValueError: PPL::line(e):
e == 0, but the origin cannot be a line.
"""
cdef Linear_Expression e = Linear_Expression(expression)
cdef Generator g = Generator(True)
try:
g.thisptr = new_line(e.thisptr[0])
except ValueError, msg:
g.thisptr = new_point(e.thisptr[0],PPL_Coefficient(1))
raise ValueError, msg
return g
@classmethod
def ray(cls, expression):
"""
Construct a ray.
INPUT:
- ``expression`` -- a :class:`Linear_Expression` or something
convertible to it (:class:`Variable` or integer).
OUTPUT:
A new :class:`Generator` representing the ray.
Raises a ``ValueError` if the homogeneous part of
``expression`` represents the origin of the vector space.
EXAMPLES::
sage: from sage.libs.ppl import Generator, Variable
sage: y = Variable(1)
sage: Generator.ray(2*y)
ray(0, 1)
sage: Generator.ray(y)
ray(0, 1)
sage: Generator.ray(1)
Traceback (most recent call last):
...
ValueError: PPL::ray(e):
e == 0, but the origin cannot be a ray.
"""
cdef Linear_Expression e = Linear_Expression(expression)
cdef Generator g = Generator(True)
try:
g.thisptr = new_ray(e.thisptr[0])
except ValueError, msg:
g.thisptr = new_point(e.thisptr[0],PPL_Coefficient(1))
raise ValueError, msg
return g
@classmethod
def point(cls, expression=0, divisor=1):
"""
Construct a point.
INPUT:
- ``expression`` -- a :class:`Linear_Expression` or something
convertible to it (:class:`Variable` or integer).
- ``divisor`` -- an integer.
OUTPUT:
A new :class:`Generator` representing the point.
Raises a ``ValueError` if ``divisor==0``.
EXAMPLES::
sage: from sage.libs.ppl import Generator, Variable
sage: y = Variable(1)
sage: Generator.point(2*y+7, 3)
point(0/3, 2/3)
sage: Generator.point(y+7, 3)
point(0/3, 1/3)
sage: Generator.point(7, 3)
point()
sage: Generator.point(0, 0)
Traceback (most recent call last):
...
ValueError: PPL::point(e, d):
d == 0.
"""
cdef Linear_Expression e = Linear_Expression(expression)
cdef Integer d = Integer(divisor)
cdef Generator g = Generator(True)
try:
g.thisptr = new_point(e.thisptr[0], PPL_Coefficient(d.value))
except ValueError, msg:
g.thisptr = new_point(e.thisptr[0],PPL_Coefficient(1))
raise ValueError, msg
return g
@classmethod
def closure_point(cls, expression=0, divisor=1):
"""
Construct a closure point.
A closure point is a point of the topological closure of a
polyhedron that is not a point of the polyhedron itself.
INPUT:
- ``expression`` -- a :class:`Linear_Expression` or something
convertible to it (:class:`Variable` or integer).
- ``divisor`` -- an integer.
OUTPUT:
A new :class:`Generator` representing the point.
Raises a ``ValueError` if ``divisor==0``.
EXAMPLES::
sage: from sage.libs.ppl import Generator, Variable
sage: y = Variable(1)
sage: Generator.closure_point(2*y+7, 3)
closure_point(0/3, 2/3)
sage: Generator.closure_point(y+7, 3)
closure_point(0/3, 1/3)
sage: Generator.closure_point(7, 3)
closure_point()
sage: Generator.closure_point(0, 0)
Traceback (most recent call last):
...
ValueError: PPL::closure_point(e, d):
d == 0.
"""
cdef Linear_Expression e = Linear_Expression(expression)
cdef Integer d = Integer(divisor)
cdef Generator g = Generator(True)
try:
g.thisptr = new_closure_point(e.thisptr[0], PPL_Coefficient(d.value))
except ValueError, msg:
g.thisptr = new_point(e.thisptr[0],PPL_Coefficient(1))
raise ValueError, msg
return g
def __repr__(self):
"""
Return a string representation of the generator.
OUTPUT:
String.
EXAMPLES::
sage: from sage.libs.ppl import Generator, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: e = 2*x-y+5
sage: Generator.line(e)
line(2, -1)
sage: Generator.ray(e)
ray(2, -1)
sage: Generator.point(e, 3)
point(2/3, -1/3)
sage: Generator.closure_point(e, 3)
closure_point(2/3, -1/3)
"""
t = self.type()
if t=='line':
s = 'line('
div = ''
elif t=='ray':
s = 'ray('
div = ''
elif t=='point':
s = 'point('
div = '/'+str(self.divisor())
elif t=='closure_point':
s = 'closure_point('
div = '/'+str(self.divisor())
else:
assert(False)
for i in range(0,self.space_dimension()):
if i>0:
s += ', '
s += str(self.coefficient(Variable(i))) + div
s += ')'
return s
def space_dimension(self):
r"""
Return the dimension of the vector space enclosing ``self``.
OUTPUT:
Integer.
EXAMPLES::
sage: from sage.libs.ppl import Variable, point
sage: x = Variable(0)
sage: y = Variable(1)
sage: point(x).space_dimension()
1
sage: point(y).space_dimension()
2
"""
return self.thisptr.space_dimension()
def type(self):
r"""
Return the generator type of ``self``.
OUTPUT:
String. One of ``'line'``, ``'ray'``, ``'point'``, or
``'closure_point'``.
EXAMPLES::
sage: from sage.libs.ppl import Variable, point, closure_point, ray, line
sage: x = Variable(0)
sage: line(x).type()
'line'
sage: ray(x).type()
'ray'
sage: point(x,2).type()
'point'
sage: closure_point(x,2).type()
'closure_point'
"""
t = self.thisptr.type()
if t==LINE:
return 'line'
elif t==RAY:
return 'ray'
elif t==POINT:
return 'point'
elif t==CLOSURE_POINT:
return 'closure_point'
assert False
def is_line(self):
r"""
Test whether ``self`` is a line.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.libs.ppl import Variable, point, closure_point, ray, line
sage: x = Variable(0)
sage: line(x).is_line()
True
sage: ray(x).is_line()
False
sage: point(x,2).is_line()
False
sage: closure_point(x,2).is_line()
False
"""
return self.thisptr.is_line()
def is_ray(self):
r"""
Test whether ``self`` is a ray.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.libs.ppl import Variable, point, closure_point, ray, line
sage: x = Variable(0)
sage: line(x).is_ray()
False
sage: ray(x).is_ray()
True
sage: point(x,2).is_ray()
False
sage: closure_point(x,2).is_ray()
False
"""
return self.thisptr.is_ray()
def is_line_or_ray(self):
r"""
Test whether ``self`` is a line or a ray.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.libs.ppl import Variable, point, closure_point, ray, line
sage: x = Variable(0)
sage: line(x).is_line_or_ray()
True
sage: ray(x).is_line_or_ray()
True
sage: point(x,2).is_line_or_ray()
False
sage: closure_point(x,2).is_line_or_ray()
False
"""
return self.thisptr.is_line_or_ray()
def is_point(self):
r"""
Test whether ``self`` is a point.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.libs.ppl import Variable, point, closure_point, ray, line
sage: x = Variable(0)
sage: line(x).is_point()
False
sage: ray(x).is_point()
False
sage: point(x,2).is_point()
True
sage: closure_point(x,2).is_point()
False
"""
return self.thisptr.is_point()
def is_closure_point(self):
r"""
Test whether ``self`` is a closure point.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.libs.ppl import Variable, point, closure_point, ray, line
sage: x = Variable(0)
sage: line(x).is_closure_point()
False
sage: ray(x).is_closure_point()
False
sage: point(x,2).is_closure_point()
False
sage: closure_point(x,2).is_closure_point()
True
"""
return self.thisptr.is_closure_point()
def coefficient(self, Variable v):
"""
Return the coefficient of the variable ``v``.
INPUT:
- ``v`` -- a :class:`Variable`.
OUTPUT:
An integer.
EXAMPLES::
sage: from sage.libs.ppl import Variable, line
sage: x = Variable(0)
sage: line = line(3*x+1)
sage: line
line(1)
sage: line.coefficient(x)
1
"""
cdef Integer c = Integer(0)
mpz_set(c.value, self.thisptr.coefficient(v.thisptr[0]).get_mpz_t())
return c
def coefficients(self):
"""
Return the coefficients of the generator.
See also :meth:`coefficient`.
OUTPUT:
A tuple of integers of length :meth:`space_dimension`.
EXAMPLES::
sage: from sage.libs.ppl import Variable, point
sage: x = Variable(0); y = Variable(1)
sage: p = point(3*x+5*y+1, 2); p
point(3/2, 5/2)
sage: p.coefficients()
(3, 5)
"""
cdef int d = self.space_dimension()
cdef int i
cdef Integer c = Integer(0)
coeffs = []
for i in range(0,d):
mpz_set(c.value, self.thisptr.coefficient(PPL_Variable(i)).get_mpz_t())
coeffs.append(Integer(c))
return tuple(coeffs)
def divisor(self):
"""
If ``self`` is either a point or a closure point, return its
divisor.
OUTPUT:
An integer. If ``self`` is a ray or a line, raises
``ValueError``.
EXAMPLES::
sage: from sage.libs.ppl import Generator, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: point = Generator.point(2*x-y+5)
sage: point.divisor()
1
sage: line = Generator.line(2*x-y+5)
sage: line.divisor()
Traceback (most recent call last):
...
ValueError: PPL::Generator::divisor():
*this is neither a point nor a closure point.
"""
cdef Integer c = Integer(0)
mpz_set(c.value, self.thisptr.divisor().get_mpz_t())
return c
def is_equivalent_to(self, Generator g):
r"""
Test whether ``self`` and ``g`` are equivalent.
INPUT:
- ``g`` -- a :class:`Generator`.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` and ``g``
are equivalent generators.
Note that generators having different space dimensions are not
equivalent.
EXAMPLES::
sage: from sage.libs.ppl import Generator, Variable, point, line
sage: x = Variable(0)
sage: y = Variable(1)
sage: point(2*x , 2).is_equivalent_to( point(x) )
True
sage: point(2*x+0*y, 2).is_equivalent_to( point(x) )
False
sage: line(4*x).is_equivalent_to(line(x))
True
"""
return self.thisptr.is_equivalent_to(g.thisptr[0])
def ascii_dump(self):
r"""
Write an ASCII dump to stderr.
EXAMPLES::
sage: sage_cmd = 'from sage.libs.ppl import Linear_Expression, Variable, point\n'
sage: sage_cmd += 'x = Variable(0)\n'
sage: sage_cmd += 'y = Variable(1)\n'
sage: sage_cmd += 'p = point(3*x+2*y)\n'
sage: sage_cmd += 'p.ascii_dump()\n'
sage: from sage.tests.cmdline import test_executable
sage: (out, err, ret) = test_executable(['sage', '-c', sage_cmd], timeout=100); # long time, indirect doctest
sage: print err # long time
size 3 1 3 2 f -RPI_V +RPI -NNC_V -NNC
"""
self.thisptr.ascii_dump()
def OK(self):
"""
Check if all the invariants are satisfied.
EXAMPLES::
sage: from sage.libs.ppl import Linear_Expression, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: e = 3*x+2*y+1
sage: e.OK()
True
"""
return self.thisptr.OK()
def __reduce__(self):
"""
Pickle object.
TESTS::
sage: from sage.libs.ppl import Generator, Variable, line, ray, point, closure_point
sage: x = Variable(0); y = Variable(1);
sage: loads(dumps(Generator.point(2*x+7*y, 3)))
point(2/3, 7/3)
sage: loads(dumps(Generator.closure_point(2*x+7*y, 3)))
closure_point(2/3, 7/3)
sage: loads(dumps(Generator.line(2*x+7*y)))
line(2, 7)
sage: loads(dumps(Generator.ray(2*x+7*y)))
ray(2, 7)
"""
t = self.thisptr.type()
le = Linear_Expression(self.coefficients(), 0)
if t==LINE:
return (line, (le,))
elif t==RAY:
return (ray, (le,))
elif t==POINT:
return (point, (le, self.divisor()))
elif t==CLOSURE_POINT:
return (closure_point, (le, self.divisor()))
assert False
def line(expression):
"""
Constuct a line.
See :meth:`Generator.line` for documentation.
EXAMPLES::
sage: from sage.libs.ppl import Variable, line
sage: y = Variable(1)
sage: line(2*y)
line(0, 1)
"""
return Generator.line(expression)
def ray(expression):
"""
Constuct a ray.
See :meth:`Generator.ray` for documentation.
EXAMPLES::
sage: from sage.libs.ppl import Variable, ray
sage: y = Variable(1)
sage: ray(2*y)
ray(0, 1)
"""
return Generator.ray(expression)
def point(expression=0, divisor=1):
"""
Constuct a point.
See :meth:`Generator.point` for documentation.
EXAMPLES::
sage: from sage.libs.ppl import Variable, point
sage: y = Variable(1)
sage: point(2*y, 5)
point(0/5, 2/5)
"""
return Generator.point(expression, divisor)
def closure_point(expression=0, divisor=1):
"""
Constuct a closure point.
See :meth:`Generator.closure_point` for documentation.
EXAMPLES::
sage: from sage.libs.ppl import Variable, closure_point
sage: y = Variable(1)
sage: closure_point(2*y, 5)
closure_point(0/5, 2/5)
"""
return Generator.closure_point(expression, divisor)
cdef _wrap_Generator_System(PPL_Generator_System generator_system):
"""
Wrap a C++ ``PPL_Generator_System`` into a Cython ``Generator_System``.
"""
cdef Generator_System gs = Generator_System()
del gs.thisptr
gs.thisptr = new PPL_Generator_System(generator_system)
return gs
cdef class Generator_System(_mutable_or_immutable):
"""
Wrapper for PPL's ``Generator_System`` class.
An object of the class Generator_System is a system of generators,
i.e., a multiset of objects of the class Generator (lines, rays,
points and closure points). When inserting generators in a system,
space dimensions are automatically adjusted so that all the
generators in the system are defined on the same vector space. A
system of generators which is meant to define a non-empty
polyhedron must include at least one point: the reason is that
lines, rays and closure points need a supporting point (lines and
rays only specify directions while closure points only specify
points in the topological closure of the NNC polyhedron).
EXAMPLES::
sage: from sage.libs.ppl import Generator_System, Variable, line, ray, point, closure_point
sage: x = Variable(0)
sage: y = Variable(1)
sage: gs = Generator_System( line(5*x-2*y) )
sage: gs.insert( ray(6*x-3*y) )
sage: gs.insert( point(2*x-7*y, 5) )
sage: gs.insert( closure_point(9*x-1*y, 2) )
sage: gs
Generator_System {line(5, -2), ray(2, -1), point(2/5, -7/5), closure_point(9/2, -1/2)}
"""
cdef PPL_Generator_System *thisptr
def __cinit__(self, arg=None):
"""
The Cython constructor.
See :class:`Generator_System` for documentation.
TESTS::
sage: from sage.libs.ppl import Generator_System
sage: Generator_System() # indirect doctest
Generator_System {}
"""
if arg is None:
self.thisptr = new PPL_Generator_System()
return
if isinstance(arg, Generator):
g = <Generator>arg
self.thisptr = new PPL_Generator_System(g.thisptr[0])
return
if isinstance(arg, Generator_System):
gs = <Generator_System>arg
self.thisptr = new PPL_Generator_System(gs.thisptr[0])
return
if isinstance(arg, (list,tuple)):
self.thisptr = new PPL_Generator_System()
for generator in arg:
self.insert(generator)
return
raise ValueError, 'Cannot initialize with '+str(arg)+'.'
def __dealloc__(self):
"""
The Cython destructor.
"""
del self.thisptr
def space_dimension(self):
r"""
Return the dimension of the vector space enclosing ``self``.
OUTPUT:
Integer.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Generator_System, point
sage: x = Variable(0)
sage: gs = Generator_System( point(3*x) )
sage: gs.space_dimension()
1
"""
return self.thisptr.space_dimension()
def clear(self):
r"""
Removes all generators from the generator system and sets its
space dimension to 0.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Generator_System, point
sage: x = Variable(0)
sage: gs = Generator_System( point(3*x) ); gs
Generator_System {point(3/1)}
sage: gs.clear()
sage: gs
Generator_System {}
"""
self.assert_mutable('The Generator_System is not mutable!')
self.thisptr.clear()
def insert(self, Generator g):
"""
Insert ``g`` into the generator system.
The number of space dimensions of ``self`` is increased, if needed.
INPUT:
- ``g`` -- a :class:`Generator`.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Generator_System, point
sage: x = Variable(0)
sage: gs = Generator_System( point(3*x) )
sage: gs.insert( point(-3*x) )
sage: gs
Generator_System {point(3/1), point(-3/1)}
"""
self.assert_mutable('The Generator_System is not mutable!')
self.thisptr.insert(g.thisptr[0])
def empty(self):
"""
Return ``True`` if and only if ``self`` has no generators.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Generator_System, point
sage: x = Variable(0)
sage: gs = Generator_System()
sage: gs.empty()
True
sage: gs.insert( point(-3*x) )
sage: gs.empty()
False
"""
return self.thisptr.empty()
def ascii_dump(self):
r"""
Write an ASCII dump to stderr.
EXAMPLES::
sage: sage_cmd = 'from sage.libs.ppl import Generator_System, point, Variable\n'
sage: sage_cmd += 'x = Variable(0)\n'
sage: sage_cmd += 'y = Variable(1)\n'
sage: sage_cmd += 'gs = Generator_System( point(3*x+2*y+1) )\n'
sage: sage_cmd += 'gs.ascii_dump()\n'
sage: from sage.tests.cmdline import test_executable
sage: (out, err, ret) = test_executable(['sage', '-c', sage_cmd], timeout=100); # long time, indirect doctest
sage: print err # long time
topology NECESSARILY_CLOSED
1 x 3 (sorted)
index_first_pending 1
1 3 2 P
"""
self.thisptr.ascii_dump()
def OK(self):
"""
Check if all the invariants are satisfied.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Generator_System, point
sage: x = Variable(0)
sage: y = Variable(1)
sage: gs = Generator_System( point(3*x+2*y+1) )
sage: gs.OK()
True
"""
return self.thisptr.OK()
def __iter__(self):
"""
Iterate through the generators of the system.
EXAMPLES::
sage: from sage.libs.ppl import Generator_System, Variable, point
sage: x = Variable(0)
sage: gs = Generator_System(point(3*x))
sage: iter = gs.__iter__()
sage: iter.next()
point(3/1)
"""
return Generator_System_iterator(self)
def __repr__(self):
r"""
Return a string representation of the generator system.
OUTPUT:
A string.
EXAMPLES::
sage: from sage.libs.ppl import Generator_System, Variable, point, ray
sage: x = Variable(0)
sage: y = Variable(1)
sage: gs = Generator_System(point(3*x+2*y+1))
sage: gs.insert(ray(x))
sage: gs.__repr__()
'Generator_System {point(3/1, 2/1), ray(1, 0)}'
"""
s = 'Generator_System {'
s += ', '.join([ g.__repr__() for g in self ])
s += '}'
return s
def __reduce__(self):
"""
Pickle object.
TESTS::
sage: from sage.libs.ppl import Generator_System, Variable, point, ray
sage: x = Variable(0)
sage: y = Variable(1)
sage: gs = Generator_System((point(3*x+2*y+1), ray(x))); gs
Generator_System {point(3/1, 2/1), ray(1, 0)}
sage: loads(dumps(gs))
Generator_System {point(3/1, 2/1), ray(1, 0)}
"""
return (Generator_System, (tuple(self), ))
cdef extern from "ppl_shim.hh":
ctypedef void* gs_iterator_ptr
cdef gs_iterator_ptr init_gs_iterator(PPL_Generator_System &gs)
cdef PPL_Generator next_gs_iterator(gs_iterator_ptr)
cdef bint is_end_gs_iterator(PPL_Generator_System &gs, gs_iterator_ptr gsi_ptr)
cdef void delete_gs_iterator(gs_iterator_ptr)
cdef class Generator_System_iterator(object):
"""
Wrapper for PPL's ``Generator_System::const_iterator`` class.
EXAMPLES::
sage: from sage.libs.ppl import Generator_System, Variable, line, ray, point, closure_point, Generator_System_iterator
sage: x = Variable(0)
sage: y = Variable(1)
sage: gs = Generator_System( line(5*x-2*y) )
sage: gs.insert( ray(6*x-3*y) )
sage: gs.insert( point(2*x-7*y, 5) )
sage: gs.insert( closure_point(9*x-1*y, 2) )
sage: Generator_System_iterator(gs).next()
line(5, -2)
sage: list(gs)
[line(5, -2), ray(2, -1), point(2/5, -7/5), closure_point(9/2, -1/2)]
"""
cdef Generator_System gs
cdef gs_iterator_ptr gsi_ptr
def __cinit__(self, Generator_System gs):
r"""
The Cython constructor.
TESTS::
sage: from sage.libs.ppl import Generator_System, Generator_System_iterator
sage: iter = Generator_System_iterator(Generator_System()) # indirect doctest
"""
self.gs = gs
self.gsi_ptr = init_gs_iterator(gs.thisptr[0])
def __dealloc__(self):
"""
The Cython destructor.
"""
delete_gs_iterator(self.gsi_ptr)
def __next__(Generator_System_iterator self):
r"""
The next iteration.
OUTPUT:
A :class:`Generator`.
EXAMPLES::
sage: from sage.libs.ppl import Generator_System, Variable, point, Generator_System_iterator
sage: x = Variable(0)
sage: y = Variable(1)
sage: gs = Generator_System( point(5*x-2*y) )
sage: Generator_System_iterator(gs).next()
point(5/1, -2/1)
"""
if is_end_gs_iterator((<Generator_System>self.gs).thisptr[0], self.gsi_ptr):
raise StopIteration
return _wrap_Generator(next_gs_iterator(self.gsi_ptr))
cdef _wrap_Constraint(PPL_Constraint constraint):
"""
Wrap a C++ ``PPL_Constraint`` into a Cython ``Constraint``.
"""
cdef Constraint c = Constraint(True)
c.thisptr = new PPL_Constraint(constraint)
return c
cdef _make_Constraint_from_richcmp(lhs_, rhs_, op):
cdef Linear_Expression lhs = Linear_Expression(lhs_)
cdef Linear_Expression rhs = Linear_Expression(rhs_)
if op==0:
return _wrap_Constraint(lhs.thisptr[0] < rhs.thisptr[0])
elif op==1:
return _wrap_Constraint(lhs.thisptr[0] <= rhs.thisptr[0])
elif op==2:
return _wrap_Constraint(lhs.thisptr[0] == rhs.thisptr[0])
elif op==4:
return _wrap_Constraint(lhs.thisptr[0] > rhs.thisptr[0])
elif op==5:
return _wrap_Constraint(lhs.thisptr[0] >= rhs.thisptr[0])
elif op==3:
raise NotImplementedError
else:
assert(False)
cdef class Constraint(object):
"""
Wrapper for PPL's ``Constraint`` class.
An object of the class ``Constraint`` is either:
* an equality `\sum_{i=0}^{n-1} a_i x_i + b = 0`
* a non-strict inequality `\sum_{i=0}^{n-1} a_i x_i + b \geq 0`
* a strict inequality `\sum_{i=0}^{n-1} a_i x_i + b > 0`
where `n` is the dimension of the space, `a_i` is the integer
coefficient of variable `x_i`, and `b_i` is the integer
inhomogeneous term.
INPUT/OUTPUT:
You construct constraints by writing inequalities in
:class:`Linear_Expression`. Do not attempt to manually construct
constraints.
EXAMPLES::
sage: from sage.libs.ppl import Constraint, Variable, Linear_Expression
sage: x = Variable(0)
sage: y = Variable(1)
sage: 5*x-2*y > x+y-1
4*x0-3*x1+1>0
sage: 5*x-2*y >= x+y-1
4*x0-3*x1+1>=0
sage: 5*x-2*y == x+y-1
4*x0-3*x1+1==0
sage: 5*x-2*y <= x+y-1
-4*x0+3*x1-1>=0
sage: 5*x-2*y < x+y-1
-4*x0+3*x1-1>0
sage: x > 0
x0>0
Special care is needed if the left hand side is a constant::
sage: 0 == 1 # watch out!
False
sage: Linear_Expression(0) == 1
-1==0
"""
cdef PPL_Constraint *thisptr
def __cinit__(self, do_not_construct_manually=False):
"""
The Cython constructor.
See :class:`Constraint` for documentation.
TESTS::
sage: from sage.libs.ppl import Constraint, Variable, Linear_Expression
sage: x = Variable(0)
sage: x>0 # indirect doctest
x0>0
"""
assert(do_not_construct_manually)
self.thisptr = NULL
def __dealloc__(self):
"""
The Cython destructor.
"""
assert self.thisptr!=NULL, 'Do not construct Constraints manually!'
del self.thisptr
def __repr__(self):
"""
Return a string representation of the constraint.
OUTPUT:
String.
EXAMPLES::
sage: from sage.libs.ppl import Constraint, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: (2*x-y+5 > x).__repr__()
'x0-x1+5>0'
sage: (2*x-y+5 == x).__repr__()
'x0-x1+5==0'
sage: (2*x-y+5 >= x).__repr__()
'x0-x1+5>=0'
"""
e = sum([ self.coefficient(x)*x
for x in [Variable(i)
for i in range(0,self.space_dimension())] ])
e += self.inhomogeneous_term()
s = e.__repr__()
t = self.type()
if t=='equality':
s += '==0'
elif t=='nonstrict_inequality':
s += '>=0'
elif t=='strict_inequality':
s += '>0'
else:
assert(False)
return s
def space_dimension(self):
r"""
Return the dimension of the vector space enclosing ``self``.
OUTPUT:
Integer.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: (x>=0).space_dimension()
1
sage: (y==1).space_dimension()
2
"""
return self.thisptr.space_dimension()
def type(self):
r"""
Return the constraint type of ``self``.
OUTPUT:
String. One of ``'equality'``, ``'nonstrict_inequality'``, or
``'strict_inequality'``.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: (x==0).type()
'equality'
sage: (x>=0).type()
'nonstrict_inequality'
sage: (x>0).type()
'strict_inequality'
"""
t = self.thisptr.type()
if t==EQUALITY:
return 'equality'
elif t==NONSTRICT_INEQUALITY:
return 'nonstrict_inequality'
elif t==STRICT_INEQUALITY:
return 'strict_inequality'
def is_equality(self):
r"""
Test whether ``self`` is an equality.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` is an
equality constraint.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: (x==0).is_equality()
True
sage: (x>=0).is_equality()
False
sage: (x>0).is_equality()
False
"""
return self.thisptr.is_equality()
def is_inequality(self):
r"""
Test whether ``self`` is an inequality.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` is an
inequality constraint, either strict or non-strict.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: (x==0).is_inequality()
False
sage: (x>=0).is_inequality()
True
sage: (x>0).is_inequality()
True
"""
return self.thisptr.is_inequality()
def is_nonstrict_inequality(self):
r"""
Test whether ``self`` is a non-strict inequality.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` is an
non-strict inequality constraint.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: (x==0).is_nonstrict_inequality()
False
sage: (x>=0).is_nonstrict_inequality()
True
sage: (x>0).is_nonstrict_inequality()
False
"""
return self.thisptr.is_nonstrict_inequality()
def is_strict_inequality(self):
r"""
Test whether ``self`` is a strict inequality.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` is an
strict inequality constraint.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: (x==0).is_strict_inequality()
False
sage: (x>=0).is_strict_inequality()
False
sage: (x>0).is_strict_inequality()
True
"""
return self.thisptr.is_strict_inequality()
def coefficient(self, Variable v):
"""
Return the coefficient of the variable ``v``.
INPUT:
- ``v`` -- a :class:`Variable`.
OUTPUT:
An integer.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: ineq = (3*x+1 > 0)
sage: ineq.coefficient(x)
3
"""
cdef Integer c = Integer(0)
mpz_set(c.value, self.thisptr.coefficient(v.thisptr[0]).get_mpz_t())
return c
def coefficients(self):
"""
Return the coefficients of the constraint.
See also :meth:`coefficient`.
OUTPUT:
A tuple of integers of length :meth:`space_dimension`.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0); y = Variable(1)
sage: ineq = ( 3*x+5*y+1 == 2); ineq
3*x0+5*x1-1==0
sage: ineq.coefficients()
(3, 5)
"""
cdef int d = self.space_dimension()
cdef int i
cdef Integer c = Integer(0)
coeffs = []
for i in range(0,d):
mpz_set(c.value, self.thisptr.coefficient(PPL_Variable(i)).get_mpz_t())
coeffs.append(Integer(c))
return tuple(coeffs)
def inhomogeneous_term(self):
"""
Return the inhomogeneous term of the constraint.
OUTPUT:
Integer.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: y = Variable(1)
sage: ineq = ( 10+y > 9 )
sage: ineq
x1+1>0
sage: ineq.inhomogeneous_term()
1
"""
cdef Integer c = Integer(0)
mpz_set(c.value, self.thisptr.inhomogeneous_term().get_mpz_t())
return c
def is_tautological(self):
r"""
Test whether ``self`` is a tautological constraint.
A tautology can have either one of the following forms:
* an equality: `\sum 0 x_i + 0 = 0`,
* a non-strict inequality: `\sum 0 x_i + b \geq 0` with `b\geq 0`, or
* a strict inequality: `\sum 0 x_i + b > 0` with `b> 0`.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` is a
tautological constraint.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: (x==0).is_tautological()
False
sage: (0*x>=0).is_tautological()
True
"""
return self.thisptr.is_tautological()
def is_inconsistent(self):
r"""
Test whether ``self`` is an inconsistent constraint, that is, always false.
An inconsistent constraint can have either one of the
following forms:
* an equality: `\sum 0 x_i + b = 0` with `b\not=0`,
* a non-strict inequality: `\sum 0 x_i + b \geq 0` with `b< 0`, or
* a strict inequality: `\sum 0 x_i + b > 0` with `b\leq 0`.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` is an
inconsistent constraint.
EXAMPLES::
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: (x==1).is_inconsistent()
False
sage: (0*x>=1).is_inconsistent()
True
"""
return self.thisptr.is_inconsistent()
def is_equivalent_to(self, Constraint c):
r"""
Test whether ``self`` and ``c`` are equivalent.
INPUT:
- ``c`` -- a :class:`Constraint`.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` and ``c``
are equivalent constraints.
Note that constraints having different space dimensions are
not equivalent. However, constraints having different types
may nonetheless be equivalent, if they both are tautologies or
inconsistent.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Linear_Expression
sage: x = Variable(0)
sage: y = Variable(1)
sage: ( x>0 ).is_equivalent_to( Linear_Expression(0)<x )
True
sage: ( x>0 ).is_equivalent_to( 0*y<x )
False
sage: ( 0*x>1 ).is_equivalent_to( 0*x==-2 )
True
"""
return self.thisptr.is_equivalent_to(c.thisptr[0])
def ascii_dump(self):
r"""
Write an ASCII dump to stderr.
EXAMPLES::
sage: sage_cmd = 'from sage.libs.ppl import Linear_Expression, Variable\n'
sage: sage_cmd += 'x = Variable(0)\n'
sage: sage_cmd += 'y = Variable(1)\n'
sage: sage_cmd += 'e = (3*x+2*y+1 > 0)\n'
sage: sage_cmd += 'e.ascii_dump()\n'
sage: from sage.tests.cmdline import test_executable
sage: (out, err, ret) = test_executable(['sage', '-c', sage_cmd], timeout=100); # long time, indirect doctest
sage: print err # long time
size 4 1 3 2 -1 f -RPI_V +RPI -NNC_V +NNC
"""
self.thisptr.ascii_dump()
def OK(self):
"""
Check if all the invariants are satisfied.
EXAMPLES::
sage: from sage.libs.ppl import Linear_Expression, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: ineq = (3*x+2*y+1>=0)
sage: ineq.OK()
True
"""
return self.thisptr.OK()
def __reduce__(self):
"""
Pickle object.
EXAMPLES::
sage: from sage.libs.ppl import Linear_Expression, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: loads(dumps(3*x+2*y+1>=5))
3*x0+2*x1-4>=0
sage: loads(dumps(3*x+2*y+1>5))
3*x0+2*x1-4>0
sage: loads(dumps(3*x+2*y+1==5))
3*x0+2*x1-4==0
"""
le = Linear_Expression(self.coefficients(), self.inhomogeneous_term())
if self.is_nonstrict_inequality():
return (inequality, (le, ))
elif self.is_strict_inequality():
return (strict_inequality, (le, ))
elif self.is_equality():
return (equation, (le, ))
else:
assert False
def inequality(expression):
"""
Constuct an inequality.
INPUT:
- ``expression`` -- a :class:`Linear_Expression`.
OUTPUT:
The inequality ``expression`` >= 0.
EXAMPLES::
sage: from sage.libs.ppl import Variable, inequality
sage: y = Variable(1)
sage: 2*y+1 >= 0
2*x1+1>=0
sage: inequality(2*y+1)
2*x1+1>=0
"""
return expression >= 0
def strict_inequality(expression):
"""
Constuct a strict inequality.
INPUT:
- ``expression`` -- a :class:`Linear_Expression`.
OUTPUT:
The inequality ``expression`` > 0.
EXAMPLES::
sage: from sage.libs.ppl import Variable, strict_inequality
sage: y = Variable(1)
sage: 2*y+1 > 0
2*x1+1>0
sage: strict_inequality(2*y+1)
2*x1+1>0
"""
return expression > 0
def equation(expression):
"""
Constuct an equation.
INPUT:
- ``expression`` -- a :class:`Linear_Expression`.
OUTPUT:
The equation ``expression`` == 0.
EXAMPLES::
sage: from sage.libs.ppl import Variable, equation
sage: y = Variable(1)
sage: 2*y+1 == 0
2*x1+1==0
sage: equation(2*y+1)
2*x1+1==0
"""
return expression == 0
cdef _wrap_Constraint_System(PPL_Constraint_System constraint_system):
"""
Wrap a C++ ``PPL_Constraint_System`` into a Cython ``Constraint_System``.
"""
cdef Constraint_System cs = Constraint_System()
del cs.thisptr
cs.thisptr = new PPL_Constraint_System(constraint_system)
return cs
cdef class Constraint_System(object):
"""
Wrapper for PPL's ``Constraint_System`` class.
An object of the class Constraint_System is a system of
constraints, i.e., a multiset of objects of the class
Constraint. When inserting constraints in a system, space
dimensions are automatically adjusted so that all the constraints
in the system are defined on the same vector space.
EXAMPLES::
sage: from sage.libs.ppl import Constraint_System, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System( 5*x-2*y > 0 )
sage: cs.insert( 6*x<3*y )
sage: cs.insert( x >= 2*x-7*y )
sage: cs
Constraint_System {5*x0-2*x1>0, -6*x0+3*x1>0, -x0+7*x1>=0}
"""
cdef PPL_Constraint_System *thisptr
def __cinit__(self, arg=None):
"""
The Cython constructor.
See :class:`Constraint_System` for documentation.
TESTS::
sage: from sage.libs.ppl import Constraint_System
sage: Constraint_System()
Constraint_System {}
"""
if arg is None:
self.thisptr = new PPL_Constraint_System()
return
if isinstance(arg, Constraint):
g = <Constraint>arg
self.thisptr = new PPL_Constraint_System(g.thisptr[0])
return
if isinstance(arg, Constraint_System):
gs = <Constraint_System>arg
self.thisptr = new PPL_Constraint_System(gs.thisptr[0])
return
if isinstance(arg, (list,tuple)):
self.thisptr = new PPL_Constraint_System()
for constraint in arg:
self.insert(constraint)
return
raise ValueError, 'Cannot initialize with '+str(arg)+'.'
def __dealloc__(self):
"""
The Cython destructor.
"""
del self.thisptr
def space_dimension(self):
r"""
Return the dimension of the vector space enclosing ``self``.
OUTPUT:
Integer.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Constraint_System
sage: x = Variable(0)
sage: cs = Constraint_System( x>0 )
sage: cs.space_dimension()
1
"""
return self.thisptr.space_dimension()
def has_equalities(self):
r"""
Tests whether ``self`` contains one or more equality constraints.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Constraint_System
sage: x = Variable(0)
sage: cs = Constraint_System()
sage: cs.insert( x>0 )
sage: cs.insert( x<0 )
sage: cs.has_equalities()
False
sage: cs.insert( x==0 )
sage: cs.has_equalities()
True
"""
return self.thisptr.has_equalities()
def has_strict_inequalities(self):
r"""
Tests whether ``self`` contains one or more strict inequality constraints.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Constraint_System
sage: x = Variable(0)
sage: cs = Constraint_System()
sage: cs.insert( x>=0 )
sage: cs.insert( x==-1 )
sage: cs.has_strict_inequalities()
False
sage: cs.insert( x>0 )
sage: cs.has_strict_inequalities()
True
"""
return self.thisptr.has_strict_inequalities()
def clear(self):
r"""
Removes all constraints from the constraint system and sets its
space dimension to 0.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Constraint_System
sage: x = Variable(0)
sage: cs = Constraint_System(x>0)
sage: cs
Constraint_System {x0>0}
sage: cs.clear()
sage: cs
Constraint_System {}
"""
self.assert_mutable('The Constraint_System is not mutable!')
self.thisptr.clear()
def insert(self, Constraint c):
"""
Insert ``c`` into the constraint system.
INPUT:
- ``c`` -- a :class:`Constraint`.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Constraint_System
sage: x = Variable(0)
sage: cs = Constraint_System()
sage: cs.insert( x>0 )
sage: cs
Constraint_System {x0>0}
"""
self.assert_mutable('The Constraint_System is not mutable!')
self.thisptr.insert(c.thisptr[0])
def empty(self):
"""
Return ``True`` if and only if ``self`` has no constraints.
OUTPUT:
Boolean.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Constraint_System, point
sage: x = Variable(0)
sage: cs = Constraint_System()
sage: cs.empty()
True
sage: cs.insert( x>0 )
sage: cs.empty()
False
"""
return self.thisptr.empty()
def ascii_dump(self):
r"""
Write an ASCII dump to stderr.
EXAMPLES::
sage: sage_cmd = 'from sage.libs.ppl import Constraint_System, Variable\n'
sage: sage_cmd += 'x = Variable(0)\n'
sage: sage_cmd += 'y = Variable(1)\n'
sage: sage_cmd += 'cs = Constraint_System( 3*x > 2*y+1 )\n'
sage: sage_cmd += 'cs.ascii_dump()\n'
sage: from sage.tests.cmdline import test_executable
sage: (out, err, ret) = test_executable(['sage', '-c', sage_cmd], timeout=100); # long time, indirect doctest
sage: print err # long time
topology NOT_NECESSARILY_CLOSED
1 x 4 (sorted)
index_first_pending 1
-1 3 -2 -1 >
"""
self.thisptr.ascii_dump()
def OK(self):
"""
Check if all the invariants are satisfied.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Constraint_System
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System( 3*x+2*y+1 <= 10 )
sage: cs.OK()
True
"""
return self.thisptr.OK()
def __iter__(self):
"""
Iterate through the constraints of the system.
EXAMPLES::
sage: from sage.libs.ppl import Variable, Constraint_System
sage: x = Variable(0)
sage: cs = Constraint_System( x>0 )
sage: iter = cs.__iter__()
sage: iter.next()
x0>0
sage: list(cs) # uses __iter__() internally
[x0>0]
"""
return Constraint_System_iterator(self)
def __repr__(self):
r"""
Return a string representation of the constraint system.
OUTPUT:
A string.
EXAMPLES::
sage: from sage.libs.ppl import Constraint_System, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System([3*x+2*y+1 < 3, 0*x>x+1])
sage: cs.__repr__()
'Constraint_System {-3*x0-2*x1+2>0, -x0-1>0}'
"""
s = 'Constraint_System {'
s += ', '.join([ c.__repr__() for c in self ])
s += '}'
return s
def __reduce__(self):
"""
Pickle object.
TESTS::
sage: from sage.libs.ppl import Constraint_System, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System([3*x+2*y+1 < 3, 0*x>x+1]); cs
Constraint_System {-3*x0-2*x1+2>0, -x0-1>0}
sage: loads(dumps(cs))
Constraint_System {-3*x0-2*x1+2>0, -x0-1>0}
"""
return (Constraint_System, (tuple(self), ))
cdef extern from "ppl_shim.hh":
ctypedef void* cs_iterator_ptr
cdef cs_iterator_ptr init_cs_iterator(PPL_Constraint_System &cs)
cdef PPL_Constraint next_cs_iterator(cs_iterator_ptr)
cdef bint is_end_cs_iterator(PPL_Constraint_System &cs, cs_iterator_ptr csi_ptr)
cdef void delete_cs_iterator(cs_iterator_ptr)
cdef class Constraint_System_iterator(object):
"""
Wrapper for PPL's ``Constraint_System::const_iterator`` class.
EXAMPLES::
sage: from sage.libs.ppl import Constraint_System, Variable, Constraint_System_iterator
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System( 5*x < 2*y )
sage: cs.insert( 6*x-3*y==0 )
sage: cs.insert( x >= 2*x-7*y )
sage: Constraint_System_iterator(cs).next()
-5*x0+2*x1>0
sage: list(cs)
[-5*x0+2*x1>0, 2*x0-x1==0, -x0+7*x1>=0]
"""
cdef Constraint_System cs
cdef cs_iterator_ptr csi_ptr
def __cinit__(self, Constraint_System cs):
"""
The Cython constructor.
See :class:`Constraint_System_iterator` for documentation.
TESTS::
sage: from sage.libs.ppl import Constraint_System, Constraint_System_iterator
sage: iter = Constraint_System_iterator( Constraint_System() ) # indirect doctest
"""
self.cs = cs
self.csi_ptr = init_cs_iterator(cs.thisptr[0])
def __dealloc__(self):
"""
The Cython destructor.
"""
delete_cs_iterator(self.csi_ptr)
def __next__(Constraint_System_iterator self):
r"""
The next iteration.
OUTPUT:
A :class:`Generator`.
EXAMPLES::
sage: from sage.libs.ppl import Constraint_System, Variable, Constraint_System_iterator
sage: x = Variable(0)
sage: cs = Constraint_System( 5*x > 0 )
sage: Constraint_System_iterator(cs).next()
5*x0>0
"""
if is_end_cs_iterator((<Constraint_System>self.cs).thisptr[0], self.csi_ptr):
raise StopIteration
return _wrap_Constraint(next_cs_iterator(self.csi_ptr))
cdef _wrap_Poly_Gen_Relation(PPL_Poly_Gen_Relation relation):
"""
Wrap a C++ ``PPL_Poly_Gen_Relation`` into a Cython ``Poly_Gen_Relation``.
"""
cdef Poly_Gen_Relation rel = Poly_Gen_Relation(True)
rel.thisptr = new PPL_Poly_Gen_Relation(relation)
return rel
cdef class Poly_Gen_Relation(object):
r"""
Wrapper for PPL's ``Poly_Con_Relation`` class.
INPUT/OUTPUT:
You must not construct :class:`Poly_Gen_Relation` objects
manually. You will usually get them from
:meth:`~sage.libs.ppl.Polyhedron.relation_with`. You can also get
pre-defined relations from the class methods :meth:`nothing` and
:meth:`subsumes`.
EXAMPLES::
sage: from sage.libs.ppl import Poly_Gen_Relation
sage: nothing = Poly_Gen_Relation.nothing(); nothing
nothing
sage: subsumes = Poly_Gen_Relation.subsumes(); subsumes
subsumes
sage: nothing.implies( subsumes )
False
sage: subsumes.implies( nothing )
True
"""
cdef PPL_Poly_Gen_Relation *thisptr
def __cinit__(self, do_not_construct_manually=False):
"""
The Cython constructor.
See :class:`Poly_Gen_Relation` for documentation.
TESTS::
sage: from sage.libs.ppl import Poly_Gen_Relation
sage: Poly_Gen_Relation.nothing()
nothing
"""
assert(do_not_construct_manually)
self.thisptr = NULL
def __dealloc__(self):
"""
The Cython destructor.
"""
assert self.thisptr!=NULL, 'Do not construct Poly_Gen_Relation objects manually!'
del self.thisptr
def implies(self, Poly_Gen_Relation y):
r"""
Test whether ``self`` implies ``y``.
INPUT:
- ``y`` -- a :class:`Poly_Gen_Relation`.
OUTPUT:
Boolean. ``True`` if and only if ``self`` implies ``y``.
EXAMPLES::
sage: from sage.libs.ppl import Poly_Gen_Relation
sage: nothing = Poly_Gen_Relation.nothing()
sage: nothing.implies( nothing )
True
"""
return self.thisptr.implies(y.thisptr[0])
@classmethod
def nothing(cls):
r"""
Return the assertion that says nothing.
OUTPUT:
A :class:`Poly_Gen_Relation`.
EXAMPLES::
sage: from sage.libs.ppl import Poly_Gen_Relation
sage: Poly_Gen_Relation.nothing()
nothing
"""
return _wrap_Poly_Gen_Relation(PPL_Poly_Gen_Relation_nothing())
@classmethod
def subsumes(cls):
r"""
Return the assertion "Adding the generator would not change
the polyhedron".
OUTPUT:
A :class:`Poly_Gen_Relation`.
EXAMPLES::
sage: from sage.libs.ppl import Poly_Gen_Relation
sage: Poly_Gen_Relation.subsumes()
subsumes
"""
return _wrap_Poly_Gen_Relation(PPL_Poly_Gen_Relation_subsumes())
def ascii_dump(self):
r"""
Write an ASCII dump to stderr.
EXAMPLES::
sage: sage_cmd = 'from sage.libs.ppl import Poly_Gen_Relation\n'
sage: sage_cmd += 'Poly_Gen_Relation.nothing().ascii_dump()\n'
sage: from sage.tests.cmdline import test_executable
sage: (out, err, ret) = test_executable(['sage', '-c', sage_cmd], timeout=100); # long time, indirect doctest
sage: print err # long time
NOTHING
"""
self.thisptr.ascii_dump()
def OK(self, check_non_empty=False):
"""
Check if all the invariants are satisfied.
EXAMPLES::
sage: from sage.libs.ppl import Poly_Gen_Relation
sage: Poly_Gen_Relation.nothing().OK()
True
"""
return self.thisptr.OK()
def __repr__(self):
r"""
Return a string representation.
OUTPUT:
String.
EXAMPLES::
sage: from sage.libs.ppl import Poly_Gen_Relation
sage: Poly_Gen_Relation.nothing().__repr__()
'nothing'
"""
if self.implies(Poly_Gen_Relation.subsumes()):
return 'subsumes'
else:
return 'nothing'
cdef _wrap_Poly_Con_Relation(PPL_Poly_Con_Relation relation):
"""
Wrap a C++ ``PPL_Poly_Con_Relation`` into a Cython ``Poly_Con_Relation``.
"""
cdef Poly_Con_Relation rel = Poly_Con_Relation(True)
rel.thisptr = new PPL_Poly_Con_Relation(relation)
return rel
cdef class Poly_Con_Relation(object):
r"""
Wrapper for PPL's ``Poly_Con_Relation`` class.
INPUT/OUTPUT:
You must not construct :class:`Poly_Con_Relation` objects
manually. You will usually get them from
:meth:`~sage.libs.ppl.Polyhedron.relation_with`. You can also get
pre-defined relations from the class methods :meth:`nothing`,
:meth:`is_disjoint`, :meth:`strictly_intersects`,
:meth:`is_included`, and :meth:`saturates`.
EXAMPLES::
sage: from sage.libs.ppl import Poly_Con_Relation
sage: saturates = Poly_Con_Relation.saturates(); saturates
saturates
sage: is_included = Poly_Con_Relation.is_included(); is_included
is_included
sage: is_included.implies(saturates)
False
sage: saturates.implies(is_included)
False
sage: rels = []
sage: rels.append( Poly_Con_Relation.nothing() )
sage: rels.append( Poly_Con_Relation.is_disjoint() )
sage: rels.append( Poly_Con_Relation.strictly_intersects() )
sage: rels.append( Poly_Con_Relation.is_included() )
sage: rels.append( Poly_Con_Relation.saturates() )
sage: rels
[nothing, is_disjoint, strictly_intersects, is_included, saturates]
sage: from sage.matrix.constructor import matrix
sage: m = matrix(5,5)
sage: for i, rel_i in enumerate(rels):
... for j, rel_j in enumerate(rels):
... m[i,j] = rel_i.implies(rel_j)
sage: m
[1 0 0 0 0]
[1 1 0 0 0]
[1 0 1 0 0]
[1 0 0 1 0]
[1 0 0 0 1]
"""
cdef PPL_Poly_Con_Relation *thisptr
def __cinit__(self, do_not_construct_manually=False):
"""
The Cython constructor.
See :class:`Poly_Con_Relation` for documentation.
TESTS::
sage: from sage.libs.ppl import Poly_Con_Relation
sage: Poly_Con_Relation.nothing()
nothing
"""
assert(do_not_construct_manually)
self.thisptr = NULL
def __dealloc__(self):
"""
The Cython destructor.
"""
assert self.thisptr!=NULL, 'Do not construct Poly_Con_Relation objects manually!'
del self.thisptr
def implies(self, Poly_Con_Relation y):
r"""
Test whether ``self`` implies ``y``.
INPUT:
- ``y`` -- a :class:`Poly_Con_Relation`.
OUTPUT:
Boolean. ``True`` if and only if ``self`` implies ``y``.
EXAMPLES::
sage: from sage.libs.ppl import Poly_Con_Relation
sage: nothing = Poly_Con_Relation.nothing()
sage: nothing.implies( nothing )
True
"""
return self.thisptr.implies(y.thisptr[0])
@classmethod
def nothing(cls):
r"""
Return the assertion that says nothing.
OUTPUT:
A :class:`Poly_Con_Relation`.
EXAMPLES::
sage: from sage.libs.ppl import Poly_Con_Relation
sage: Poly_Con_Relation.nothing()
nothing
"""
return _wrap_Poly_Con_Relation(PPL_Poly_Con_Relation_nothing())
@classmethod
def is_disjoint(cls):
r"""
Return the assertion "The polyhedron and the set of points
satisfying the constraint are disjoint".
OUTPUT:
A :class:`Poly_Con_Relation`.
EXAMPLES::
sage: from sage.libs.ppl import Poly_Con_Relation
sage: Poly_Con_Relation.is_disjoint()
is_disjoint
"""
return _wrap_Poly_Con_Relation(PPL_Poly_Con_Relation_is_disjoint())
@classmethod
def strictly_intersects(cls):
r"""
Return the assertion "The polyhedron intersects the set of
points satisfying the constraint, but it is not included in
it".
OUTPUT:
A :class:`Poly_Con_Relation`.
EXAMPLES::
sage: from sage.libs.ppl import Poly_Con_Relation
sage: Poly_Con_Relation.strictly_intersects()
strictly_intersects
"""
return _wrap_Poly_Con_Relation(PPL_Poly_Con_Relation_strictly_intersects())
@classmethod
def is_included(cls):
r"""
Return the assertion "The polyhedron is included in the set of
points satisfying the constraint".
OUTPUT:
A :class:`Poly_Con_Relation`.
EXAMPLES::
sage: from sage.libs.ppl import Poly_Con_Relation
sage: Poly_Con_Relation.is_included()
is_included
"""
return _wrap_Poly_Con_Relation(PPL_Poly_Con_Relation_is_included())
@classmethod
def saturates(cls):
r"""
Return the assertion "".
OUTPUT:
A :class:`Poly_Con_Relation`.
EXAMPLES::
sage: from sage.libs.ppl import Poly_Con_Relation
sage: Poly_Con_Relation.saturates()
saturates
"""
return _wrap_Poly_Con_Relation(PPL_Poly_Con_Relation_saturates())
def ascii_dump(self):
r"""
Write an ASCII dump to stderr.
EXAMPLES::
sage: sage_cmd = 'from sage.libs.ppl import Poly_Con_Relation\n'
sage: sage_cmd += 'Poly_Con_Relation.nothing().ascii_dump()\n'
sage: from sage.tests.cmdline import test_executable
sage: (out, err, ret) = test_executable(['sage', '-c', sage_cmd], timeout=100); # long time, indirect doctest
sage: print err # long time
NOTHING
"""
self.thisptr.ascii_dump()
def OK(self, check_non_empty=False):
"""
Check if all the invariants are satisfied.
EXAMPLES::
sage: from sage.libs.ppl import Poly_Con_Relation
sage: Poly_Con_Relation.nothing().OK()
True
"""
return self.thisptr.OK()
def __repr__(self):
r"""
Return a string representation.
OUTPUT:
String.
EXAMPLES::
sage: from sage.libs.ppl import Poly_Con_Relation
sage: Poly_Con_Relation.nothing().__repr__()
'nothing'
"""
rel = []
if self.implies(Poly_Con_Relation.is_disjoint()):
rel.append('is_disjoint')
if self.implies(Poly_Con_Relation.strictly_intersects()):
rel.append('strictly_intersects')
if self.implies(Poly_Con_Relation.is_included()):
rel.append('is_included')
if self.implies(Poly_Con_Relation.saturates()):
rel.append('saturates')
if len(rel)>0:
return ', '.join(rel)
else:
return 'nothing'