r"""
Propositional Calculus
Formulas consist of the following operators:
* ``&`` -- and
* ``|`` -- or
* ``~`` -- not
* ``^`` -- xor
* ``->`` -- if-then
* ``<->`` -- if and only if
Operators can be applied to variables that consist of a leading letter and
trailing underscores and alphanumerics. Parentheses may be used to explicitly
show order of operation.
AUTHORS:
- Chris Gorecki -- propcalc, boolformula, logictable, logicparser, booleval
- Michael Greenberg -- boolopt
EXAMPLES::
sage: import sage.logic.propcalc as propcalc
sage: f = propcalc.formula("a&((b|c)^a->c)<->b")
sage: g = propcalc.formula("boolean<->algebra")
sage: (f&~g).ifthen(f)
((a&((b|c)^a->c)<->b)&(~(boolean<->algebra)))->(a&((b|c)^a->c)<->b)
We can create a truth table from a formula::
sage: f.truthtable()
a b c value
False False False True
False False True True
False True False False
False True True False
True False False True
True False True False
True True False True
True True True True
sage: f.truthtable(end=3)
a b c value
False False False True
False False True True
False True False False
sage: f.truthtable(start=4)
a b c value
True False False True
True False True False
True True False True
True True True True
sage: propcalc.formula("a").truthtable()
a value
False False
True True
Now we can evaluate the formula for a given set of input::
sage: f.evaluate({'a':True, 'b':False, 'c':True})
False
sage: f.evaluate({'a':False, 'b':False, 'c':True})
True
And we can convert a boolean formula to conjunctive normal form::
sage: f.convert_cnf_table()
sage: f
(a|~b|c)&(a|~b|~c)&(~a|b|~c)
sage: f.convert_cnf_recur()
sage: f
(a|~b|c)&(a|~b|~c)&(~a|b|~c)
Or determine if an expression is satisfiable, a contradiction, or a tautology::
sage: f = propcalc.formula("a|b")
sage: f.is_satisfiable()
True
sage: f = f & ~f
sage: f.is_satisfiable()
False
sage: f.is_contradiction()
True
sage: f = f | ~f
sage: f.is_tautology()
True
The equality operator compares semantic equivalence::
sage: f = propcalc.formula("(a|b)&c")
sage: g = propcalc.formula("c&(b|a)")
sage: f == g
True
sage: g = propcalc.formula("a|b&c")
sage: f == g
False
TESTS:
It is an error to create a formula with bad syntax::
sage: propcalc.formula("")
Traceback (most recent call last):
...
SyntaxError: malformed statement
sage: propcalc.formula("a&b~(c|(d)")
Traceback (most recent call last):
...
SyntaxError: malformed statement
sage: propcalc.formula("a&&b")
Traceback (most recent call last):
...
SyntaxError: malformed statement
sage: propcalc.formula("a&b a")
Traceback (most recent call last):
...
SyntaxError: malformed statement
It is also an error to not abide by the naming conventions.
sage: propcalc.formula("~a&9b")
Traceback (most recent call last):
...
NameError: invalid variable name 9b: identifiers must begin with a letter and contain only alphanumerics and underscores
Classes and functions
=====================
"""
import boolformula
import logicparser
def formula(s):
r"""
Returns an instance of
:class:`BooleanFormula <sage.logic.boolformula.BooleanFormula>`
if possible, and throws a syntax error if not.
INPUT:
- ``s`` -- a string that contains a logical expression.
OUTPUT:
- An instance of
:class:`BooleanFormula <sage.logic.boolformula.BooleanFormula>`
representing the logical expression ``s``.
EXAMPLES::
sage: import sage.logic.propcalc as propcalc
sage: f = propcalc.formula("a&~b|c")
sage: g = propcalc.formula("a^c<->b")
sage: f&g|f
((a&~b|c)&(a^c<->b))|(a&~b|c)
TESTS:
There are a number of possible errors::
sage: propcalc.formula("((a&b)")
Traceback (most recent call last):
...
SyntaxError: malformed statement
sage: propcalc.formula("_a&b")
Traceback (most recent call last):
...
NameError: invalid variable name _a: identifiers must begin with a letter and contain only alphanumerics and underscores
"""
try:
parse_tree, vars_order = logicparser.parse(s)
f = boolformula.BooleanFormula(s, parse_tree, vars_order)
f.truthtable(0, 1)
except (KeyError, RuntimeError, IndexError, SyntaxError):
msg = "malformed statement"
raise SyntaxError(msg)
return f