"""
Benchmarks for matrices
This file has many functions for computing timing benchmarks
of various methods for random matrices with given bounds for
the entries. The systems supported are Sage and Magma.
The basic command syntax is as follows::
sage: import sage.matrix.benchmark as b
sage: b.report([b.det_ZZ], 'Test', systems=['sage'])
======================================================================
Test
======================================================================
...
======================================================================
"""
from sage.all import *
verbose = False
timeout = 60
def report(F, title, systems = ['sage', 'magma'], **kwds):
"""
Run benchmarks with default arguments for each function in the list F.
INPUT:
- ``F`` - a list of callables used for benchmarking
- ``title`` - a string describing this report
- ``systems`` - a list of systems (supported entries are 'sage' and 'magma')
- ``**kwds`` - keyword arguments passed to all functions in ``F``
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: b.report([b.det_ZZ], 'Test', systems=['sage'])
======================================================================
Test
======================================================================
...
======================================================================
"""
if len(systems) > 2:
raise NotImplementedError, "at most two systems ('sage' or 'magma')"
print '='*70
print ' '*10 + title
print '='*70
os.system('uname -a')
print '\n'
for f in F:
print "-"*70
print f.__doc__.strip()
print ('%15s'*len(systems))%tuple(systems)
w = []
for s in systems:
alarm(timeout)
try:
t = f(system=s, **kwds)
except KeyboardInterrupt:
t = -timeout
alarm(0)
w.append(float(t))
if len(w) > 1:
if w[1] == 0:
w.append(0.0)
else:
w.append(w[0]/w[1])
w = tuple(w)
print ('%15.3f'*len(w))%w
print '='*70
def report_ZZ(**kwds):
"""
Reports all the benchmarks for integer matrices and few
rational matrices.
INPUT:
- ``**kwds`` - passed through to :func:`report`
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: b.report_ZZ(systems=['sage']) # long time (15s on sage.math, 2012)
======================================================================
Dense benchmarks over ZZ
======================================================================
...
======================================================================
"""
F = [vecmat_ZZ, rank_ZZ, rank2_ZZ, charpoly_ZZ, smithform_ZZ,
det_ZZ, det_QQ, matrix_multiply_ZZ, matrix_add_ZZ,
matrix_add_ZZ_2,
nullspace_ZZ]
title = 'Dense benchmarks over ZZ'
report(F, title, **kwds)
def nullspace_ZZ(n=200, min=0, max=2**32, system='sage'):
"""
Nullspace over ZZ:
Given a n+1 x n matrix over ZZ with random entries
between min and max, compute the nullspace.
INPUT:
- ``n`` - matrix dimension (default: ``200``)
- ``min`` - minimal value for entries of matrix (default: ``0``)
- ``max`` - maximal value for entries of matrix (default: ``2**32``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.nullspace_ZZ(200)
sage: tm = b.nullspace_ZZ(200, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(ZZ, n+1, n, x=min, y=max+1).change_ring(QQ)
t = cputime()
v = A.kernel()
return cputime(t)
elif system == 'magma':
code = """
n := %s;
A := RMatrixSpace(RationalField(), n+1,n)![Random(%s,%s) : i in [1..n*(n+1)]];
t := Cputime();
K := Kernel(A);
s := Cputime(t);
"""%(n,min,max)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))
else:
raise ValueError, 'unknown system "%s"'%system
def charpoly_ZZ(n=100, min=0, max=9, system='sage'):
"""
Characteristic polynomial over ZZ:
Given a n x n matrix over ZZ with random entries between min and
max, compute the charpoly.
INPUT:
- ``n`` - matrix dimension (default: ``100``)
- ``min`` - minimal value for entries of matrix (default: ``0``)
- ``max`` - maximal value for entries of matrix (default: ``9``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.charpoly_ZZ(100)
sage: tm = b.charpoly_ZZ(100, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(ZZ, n, n, x=min, y=max+1)
t = cputime()
v = A.charpoly()
return cputime(t)
elif system == 'magma':
code = """
n := %s;
A := MatrixAlgebra(IntegerRing(), n)![Random(%s,%s) : i in [1..n^2]];
t := Cputime();
K := CharacteristicPolynomial(A);
s := Cputime(t);
"""%(n,min,max)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))
else:
raise ValueError, 'unknown system "%s"'%system
def rank_ZZ(n=700, min=0, max=9, system='sage'):
"""
Rank over ZZ:
Given a n x (n+10) matrix over ZZ with random entries
between min and max, compute the rank.
INPUT:
- ``n`` - matrix dimension (default: ``700``)
- ``min`` - minimal value for entries of matrix (default: ``0``)
- ``max`` - maximal value for entries of matrix (default: ``9``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.rank_ZZ(300)
sage: tm = b.rank_ZZ(300, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(ZZ, n, n+10, x=min, y=max+1)
t = cputime()
v = A.rank()
return cputime(t)
elif system == 'magma':
code = """
n := %s;
A := RMatrixSpace(IntegerRing(), n, n+10)![Random(%s,%s) : i in [1..n*(n+10)]];
t := Cputime();
K := Rank(A);
s := Cputime(t);
"""%(n,min,max)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))
else:
raise ValueError, 'unknown system "%s"'%system
def rank2_ZZ(n=400, min=0, max=2**64, system='sage'):
"""
Rank 2 over ZZ:
Given a (n + 10) x n matrix over ZZ with random entries
between min and max, compute the rank.
INPUT:
- ``n`` - matrix dimension (default: ``400``)
- ``min`` - minimal value for entries of matrix (default: ``0``)
- ``max`` - maximal value for entries of matrix (default: ``2**64``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.rank2_ZZ(300)
sage: tm = b.rank2_ZZ(300, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(ZZ, n+10, n, x=min, y=max+1)
t = cputime()
v = A.rank()
return cputime(t)
elif system == 'magma':
code = """
n := %s;
A := RMatrixSpace(IntegerRing(), n+10, n)![Random(%s,%s) : i in [1..n*(n+10)]];
t := Cputime();
K := Rank(A);
s := Cputime(t);
"""%(n,min,max)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))
else:
raise ValueError, 'unknown system "%s"'%system
def smithform_ZZ(n=128, min=0, max=9, system='sage'):
"""
Smith Form over ZZ:
Given a n x n matrix over ZZ with random entries
between min and max, compute the Smith normal form.
INPUT:
- ``n`` - matrix dimension (default: ``128``)
- ``min`` - minimal value for entries of matrix (default: ``0``)
- ``max`` - maximal value for entries of matrix (default: ``9``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.smithform_ZZ(100)
sage: tm = b.smithform_ZZ(100, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(ZZ, n, n, x=min, y=max+1)
t = cputime()
v = A.elementary_divisors()
return cputime(t)
elif system == 'magma':
code = """
n := %s;
A := MatrixAlgebra(IntegerRing(), n)![Random(%s,%s) : i in [1..n^2]];
t := Cputime();
K := ElementaryDivisors(A);
s := Cputime(t);
"""%(n,min,max)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))
else:
raise ValueError, 'unknown system "%s"'%system
def matrix_multiply_ZZ(n=300, min=-9, max=9, system='sage', times=1):
"""
Matrix multiplication over ZZ
Given an n x n matrix A over ZZ with random entries
between min and max, inclusive, compute A * (A+1).
INPUT:
- ``n`` - matrix dimension (default: ``300``)
- ``min`` - minimal value for entries of matrix (default: ``-9``)
- ``max`` - maximal value for entries of matrix (default: ``9``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
- ``times`` - number of experiments (default: ``1``)
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.matrix_multiply_ZZ(200)
sage: tm = b.matrix_multiply_ZZ(200, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(ZZ, n, n, x=min, y=max+1)
B = A + 1
t = cputime()
for z in range(times):
v = A * B
return cputime(t)/times
elif system == 'magma':
code = """
n := %s;
A := MatrixAlgebra(IntegerRing(), n)![Random(%s,%s) : i in [1..n^2]];
B := A + 1;
t := Cputime();
for z in [1..%s] do
K := A * B;
end for;
s := Cputime(t);
"""%(n,min,max,times)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))/times
else:
raise ValueError, 'unknown system "%s"'%system
def matrix_add_ZZ(n=200, min=-9, max=9, system='sage', times=50):
"""
Matrix addition over ZZ
Given an n x n matrix A and B over ZZ with random entries between
``min`` and ``max``, inclusive, compute A + B ``times`` times.
INPUT:
- ``n`` - matrix dimension (default: ``200``)
- ``min`` - minimal value for entries of matrix (default: ``-9``)
- ``max`` - maximal value for entries of matrix (default: ``9``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
- ``times`` - number of experiments (default: ``50``)
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.matrix_add_ZZ(200)
sage: tm = b.matrix_add_ZZ(200, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(ZZ, n, n, x=min, y=max+1)
B = random_matrix(ZZ, n, n, x=min, y=max+1)
t = cputime()
for z in range(times):
v = A + B
return cputime(t)/times
elif system == 'magma':
code = """
n := %s;
min := %s;
max := %s;
A := MatrixAlgebra(IntegerRing(), n)![Random(min,max) : i in [1..n^2]];
B := MatrixAlgebra(IntegerRing(), n)![Random(min,max) : i in [1..n^2]];
t := Cputime();
for z in [1..%s] do
K := A + B;
end for;
s := Cputime(t);
"""%(n,min,max,times)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))/times
else:
raise ValueError, 'unknown system "%s"'%system
def matrix_add_ZZ_2(n=200, bits=16, system='sage', times=50):
"""
Matrix addition over ZZ.
Given an n x n matrix A and B over ZZ with random ``bits``-bit
entries, compute A + B.
INPUT:
- ``n`` - matrix dimension (default: ``200``)
- ``bits`` - bitsize of entries
- ``system`` - either 'sage' or 'magma' (default: 'sage')
- ``times`` - number of experiments (default: ``50``)
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.matrix_add_ZZ_2(200)
sage: tm = b.matrix_add_ZZ_2(200, system='magma') # optional - magma
"""
b = 2**bits
return matrix_add_ZZ(n=n, min=-b, max=b,system=system, times=times)
def det_ZZ(n=200, min=1, max=100, system='sage'):
"""
Dense integer determinant over ZZ.
Given an n x n matrix A over ZZ with random entries
between min and max, inclusive, compute det(A).
INPUT:
- ``n`` - matrix dimension (default: ``200``)
- ``min`` - minimal value for entries of matrix (default: ``1``)
- ``max`` - maximal value for entries of matrix (default: ``100``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.det_ZZ(200)
sage: tm = b.det_ZZ(200, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(ZZ, n, n, x=min, y=max+1)
t = cputime()
d = A.determinant()
return cputime(t)
elif system == 'magma':
code = """
n := %s;
A := MatrixAlgebra(IntegerRing(), n)![Random(%s,%s) : i in [1..n^2]];
t := Cputime();
d := Determinant(A);
s := Cputime(t);
"""%(n,min,max)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))
else:
raise ValueError, 'unknown system "%s"'%system
def det_QQ(n=300, num_bound=10, den_bound=10, system='sage'):
"""
Dense rational determinant over QQ.
Given an n x n matrix A over QQ with random entries
with numerator bound and denominator bound, compute det(A).
INPUT:
- ``n`` - matrix dimension (default: ``200``)
- ``num_bound`` - numerator bound, inclusive (default: ``10``)
- ``den_bound`` - denominator bound, inclusive (default: ``10``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.det_QQ(200)
sage: ts = b.det_QQ(10, num_bound=100000, den_bound=10000)
sage: tm = b.det_QQ(200, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(QQ, n, n, num_bound=num_bound, den_bound=den_bound)
t = cputime()
d = A.determinant()
return cputime(t)
elif system == 'magma':
code = """
n := %s;
A := MatrixAlgebra(RationalField(), n)![Random(%s,%s)/Random(1,%s) : i in [1..n^2]];
t := Cputime();
d := Determinant(A);
s := Cputime(t);
"""%(n,-num_bound, num_bound, den_bound)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))
else:
raise ValueError, 'unknown system "%s"'%system
def vecmat_ZZ(n=300, min=-9, max=9, system='sage', times=200):
"""
Vector matrix multiplication over ZZ.
Given an n x n matrix A over ZZ with random entries
between min and max, inclusive, and v the first row of A,
compute the product v * A.
INPUT:
- ``n`` - matrix dimension (default: ``300``)
- ``min`` - minimal value for entries of matrix (default: ``-9``)
- ``max`` - maximal value for entries of matrix (default: ``9``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
- ``times`` - number of runs (default: ``200``)
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.vecmat_ZZ(300)
sage: tm = b.vecmat_ZZ(300, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(ZZ, n, n, x=min, y=max+1)
v = A.row(0)
t = cputime()
for z in range(times):
w = v * A
return cputime(t)/times
elif system == 'magma':
code = """
n := %s;
A := MatrixAlgebra(IntegerRing(), n)![Random(%s,%s) : i in [1..n^2]];
v := A[1];
t := Cputime();
for z in [1..%s] do
K := v * A;
end for;
s := Cputime(t);
"""%(n,min,max,times)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))/times
else:
raise ValueError, 'unknown system "%s"'%system
def report_GF(p=16411, **kwds):
"""
Runs all the reports for finite field matrix operations, for
prime p=16411.
INPUT:
- ``p`` - ignored
- ``**kwds`` - passed through to :func:`report`
.. note::
right now, even though p is an input, it is being ignored! If
you need to check the performance for other primes, you can
call individual benchmark functions.
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: b.report_GF(systems=['sage'])
======================================================================
Dense benchmarks over GF with prime 16411
======================================================================
...
======================================================================
"""
F = [rank_GF, rank2_GF, nullspace_GF, charpoly_GF,
matrix_multiply_GF, det_GF]
title = 'Dense benchmarks over GF with prime %i' % p
report(F, title, **kwds)
def nullspace_GF(n=300, p=16411, system='sage'):
"""
Given a n+1 x n matrix over GF(p) with random
entries, compute the nullspace.
INPUT:
- ``n`` - matrix dimension (default: 300)
- ``p`` - prime number (default: ``16411``)
- ``system`` - either 'magma' or 'sage' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.nullspace_GF(300)
sage: tm = b.nullspace_GF(300, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(GF(p), n, n+1)
t = cputime()
v = A.kernel()
return cputime(t)
elif system == 'magma':
code = """
n := %s;
A := Random(RMatrixSpace(GF(%s), n, n+1));
t := Cputime();
K := Kernel(A);
s := Cputime(t);
"""%(n,p)
if verbose: print code
magma.eval(code)
return magma.eval('s')
else:
raise ValueError, 'unknown system "%s"'%system
def charpoly_GF(n=100, p=16411, system='sage'):
"""
Given a n x n matrix over GF with random entries, compute the
charpoly.
INPUT:
- ``n`` - matrix dimension (default: 100)
- ``p`` - prime number (default: ``16411``)
- ``system`` - either 'magma' or 'sage' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.charpoly_GF(100)
sage: tm = b.charpoly_GF(100, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(GF(p), n, n)
t = cputime()
v = A.charpoly()
return cputime(t)
elif system == 'magma':
code = """
n := %s;
A := Random(MatrixAlgebra(GF(%s), n));
t := Cputime();
K := CharacteristicPolynomial(A);
s := Cputime(t);
"""%(n,p)
if verbose: print code
magma.eval(code)
return magma.eval('s')
else:
raise ValueError, 'unknown system "%s"'%system
def matrix_add_GF(n=1000, p=16411, system='sage',times=100):
"""
Given two n x n matrix over GF(p) with random entries, add them.
INPUT:
- ``n`` - matrix dimension (default: 300)
- ``p`` - prime number (default: ``16411``)
- ``system`` - either 'magma' or 'sage' (default: 'sage')
- ``times`` - number of experiments (default: ``100``)
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.matrix_add_GF(500, p=19)
sage: tm = b.matrix_add_GF(500, p=19, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(GF(p), n, n)
B = random_matrix(GF(p), n, n)
t = cputime()
for n in range(times):
v = A + B
return cputime(t)
elif system == 'magma':
code = """
n := %s;
A := Random(MatrixAlgebra(GF(%s), n));
B := Random(MatrixAlgebra(GF(%s), n));
t := Cputime();
for z in [1..%s] do
K := A + B;
end for;
s := Cputime(t);
"""%(n,p,p,times)
if verbose: print code
magma.eval(code)
return magma.eval('s')
else:
raise ValueError, 'unknown system "%s"'%system
def matrix_multiply_GF(n=100, p=16411, system='sage', times=3):
"""
Given an n x n matrix A over GF(p) with random entries, compute
A * (A+1).
INPUT:
- ``n`` - matrix dimension (default: 100)
- ``p`` - prime number (default: ``16411``)
- ``system`` - either 'magma' or 'sage' (default: 'sage')
- ``times`` - number of experiments (default: ``3``)
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.matrix_multiply_GF(100, p=19)
sage: tm = b.matrix_multiply_GF(100, p=19, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(GF(p), n)
B = A + 1
t = cputime()
for n in range(times):
v = A * B
return cputime(t) / times
elif system == 'magma':
code = """
n := %s;
A := Random(MatrixAlgebra(GF(%s), n));
B := A + 1;
t := Cputime();
for z in [1..%s] do
K := A * B;
end for;
s := Cputime(t);
"""%(n,p,times)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))/times
else:
raise ValueError, 'unknown system "%s"'%system
def rank_GF(n=500, p=16411, system='sage'):
"""
Rank over GF(p):
Given a n x (n+10) matrix over GF(p) with random entries, compute the rank.
INPUT:
- ``n`` - matrix dimension (default: 300)
- ``p`` - prime number (default: ``16411``)
- ``system`` - either 'magma' or 'sage' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.rank_GF(1000)
sage: tm = b.rank_GF(1000, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(GF(p), n, n+10)
t = cputime()
v = A.rank()
return cputime(t)
elif system == 'magma':
code = """
n := %s;
A := Random(MatrixAlgebra(GF(%s), n));
t := Cputime();
K := Rank(A);
s := Cputime(t);
"""%(n,p)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))
else:
raise ValueError, 'unknown system "%s"'%system
def rank2_GF(n=500, p=16411, system='sage'):
"""
Rank over GF(p): Given a (n + 10) x n matrix over GF(p) with
random entries, compute the rank.
INPUT:
- ``n`` - matrix dimension (default: 300)
- ``p`` - prime number (default: ``16411``)
- ``system`` - either 'magma' or 'sage' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.rank2_GF(500)
sage: tm = b.rank2_GF(500, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(GF(p), n+10, n)
t = cputime()
v = A.rank()
return cputime(t)
elif system == 'magma':
code = """
n := %s;
A := Random(MatrixAlgebra(GF(%s), n));
t := Cputime();
K := Rank(A);
s := Cputime(t);
"""%(n,p)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))
else:
raise ValueError, 'unknown system "%s"'%system
def det_GF(n=400, p=16411 , system='sage'):
"""
Dense determinant over GF(p).
Given an n x n matrix A over GF with random entries compute
det(A).
INPUT:
- ``n`` - matrix dimension (default: 300)
- ``p`` - prime number (default: ``16411``)
- ``system`` - either 'magma' or 'sage' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.det_GF(1000)
sage: tm = b.det_GF(1000, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(GF(p), n, n)
t = cputime()
d = A.determinant()
return cputime(t)
elif system == 'magma':
code = """
n := %s;
A := Random(MatrixAlgebra(GF(%s), n));
t := Cputime();
d := Determinant(A);
s := Cputime(t);
"""%(n,p)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))
else:
raise ValueError, 'unknown system "%s"'%system
def hilbert_matrix(n):
"""
Returns the Hilbert matrix of size n over rationals.
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: b.hilbert_matrix(3)
[ 1 1/2 1/3]
[1/2 1/3 1/4]
[1/3 1/4 1/5]
"""
A = Matrix(QQ,n,n)
for i in range(A.nrows()):
for j in range(A.ncols()):
A[i,j] = QQ(1)/((i+1)+(j+1)-1)
return A
def echelon_QQ(n=100, min=0, max=9, system='sage'):
"""
Given a n x (2*n) matrix over QQ with random integer entries
between min and max, compute the reduced row echelon form.
INPUT:
- ``n`` - matrix dimension (default: ``300``)
- ``min`` - minimal value for entries of matrix (default: ``-9``)
- ``max`` - maximal value for entries of matrix (default: ``9``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.echelon_QQ(100)
sage: tm = b.echelon_QQ(100, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(ZZ, n, 2*n, x=min, y=max+1).change_ring(QQ)
t = cputime()
v = A.echelon_form()
return cputime(t)
elif system == 'magma':
code = """
n := %s;
A := RMatrixSpace(RationalField(), n, 2*n)![Random(%s,%s) : i in [1..n*2*n]];
t := Cputime();
K := EchelonForm(A);
s := Cputime(t);
"""%(n,min,max)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))
else:
raise ValueError, 'unknown system "%s"'%system
def inverse_QQ(n=100, min=0, max=9, system='sage'):
"""
Given a n x n matrix over QQ with random integer entries
between min and max, compute the reduced row echelon form.
INPUT:
- ``n`` - matrix dimension (default: ``300``)
- ``min`` - minimal value for entries of matrix (default: ``-9``)
- ``max`` - maximal value for entries of matrix (default: ``9``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.inverse_QQ(100)
sage: tm = b.inverse_QQ(100, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(ZZ, n, n, x=min, y=max+1).change_ring(QQ)
t = cputime()
v = ~A
return cputime(t)
elif system == 'magma':
code = """
n := %s;
A := MatrixAlgebra(RationalField(), n)![Random(%s,%s) : i in [1..n*n]];
t := Cputime();
K := A^(-1);
s := Cputime(t);
"""%(n,min,max)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))
else:
raise ValueError, 'unknown system "%s"'%system
def matrix_multiply_QQ(n=100, bnd=2, system='sage', times=1):
"""
Given an n x n matrix A over QQ with random entries
whose numerators and denominators are bounded by bnd,
compute A * (A+1).
INPUT:
- ``n`` - matrix dimension (default: ``300``)
- ``bnd`` - numerator and denominator bound (default: ``bnd``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
- ``times`` - number of experiments (default: ``1``)
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.matrix_multiply_QQ(100)
sage: tm = b.matrix_multiply_QQ(100, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(QQ, n, n, num_bound=bnd, den_bound=bnd)
B = A + 1
t = cputime()
for z in range(times):
v = A * B
return cputime(t)/times
elif system == 'magma':
A = magma(random_matrix(QQ, n, n, num_bound=bnd, den_bound=bnd))
code = """
n := %s;
A := %s;
B := A + 1;
t := Cputime();
for z in [1..%s] do
K := A * B;
end for;
s := Cputime(t);
"""%(n, A.name(), times)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))/times
else:
raise ValueError, 'unknown system "%s"'%system
def det_hilbert_QQ(n=80, system='sage'):
"""
Runs the benchmark for calculating the determinant of the hilbert
matrix over rationals of dimension n.
INPUT:
- ``n`` - matrix dimension (default: ``300``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.det_hilbert_QQ(50)
sage: tm = b.det_hilbert_QQ(50, system='magma') # optional - magma
"""
if system == 'sage':
A = hilbert_matrix(n)
t = cputime()
d = A.determinant()
return cputime(t)
elif system == 'magma':
code = """
h := HilbertMatrix(%s);
tinit := Cputime();
d := Determinant(h);
s := Cputime(tinit);
delete h;
"""%n
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))
def invert_hilbert_QQ(n=40, system='sage'):
"""
Runs the benchmark for calculating the inverse of the hilbert
matrix over rationals of dimension n.
INPUT:
- ``n`` - matrix dimension (default: ``300``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.invert_hilbert_QQ(30)
sage: tm = b.invert_hilbert_QQ(30, system='magma') # optional - magma
"""
if system == 'sage':
A = hilbert_matrix(n)
t = cputime()
d = A**(-1)
return cputime(t)
elif system == 'magma':
code = """
h := HilbertMatrix(%s);
tinit := Cputime();
d := h^(-1);
s := Cputime(tinit);
delete h;
"""%n
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))
def MatrixVector_QQ(n=1000,h=100,system='sage',times=1):
"""
Compute product of square ``n`` matrix by random vector with num and
denom bounded by ``h`` the given number of ``times``.
INPUT:
- ``n`` - matrix dimension (default: ``300``)
- ``h`` - numerator and denominator bound (default: ``bnd``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
- ``times`` - number of experiments (default: ``1``)
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.MatrixVector_QQ(500)
sage: tm = b.MatrixVector_QQ(500, system='magma') # optional - magma
"""
if system=='sage':
V=QQ**n
v=V.random_element(h)
M=random_matrix(QQ,n)
t=cputime()
for i in range(times):
w=M*v
return cputime(t)
elif system == 'magma':
code = """
n:=%s;
h:=%s;
times:=%s;
v:=VectorSpace(RationalField(),n)![Random(h)/(Random(h)+1) : i in [1..n]];
M:=MatrixAlgebra(RationalField(),n)![Random(h)/(Random(h)+1) : i in [1..n^2]];
t := Cputime();
for z in [1..times] do
W:=v*M;
end for;
s := Cputime(t);
"""%(n,h,times)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))
else:
raise ValueError, 'unknown system "%s"'%system
def nullspace_RR(n=300, min=0, max=10, system='sage'):
"""
Nullspace over RR:
Given a n+1 x n matrix over RR with random entries
between min and max, compute the nullspace.
INPUT:
- ``n`` - matrix dimension (default: ``300``)
- ``min`` - minimal value for entries of matrix (default: ``0``)
- ``max`` - maximal value for entries of matrix (default: ``10``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.nullspace_RR(100)
sage: tm = b.nullspace_RR(100, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(ZZ, n+1, n, x=min, y=max+1).change_ring(RR)
t = cputime()
v = A.kernel()
return cputime(t)
elif system == 'magma':
code = """
n := %s;
A := RMatrixSpace(RealField(16), n+1,n)![Random(%s,%s) : i in [1..n*(n+1)]];
t := Cputime();
K := Kernel(A);
s := Cputime(t);
"""%(n,min,max)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))
else:
raise ValueError, 'unknown system "%s"'%system
def nullspace_RDF(n=300, min=0, max=10, system='sage'):
"""
Nullspace over RDF:
Given a n+1 x n matrix over RDF with random entries
between min and max, compute the nullspace.
INPUT:
- ``n`` - matrix dimension (default: ``300``)
- ``min`` - minimal value for entries of matrix (default: ``0``)
- ``max`` - maximal value for entries of matrix (default: `10``)
- ``system`` - either 'sage' or 'magma' (default: 'sage')
EXAMPLES::
sage: import sage.matrix.benchmark as b
sage: ts = b.nullspace_RDF(100)
sage: tm = b.nullspace_RDF(100, system='magma') # optional - magma
"""
if system == 'sage':
A = random_matrix(ZZ, n+1, n, x=min, y=max+1).change_ring(RDF)
t = cputime()
v = A.kernel()
return cputime(t)
elif system == 'magma':
code = """
n := %s;
A := RMatrixSpace(RealField(16), n+1,n)![Random(%s,%s) : i in [1..n*(n+1)]];
t := Cputime();
K := Kernel(A);
s := Cputime(t);
"""%(n,min,max)
if verbose: print code
magma.eval(code)
return float(magma.eval('s'))
else:
raise ValueError, 'unknown system "%s"'%system