"""
Submodules of Hecke modules
"""
import sage.rings.arith as arith
import sage.misc.misc as misc
from sage.misc.cachefunc import cached_method
import sage.modules.all
import module
import ambient_module
def is_HeckeSubmodule(x):
r"""
Return True if x is of type HeckeSubmodule.
EXAMPLES::
sage: sage.modular.hecke.submodule.is_HeckeSubmodule(ModularForms(1, 12))
False
sage: sage.modular.hecke.submodule.is_HeckeSubmodule(CuspForms(1, 12))
True
"""
return isinstance(x, HeckeSubmodule)
class HeckeSubmodule(module.HeckeModule_free_module):
"""
Submodule of a Hecke module.
"""
def __init__(self, ambient, submodule, dual_free_module=None, check=True):
r"""
Initialise a submodule of an ambient Hecke module.
INPUT:
- ``ambient`` - an ambient Hecke module
- ``submodule`` - a free module over the base ring which is a submodule
of the free module attached to the ambient Hecke module. This should
be invariant under all Hecke operators.
- ``dual_free_module`` - the submodule of the dual of the ambient
module corresponding to this submodule (or None).
- ``check`` - whether or not to explicitly check that the submodule is
Hecke equivariant.
EXAMPLES::
sage: CuspForms(1,60) # indirect doctest
Cuspidal subspace of dimension 5 of Modular Forms space of dimension 6 for Modular Group SL(2,Z) of weight 60 over Rational Field
sage: M = ModularForms(4,10)
sage: S = sage.modular.hecke.submodule.HeckeSubmodule(M, M.submodule(M.basis()[:3]).free_module())
sage: S
Rank 3 submodule of a Hecke module of level 4
sage: S == loads(dumps(S))
True
"""
if not isinstance(ambient, ambient_module.AmbientHeckeModule):
raise TypeError, "ambient must be an ambient Hecke module"
if not sage.modules.all.is_FreeModule(submodule):
raise TypeError, "submodule must be a free module"
if not submodule.is_submodule(ambient.free_module()):
raise ValueError, "submodule must be a submodule of the ambient free module"
if check:
if not ambient._is_hecke_equivariant_free_module(submodule):
raise ValueError, "The submodule must be invariant under all Hecke operators."
self.__ambient = ambient
self.__submodule = submodule
module.HeckeModule_free_module.__init__(self,
ambient.base_ring(), ambient.level(), ambient.weight())
if not (dual_free_module is None):
if not sage.modules.all.is_FreeModule(dual_free_module):
raise TypeError, "dual_free_module must be a free module"
if dual_free_module.rank () != submodule.rank():
raise ArithmeticError, "dual_free_module must have the same rank as submodule"
self.dual_free_module.set_cache(dual_free_module)
def _repr_(self):
r"""
String representation of self.
EXAMPLES::
sage: M = ModularForms(4,10)
sage: S = sage.modular.hecke.submodule.HeckeSubmodule(M, M.submodule(M.basis()[:3]).free_module())
sage: S._repr_()
'Rank 3 submodule of a Hecke module of level 4'
"""
return "Rank %s submodule of a Hecke module of level %s"%(
self.rank(), self.level())
def __add__(self, other):
r"""
Sum of self and other (as submodules of a common ambient
module).
EXAMPLES::
sage: M = ModularForms(4,10)
sage: S = sage.modular.hecke.submodule.HeckeSubmodule(M, M.submodule(M.basis()[:3]).free_module())
sage: E = sage.modular.hecke.submodule.HeckeSubmodule(M, M.submodule(M.basis()[3:]).free_module())
sage: S + E # indirect doctest
Modular Forms subspace of dimension 6 of Modular Forms space of dimension 6 for Congruence Subgroup Gamma0(4) of weight 10 over Rational Field
"""
if not isinstance(other, module.HeckeModule_free_module):
raise TypeError, "other (=%s) must be a Hecke module."%other
if self.ambient() != other.ambient():
raise ArithmeticError, "Sum only defined for submodules of a common ambient space."
if other.is_ambient():
return other
M = self.free_module() + other.free_module()
return self.ambient().submodule(M, check=False)
def __call__(self, x, check=True):
"""
Coerce x into the ambient module and checks that x is in this
submodule.
EXAMPLES::
sage: M = ModularSymbols(37)
sage: S = M.cuspidal_submodule()
sage: M([0,oo])
-(1,0)
sage: S([0,oo])
Traceback (most recent call last):
...
TypeError: x does not coerce to an element of this Hecke module
sage: S([-1/23,0])
(1,23)
"""
z = self.ambient_hecke_module()(x)
if check:
if not z.element() in self.__submodule:
raise TypeError, "x does not coerce to an element of this Hecke module"
return z
def __cmp__(self, other):
"""
Compare self to other. Returns 0 if self is the same as
other, and -1 otherwise.
EXAMPLES::
sage: M = ModularSymbols(12,6)
sage: S = sage.modular.hecke.submodule.HeckeSubmodule(M, M.cuspidal_submodule().free_module())
sage: T = sage.modular.hecke.submodule.HeckeSubmodule(M, M.new_submodule().free_module())
sage: S
Rank 14 submodule of a Hecke module of level 12
sage: T
Rank 0 submodule of a Hecke module of level 12
sage: S.__cmp__(T)
1
sage: T.__cmp__(S)
-1
sage: S.__cmp__(S)
0
"""
if not isinstance(other, module.HeckeModule_free_module):
return cmp(type(self), type(other))
c = cmp(self.ambient(), other.ambient())
if c:
return c
else:
return cmp(self.free_module(), other.free_module())
def _compute_dual_hecke_matrix(self, n):
"""
Compute the matrix for the nth Hecke operator acting on
the dual of self.
EXAMPLES::
sage: M = ModularForms(4,10)
sage: S = sage.modular.hecke.submodule.HeckeSubmodule(M, M.submodule(M.basis()[:3]).free_module())
sage: S._compute_dual_hecke_matrix(3)
[ 0 0 1]
[ 0 -156 0]
[35568 0 72]
sage: CuspForms(4,10).dual_hecke_matrix(3)
[ 0 0 1]
[ 0 -156 0]
[35568 0 72]
"""
A = self.ambient_hecke_module().dual_hecke_matrix(n)
check = arith.gcd(self.level(), n) != 1
return A.restrict(self.dual_free_module(), check=check)
def _compute_hecke_matrix(self, n):
r"""
Compute the matrix of the nth Hecke operator acting on this space, by
calling the corresponding function for the ambient space and
restricting. If n is not coprime to the level, we check that the
restriction is well-defined.
EXAMPLES::
sage: R.<q> = QQ[[]]
sage: M = ModularForms(2, 12)
sage: f = M(q^2 - 24*q^4 + O(q^6))
sage: A = M.submodule(M.free_module().span([f.element()]),check=False)
sage: sage.modular.hecke.submodule.HeckeSubmodule._compute_hecke_matrix(A, 3)
[252]
sage: sage.modular.hecke.submodule.HeckeSubmodule._compute_hecke_matrix(A, 4)
Traceback (most recent call last):
...
ArithmeticError: subspace is not invariant under matrix
"""
A = self.ambient_hecke_module().hecke_matrix(n)
check = arith.gcd(self.level(), n) != 1
return A.restrict(self.free_module(), check=check)
def _compute_diamond_matrix(self, d):
r"""
EXAMPLE:
sage: f = ModularSymbols(Gamma1(13),2,sign=1).cuspidal_subspace().decomposition()[0]
sage: a = f.diamond_bracket_operator(2).matrix() # indirect doctest
sage: a.charpoly()
x^2 - x + 1
sage: a^12
[1 0]
[0 1]
"""
return self.ambient_hecke_module().diamond_bracket_matrix(d).restrict(self.free_module(), check=False)
def _compute_atkin_lehner_matrix(self, d):
"""
Compute the Atkin-Lehner matrix corresponding to the
divisor d of the level of self.
EXAMPLES::
sage: M = ModularSymbols(4,10)
sage: S = sage.modular.hecke.submodule.HeckeSubmodule(M, M.cuspidal_submodule().free_module())
sage: S
Rank 6 submodule of a Hecke module of level 4
sage: S._compute_atkin_lehner_matrix(1)
[1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[0 0 0 0 0 1]
"""
A = self.ambient_hecke_module()._compute_atkin_lehner_matrix(d)
return A.restrict(self.free_module(), check=True)
def _set_dual_free_module(self, V):
"""
Set the dual free module of self to V. Here V must be a vector
space of the same dimension as self, embedded in a space of
the same dimension as the ambient space of self.
EXAMPLES::
sage: M = ModularSymbols(4,10)
sage: S = sage.modular.hecke.submodule.HeckeSubmodule(M, M.cuspidal_submodule().free_module())
sage: S._set_dual_free_module(M.cuspidal_submodule().dual_free_module())
sage: S._set_dual_free_module(S)
"""
if V.degree() != self.ambient_hecke_module().rank():
raise ArithmeticError, "The degree of V must equal the rank of the ambient space."
if V.rank() != self.rank():
raise ArithmeticError, "The rank of V must equal the rank of self."
self.dual_free_module.set_cache(V)
def ambient_hecke_module(self):
r"""
Return the ambient Hecke module of which this is a submodule.
EXAMPLES::
sage: CuspForms(2, 12).ambient_hecke_module()
Modular Forms space of dimension 4 for Congruence Subgroup Gamma0(2) of weight 12 over Rational Field
"""
return self.__ambient
def ambient(self):
r"""
Synonym for ambient_hecke_module.
EXAMPLES::
sage: CuspForms(2, 12).ambient()
Modular Forms space of dimension 4 for Congruence Subgroup Gamma0(2) of weight 12 over Rational Field
"""
return self.__ambient
@cached_method
def complement(self, bound=None):
"""
Return the largest Hecke-stable complement of this space.
EXAMPLES::
sage: M = ModularSymbols(15, 6).cuspidal_subspace()
sage: M.complement()
Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 20 for Gamma_0(15) of weight 6 with sign 0 over Rational Field
sage: E = EllipticCurve("128a")
sage: ME = E.modular_symbol_space()
sage: ME.complement()
Modular Symbols subspace of dimension 17 of Modular Symbols space of dimension 18 for Gamma_0(128) of weight 2 with sign 1 over Rational Field
"""
if self.dual_free_module.is_in_cache():
D = self.dual_free_module()
V = D.basis_matrix().right_kernel()
return self.submodule(V, check=False)
if self.is_ambient():
return self.ambient_hecke_module().zero_submodule()
if self.is_zero():
return self.ambient_hecke_module()
if self.is_full_hecke_module():
anemic = False
else:
anemic = True
misc.verbose("computing")
N = self.level()
A = self.ambient_hecke_module()
V = A.free_module()
p = 2
if bound is None:
bound = A.hecke_bound()
while True:
if anemic:
while N % p == 0: p = arith.next_prime(p)
misc.verbose("using T_%s"%p)
f = self.hecke_polynomial(p)
T = A.hecke_matrix(p)
g = T.charpoly('x')
V = T.kernel_on(V, poly=g//f, check=False)
if V.rank() + self.rank() <= A.rank():
break
p = arith.next_prime(p)
if p > bound:
break
if V.rank() + self.rank() == A.rank():
C = A.submodule(V, check=False)
return C
misc.verbose("falling back on naive algorithm")
D = A.decomposition()
C = A.zero_submodule()
for X in D:
if self.intersection(X).dimension() == 0:
C = C + X
if C.rank() + self.rank() == A.rank():
return C
raise RuntimeError, "Computation of complementary space failed (cut down to rank %s, but should have cut down to rank %s)."%(V.rank(), A.rank()-self.rank())
def degeneracy_map(self, level, t=1):
"""
The t-th degeneracy map from self to the space of ambient modular
symbols of the given level. The level of self must be a divisor or
multiple of level, and t must be a divisor of the quotient.
INPUT:
- ``level`` - int, the level of the codomain of the
map (positive int).
- ``t`` - int, the parameter of the degeneracy map,
i.e., the map is related to `f(q)` - `f(q^t)`.
OUTPUT: A linear function from self to the space of modular symbols
of given level with the same weight, character, sign, etc., as this
space.
EXAMPLES::
sage: D = ModularSymbols(10,4).cuspidal_submodule().decomposition(); D
[
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 10 for Gamma_0(10) of weight 4 with sign 0 over Rational Field,
Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 10 for Gamma_0(10) of weight 4 with sign 0 over Rational Field
]
sage: d = D[1].degeneracy_map(5); d
Hecke module morphism defined by the matrix
[ 0 0 -1 1]
[ 0 1/2 3/2 -2]
[ 0 -1 1 0]
[ 0 -3/4 -1/4 1]
Domain: Modular Symbols subspace of dimension 4 of Modular Symbols space ...
Codomain: Modular Symbols space of dimension 4 for Gamma_0(5) of weight ...
::
sage: d.rank()
2
sage: d.kernel()
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 10 for Gamma_0(10) of weight 4 with sign 0 over Rational Field
sage: d.image()
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 4 for Gamma_0(5) of weight 4 with sign 0 over Rational Field
"""
d = self.ambient_hecke_module().degeneracy_map(level, t)
return d.restrict_domain(self)
@cached_method
def dual_free_module(self, bound=None, anemic=True, use_star=True):
r"""
Compute embedded dual free module if possible. In general this won't be
possible, e.g., if this space is not Hecke equivariant, possibly if it
is not cuspidal, or if the characteristic is not 0. In all these cases
we raise a RuntimeError exception.
If use_star is True (which is the default), we also use the +/-
eigenspaces for the star operator to find the dual free module of self.
If self does not have a star involution, use_star will automatically be
set to False.
EXAMPLES::
sage: M = ModularSymbols(11, 2)
sage: M.dual_free_module()
Vector space of dimension 3 over Rational Field
sage: Mpc = M.plus_submodule().cuspidal_submodule()
sage: Mcp = M.cuspidal_submodule().plus_submodule()
sage: Mcp.dual_free_module() == Mpc.dual_free_module()
True
sage: Mpc.dual_free_module()
Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[ 1 5/2 5]
sage: M = ModularSymbols(35,2).cuspidal_submodule()
sage: M.dual_free_module(use_star=False)
Vector space of degree 9 and dimension 6 over Rational Field
Basis matrix:
[ 1 0 0 0 -1 0 0 4 -2]
[ 0 1 0 0 0 0 0 -1/2 1/2]
[ 0 0 1 0 0 0 0 -1/2 1/2]
[ 0 0 0 1 -1 0 0 1 0]
[ 0 0 0 0 0 1 0 -2 1]
[ 0 0 0 0 0 0 1 -2 1]
sage: M = ModularSymbols(40,2)
sage: Mmc = M.minus_submodule().cuspidal_submodule()
sage: Mcm = M.cuspidal_submodule().minus_submodule()
sage: Mcm.dual_free_module() == Mmc.dual_free_module()
True
sage: Mcm.dual_free_module()
Vector space of degree 13 and dimension 3 over Rational Field
Basis matrix:
[ 0 1 0 0 0 0 1 0 -1 -1 1 -1 0]
[ 0 0 1 0 -1 0 -1 0 1 0 0 0 0]
[ 0 0 0 0 0 1 1 0 -1 0 0 0 0]
sage: M = ModularSymbols(43).cuspidal_submodule()
sage: S = M[0].plus_submodule() + M[1].minus_submodule()
sage: S.dual_free_module(use_star=False)
Traceback (most recent call last):
...
RuntimeError: Computation of complementary space failed (cut down to rank 7, but should have cut down to rank 4).
sage: S.dual_free_module().dimension() == S.dimension()
True
We test that #5080 is fixed::
sage: EllipticCurve('128a').congruence_number()
32
"""
if self.complement.is_in_cache():
misc.verbose('This module knows its complement already -- cheating in dual_free_module')
C = self.complement()
V = C.basis_matrix().right_kernel()
return V
misc.verbose("computing dual")
A = self.ambient_hecke_module()
if self.dimension() == 0:
return A.zero_submodule()
if A.dimension() == self.dimension():
return A.free_module()
if not hasattr(self, 'star_eigenvalues'):
use_star = False
if use_star:
if len(self.star_eigenvalues()) == 2:
V = self.plus_submodule(compute_dual = False).dual_free_module() + \
self.minus_submodule(compute_dual = False).dual_free_module()
return V
V = A.sign_submodule(self.sign()).dual_free_module()
else:
V = A.free_module()
N = self.level()
p = 2
if bound is None:
bound = A.hecke_bound()
while True:
if anemic:
while N % p == 0: p = arith.next_prime(p)
misc.verbose("using T_%s"%p)
f = self.hecke_polynomial(p)
T = A.dual_hecke_matrix(p)
V = T.kernel_on(V, poly=f, check=False)
if V.dimension() <= self.dimension():
break
p = arith.next_prime(p)
if p > bound:
break
if V.rank() == self.rank():
return V
else:
W = self.complement()
V2 = W.basis_matrix().right_kernel()
if V2.rank() == self.rank():
return V2
else:
raise RuntimeError, "Computation of embedded dual vector space failed " + \
"(cut down to rank %s, but should have cut down to rank %s)."%(V.rank(), self.rank())
def free_module(self):
"""
Return the free module corresponding to self.
EXAMPLES::
sage: M = ModularSymbols(33,2).cuspidal_subspace() ; M
Modular Symbols subspace of dimension 6 of Modular Symbols space of dimension 9 for Gamma_0(33) of weight 2 with sign 0 over Rational Field
sage: M.free_module()
Vector space of degree 9 and dimension 6 over Rational Field
Basis matrix:
[ 0 1 0 0 0 0 0 -1 1]
[ 0 0 1 0 0 0 0 -1 1]
[ 0 0 0 1 0 0 0 -1 1]
[ 0 0 0 0 1 0 0 -1 1]
[ 0 0 0 0 0 1 0 -1 1]
[ 0 0 0 0 0 0 1 -1 0]
"""
return self.__submodule
def module(self):
r"""
Alias for \code{self.free_module()}.
EXAMPLES::
sage: M = ModularSymbols(17,4).cuspidal_subspace()
sage: M.free_module() is M.module()
True
"""
return self.free_module()
def intersection(self, other):
"""
Returns the intersection of self and other, which must both lie in
a common ambient space of modular symbols.
EXAMPLES::
sage: M = ModularSymbols(43, sign=1)
sage: A = M[0] + M[1]
sage: B = M[1] + M[2]
sage: A.dimension(), B.dimension()
(2, 3)
sage: C = A.intersection(B); C.dimension()
1
TESTS::
sage: M = ModularSymbols(1,80)
sage: M.plus_submodule().cuspidal_submodule().sign() # indirect doctest
1
"""
if self.ambient_hecke_module() != other.ambient_hecke_module():
raise ArithmeticError, "Intersection only defined for subspaces of"\
+ " a common ambient modular symbols space."
if other.is_ambient():
return self
if self.is_ambient():
return other
V = self.free_module().intersection(other.free_module())
M = self.ambient_hecke_module().submodule(V,check=False)
try:
if self.sign():
M._set_sign(self.sign())
elif other.sign():
M._set_sign(other.sign())
except AttributeError:
pass
return M
def is_ambient(self):
r"""
Return ``True`` if self is an ambient space of modular
symbols.
EXAMPLES::
sage: M = ModularSymbols(17,4)
sage: M.cuspidal_subspace().is_ambient()
False
sage: A = M.ambient_hecke_module()
sage: S = A.submodule(A.basis())
sage: sage.modular.hecke.submodule.HeckeSubmodule.is_ambient(S)
True
"""
return self.free_module() == self.ambient_hecke_module().free_module()
def is_new(self, p=None):
"""
Returns True if this Hecke module is p-new. If p is None,
returns True if it is new.
EXAMPLES::
sage: M = ModularSymbols(1,16)
sage: S = sage.modular.hecke.submodule.HeckeSubmodule(M, M.cuspidal_submodule().free_module())
sage: S.is_new()
True
"""
try:
return self.__is_new[p]
except AttributeError:
self.__is_new = {}
except KeyError:
pass
N = self.ambient_hecke_module().new_submodule(p)
self.__is_new[p] = self.is_submodule(N)
return self.__is_new[p]
def is_old(self, p=None):
"""
Returns True if this Hecke module is p-old. If p is None,
returns True if it is old.
EXAMPLES::
sage: M = ModularSymbols(50,2)
sage: S = sage.modular.hecke.submodule.HeckeSubmodule(M, M.old_submodule().free_module())
sage: S.is_old()
True
sage: S = sage.modular.hecke.submodule.HeckeSubmodule(M, M.new_submodule().free_module())
sage: S.is_old()
False
"""
try:
return self.__is_old[p]
except AttributeError:
self.__is_old = {}
except KeyError:
pass
O = self.ambient_hecke_module().old_submodule(p)
self.__is_old[p] = self.is_submodule(O)
return self.__is_old[p]
def is_submodule(self, V):
"""
Returns True if and only if self is a submodule of V.
EXAMPLES::
sage: M = ModularSymbols(30,4)
sage: S = sage.modular.hecke.submodule.HeckeSubmodule(M, M.cuspidal_submodule().free_module())
sage: S.is_submodule(M)
True
sage: SS = sage.modular.hecke.submodule.HeckeSubmodule(M, M.old_submodule().free_module())
sage: S.is_submodule(SS)
False
"""
if not isinstance(V, module.HeckeModule_free_module):
return False
return self.ambient_hecke_module() == V.ambient_hecke_module() and \
self.free_module().is_subspace(V.free_module())
def linear_combination_of_basis(self, v):
"""
Return the linear combination of the basis of self given by the
entries of v.
EXAMPLES::
sage: M = ModularForms(Gamma0(2),12)
sage: S = sage.modular.hecke.submodule.HeckeSubmodule(M, M.cuspidal_submodule().free_module())
sage: S.basis()
(q + 252*q^3 - 2048*q^4 + 4830*q^5 + O(q^6), q^2 - 24*q^4 + O(q^6))
sage: S.linear_combination_of_basis([3,10])
3*q + 10*q^2 + 756*q^3 - 6384*q^4 + 14490*q^5 + O(q^6)
"""
x = self.free_module().linear_combination_of_basis(v)
return self.__ambient(x)
def new_submodule(self, p=None):
"""
Return the new or p-new submodule of this space of modular
symbols.
EXAMPLES::
sage: M = ModularSymbols(20,4)
sage: M.new_submodule()
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 18 for Gamma_0(20) of weight 4 with sign 0 over Rational Field
sage: S = sage.modular.hecke.submodule.HeckeSubmodule(M, M.cuspidal_submodule().free_module())
sage: S
Rank 12 submodule of a Hecke module of level 20
sage: S.new_submodule()
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 18 for Gamma_0(20) of weight 4 with sign 0 over Rational Field
"""
try:
if self.__is_new[p]:
return self
except AttributeError:
self.__is_new = {}
except KeyError:
pass
if self.rank() == 0:
self.__is_new[p] = True
return self
try:
return self.__new_submodule[p]
except AttributeError:
self.__new_submodule = {}
except KeyError:
pass
S = self.ambient_hecke_module().new_submodule(p)
ns = S.intersection(self)
if ns.rank() == self.rank():
self.__is_new[p] = True
ns.__is_new = {p:True}
self.__new_submodule[p] = ns
return ns
def nonembedded_free_module(self):
"""
Return the free module corresponding to self as an abstract
free module, i.e. not as an embedded vector space.
EXAMPLES::
sage: M = ModularSymbols(12,6)
sage: S = sage.modular.hecke.submodule.HeckeSubmodule(M, M.cuspidal_submodule().free_module())
sage: S
Rank 14 submodule of a Hecke module of level 12
sage: S.nonembedded_free_module()
Vector space of dimension 14 over Rational Field
"""
return self.free_module().nonembedded_free_module()
def old_submodule(self, p=None):
"""
Return the old or p-old submodule of this space of modular
symbols.
EXAMPLES: We compute the old and new submodules of
`\mathbf{S}_2(\Gamma_0(33))`.
::
sage: M = ModularSymbols(33); S = M.cuspidal_submodule(); S
Modular Symbols subspace of dimension 6 of Modular Symbols space of dimension 9 for Gamma_0(33) of weight 2 with sign 0 over Rational Field
sage: S.old_submodule()
Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 9 for Gamma_0(33) of weight 2 with sign 0 over Rational Field
sage: S.new_submodule()
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 9 for Gamma_0(33) of weight 2 with sign 0 over Rational Field
"""
try:
if self.__is_old[p]:
return self
except AttributeError:
self.__is_old = {}
except KeyError:
pass
if self.rank() == 0:
self.__is_old[p] = True
return self
try:
return self.__old_submodule[p]
except AttributeError:
self.__old_submodule = {}
except KeyError:
pass
S = self.ambient_hecke_module().old_submodule(p)
os = S.intersection(self)
if os.rank() == self.rank():
self.__is_old[p] = True
os.__is_old = {p:True}
self.__old_submodule[p] = os
return os
def rank(self):
r"""
Return the rank of self as a free module over the base ring.
EXAMPLE::
sage: ModularSymbols(6, 4).cuspidal_subspace().rank()
2
sage: ModularSymbols(6, 4).cuspidal_subspace().dimension()
2
"""
return self.__submodule.rank()
def submodule(self, M, Mdual=None, check=True):
"""
Construct a submodule of self from the free module M, which
must be a subspace of self.
EXAMPLES::
sage: M = ModularSymbols(18,4)
sage: S = sage.modular.hecke.submodule.HeckeSubmodule(M, M.cuspidal_submodule().free_module())
sage: S[0]
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 18 for Gamma_0(18) of weight 4 with sign 0 over Rational Field
sage: S.submodule(S[0].free_module())
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 18 for Gamma_0(18) of weight 4 with sign 0 over Rational Field
"""
if not sage.modules.all.is_FreeModule(M):
V = self.ambient_module().free_module()
if isinstance(M, (list,tuple)):
M = V.span([V(x.element()) for x in M])
else:
M = V.span(M)
if check:
if not M.is_submodule(self.free_module()):
raise TypeError, "M (=%s) must be a submodule of the free module (=%s) associated to this module."%(M, self.free_module())
return self.ambient().submodule(M, Mdual, check=check)
def submodule_from_nonembedded_module(self, V, Vdual=None, check=True):
"""
Construct a submodule of self from V. Here V should be a
subspace of a vector space whose dimension is the same as that
of self.
INPUT:
- ``V`` - submodule of ambient free module of the same
rank as the rank of self.
- ``check`` - whether to check that V is Hecke
equivariant.
OUTPUT: Hecke submodule of self
EXAMPLES::
sage: M = ModularSymbols(37,2)
sage: S = sage.modular.hecke.submodule.HeckeSubmodule(M, M.cuspidal_submodule().free_module())
sage: V = (QQ**4).subspace([[1,-1,0,1/2],[0,0,1,-1/2]])
sage: S.submodule_from_nonembedded_module(V)
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 5 for Gamma_0(37) of weight 2 with sign 0 over Rational Field
"""
E = self.free_module()
M_V = V.matrix()
M_E = E.matrix()
A = M_V * M_E
V = A.row_space()
if not (Vdual is None):
E = self.dual_free_module()
M_Vdual = Vdual.matrix()
M_E = E.matrix()
A = M_Vdual * M_E
Vdual = A.row_space()
return self.ambient_hecke_module().submodule(V, Vdual, check=check)