"""
Creating Spaces of Modular Forms
EXAMPLES::
sage: m = ModularForms(Gamma1(4),11)
sage: m
Modular Forms space of dimension 6 for Congruence Subgroup Gamma1(4) of weight 11 over Rational Field
sage: m.basis()
[
q - 134*q^5 + O(q^6),
q^2 + 80*q^5 + O(q^6),
q^3 + 16*q^5 + O(q^6),
q^4 - 4*q^5 + O(q^6),
1 + 4092/50521*q^2 + 472384/50521*q^3 + 4194300/50521*q^4 + O(q^6),
q + 1024*q^2 + 59048*q^3 + 1048576*q^4 + 9765626*q^5 + O(q^6)
]
"""
import weakref
import re
import sage.modular.arithgroup.all as arithgroup
import sage.modular.dirichlet as dirichlet
import sage.rings.all as rings
import ambient_eps
import ambient_g0
import ambient_g1
import ambient_R
import defaults
def canonical_parameters(group, level, weight, base_ring):
"""
Given a group, level, weight, and base_ring as input by the user,
return a canonicalized version of them, where level is a Sage
integer, group really is a group, weight is a Sage integer, and
base_ring a Sage ring. Note that we can't just get the level from
the group, because we have the convention that the character for
Gamma1(N) is None (which makes good sense).
INPUT:
- ``group`` - int, long, Sage integer, group,
dirichlet character, or
- ``level`` - int, long, Sage integer, or group
- ``weight`` - coercible to Sage integer
- ``base_ring`` - commutative Sage ring
OUTPUT:
- ``level`` - Sage integer
- ``group`` - congruence subgroup
- ``weight`` - Sage integer
- ``ring`` - commutative Sage ring
EXAMPLES::
sage: from sage.modular.modform.constructor import canonical_parameters
sage: v = canonical_parameters(5, 5, int(7), ZZ); v
(5, Congruence Subgroup Gamma0(5), 7, Integer Ring)
sage: type(v[0]), type(v[1]), type(v[2]), type(v[3])
(<type 'sage.rings.integer.Integer'>,
<class 'sage.modular.arithgroup.congroup_gamma0.Gamma0_class_with_category'>,
<type 'sage.rings.integer.Integer'>,
<type 'sage.rings.integer_ring.IntegerRing_class'>)
sage: canonical_parameters( 5, 7, 7, ZZ )
Traceback (most recent call last):
...
ValueError: group and level do not match.
"""
weight = rings.Integer(weight)
if weight <= 0:
raise NotImplementedError, "weight must be at least 1"
if isinstance(group, dirichlet.DirichletCharacter):
if ( group.level() != rings.Integer(level) ):
raise ValueError, "group.level() and level do not match."
group = group.minimize_base_ring()
level = rings.Integer(level)
elif arithgroup.is_CongruenceSubgroup(group):
if ( rings.Integer(level) != group.level() ):
raise ValueError, "group.level() and level do not match."
if arithgroup.is_SL2Z(group) or \
arithgroup.is_Gamma1(group) and group.level() == rings.Integer(1):
group = arithgroup.Gamma0(rings.Integer(1))
elif group is None:
pass
else:
try:
m = rings.Integer(group)
except TypeError:
raise TypeError, "group of unknown type."
level = rings.Integer(level)
if ( m != level ):
raise ValueError, "group and level do not match."
group = arithgroup.Gamma0(m)
if not rings.is_CommutativeRing(base_ring):
raise TypeError, "base_ring (=%s) must be a commutative ring"%base_ring
return level, group, weight, base_ring
_cache = {}
def ModularForms_clear_cache():
"""
Clear the cache of modular forms.
EXAMPLES::
sage: M = ModularForms(37,2)
sage: sage.modular.modform.constructor._cache == {}
False
::
sage: sage.modular.modform.constructor.ModularForms_clear_cache()
sage: sage.modular.modform.constructor._cache
{}
"""
global _cache
_cache = {}
def ModularForms(group = 1,
weight = 2,
base_ring = None,
use_cache = True,
prec = defaults.DEFAULT_PRECISION):
r"""
Create an ambient space of modular forms.
INPUT:
- ``group`` - A congruence subgroup or a Dirichlet
character eps.
- ``weight`` - int, the weight, which must be an
integer = 1.
- ``base_ring`` - the base ring (ignored if group is
a Dirichlet character)
Create using the command ModularForms(group, weight, base_ring)
where group could be either a congruence subgroup or a Dirichlet
character.
EXAMPLES: First we create some spaces with trivial character::
sage: ModularForms(Gamma0(11),2).dimension()
2
sage: ModularForms(Gamma0(1),12).dimension()
2
If we give an integer N for the congruence subgroup, it defaults to
`\Gamma_0(N)`::
sage: ModularForms(1,12).dimension()
2
sage: ModularForms(11,4)
Modular Forms space of dimension 4 for Congruence Subgroup Gamma0(11) of weight 4 over Rational Field
We create some spaces for `\Gamma_1(N)`.
::
sage: ModularForms(Gamma1(13),2)
Modular Forms space of dimension 13 for Congruence Subgroup Gamma1(13) of weight 2 over Rational Field
sage: ModularForms(Gamma1(13),2).dimension()
13
sage: [ModularForms(Gamma1(7),k).dimension() for k in [2,3,4,5]]
[5, 7, 9, 11]
sage: ModularForms(Gamma1(5),11).dimension()
12
We create a space with character::
sage: e = (DirichletGroup(13).0)^2
sage: e.order()
6
sage: M = ModularForms(e, 2); M
Modular Forms space of dimension 3, character [zeta6] and weight 2 over Cyclotomic Field of order 6 and degree 2
sage: f = M.T(2).charpoly('x'); f
x^3 + (-2*zeta6 - 2)*x^2 - 2*zeta6*x + 14*zeta6 - 7
sage: f.factor()
(x - 2*zeta6 - 1) * (x - zeta6 - 2) * (x + zeta6 + 1)
We can also create spaces corresponding to the groups `\Gamma_H(N)` intermediate
between `\Gamma_0(N)` and `\Gamma_1(N)`::
sage: G = GammaH(30, [11])
sage: M = ModularForms(G, 2); M
Modular Forms space of dimension 20 for Congruence Subgroup Gamma_H(30) with H generated by [11] of weight 2 over Rational Field
sage: M.T(7).charpoly().factor() # long time (7s on sage.math, 2011)
(x + 4) * x^2 * (x - 6)^4 * (x + 6)^4 * (x - 8)^7 * (x^2 + 4)
More examples of spaces with character::
sage: e = DirichletGroup(5, RationalField()).gen(); e
Dirichlet character modulo 5 of conductor 5 mapping 2 |--> -1
sage: m = ModularForms(e, 2); m
Modular Forms space of dimension 2, character [-1] and weight 2 over Rational Field
sage: m == loads(dumps(m))
True
sage: m.T(2).charpoly('x')
x^2 - 1
sage: m = ModularForms(e, 6); m.dimension()
4
sage: m.T(2).charpoly('x')
x^4 - 917*x^2 - 42284
This came up in a subtle bug (trac #5923)::
sage: ModularForms(gp(1), gap(12))
Modular Forms space of dimension 2 for Modular Group SL(2,Z) of weight 12 over Rational Field
This came up in another bug (related to trac #8630)::
sage: chi = DirichletGroup(109, CyclotomicField(3)).0
sage: ModularForms(chi, 2, base_ring = CyclotomicField(15))
Modular Forms space of dimension 10, character [zeta3 + 1] and weight 2 over Cyclotomic Field of order 15 and degree 8
We create some weight 1 spaces. The first example works fine, since we can prove purely by Riemann surface theory that there are no weight 1 cusp forms::
sage: M = ModularForms(Gamma1(11), 1); M
Modular Forms space of dimension 5 for Congruence Subgroup Gamma1(11) of weight 1 over Rational Field
sage: M.basis()
[
1 + 22*q^5 + O(q^6),
q + 4*q^5 + O(q^6),
q^2 - 4*q^5 + O(q^6),
q^3 - 5*q^5 + O(q^6),
q^4 - 3*q^5 + O(q^6)
]
sage: M.cuspidal_subspace().basis()
[
]
sage: M == M.eisenstein_subspace()
True
This example doesn't work so well, because we can't calculate the cusp
forms; but we can still work with the Eisenstein series.
sage: M = ModularForms(Gamma1(57), 1); M
Modular Forms space of dimension (unknown) for Congruence Subgroup Gamma1(57) of weight 1 over Rational Field
sage: M.basis()
Traceback (most recent call last):
...
NotImplementedError: Computation of dimensions of weight 1 cusp forms spaces not implemented in general
sage: M.cuspidal_subspace().basis()
Traceback (most recent call last):
...
NotImplementedError: Computation of dimensions of weight 1 cusp forms spaces not implemented in general
sage: E = M.eisenstein_subspace(); E
Eisenstein subspace of dimension 36 of Modular Forms space of dimension (unknown) for Congruence Subgroup Gamma1(57) of weight 1 over Rational Field
sage: (E.0 + E.2).q_expansion(40)
1 + q^2 + 1473/2*q^36 - 1101/2*q^37 + q^38 - 373/2*q^39 + O(q^40)
"""
if isinstance(group, dirichlet.DirichletCharacter):
if base_ring is None:
base_ring = group.minimize_base_ring().base_ring()
if base_ring is None:
base_ring = rings.QQ
if isinstance(group, dirichlet.DirichletCharacter) \
or arithgroup.is_CongruenceSubgroup(group):
level = group.level()
else:
level = group
key = canonical_parameters(group, level, weight, base_ring)
if use_cache and _cache.has_key(key):
M = _cache[key]()
if not (M is None):
M.set_precision(prec)
return M
(level, group, weight, base_ring) = key
M = None
if arithgroup.is_Gamma0(group):
M = ambient_g0.ModularFormsAmbient_g0_Q(group.level(), weight)
if base_ring != rings.QQ:
M = ambient_R.ModularFormsAmbient_R(M, base_ring)
elif arithgroup.is_Gamma1(group):
M = ambient_g1.ModularFormsAmbient_g1_Q(group.level(), weight)
if base_ring != rings.QQ:
M = ambient_R.ModularFormsAmbient_R(M, base_ring)
elif arithgroup.is_GammaH(group):
M = ambient_g1.ModularFormsAmbient_gH_Q(group, weight)
if base_ring != rings.QQ:
M = ambient_R.ModularFormsAmbient_R(M, base_ring)
elif isinstance(group, dirichlet.DirichletCharacter):
eps = group
if eps.base_ring().characteristic() != 0:
raise NotImplementedError, "currently the character must be over a ring of characteristic 0."
eps = eps.minimize_base_ring()
if eps.is_trivial():
return ModularForms(eps.modulus(), weight, base_ring,
use_cache = use_cache,
prec = prec)
M = ambient_eps.ModularFormsAmbient_eps(eps, weight)
if base_ring != eps.base_ring():
M = M.base_extend(base_ring)
if M is None:
raise NotImplementedError, \
"computation of requested space of modular forms not defined or implemented"
M.set_precision(prec)
_cache[key] = weakref.ref(M)
return M
def CuspForms(group = 1,
weight = 2,
base_ring = None,
use_cache = True,
prec = defaults.DEFAULT_PRECISION):
"""
Create a space of cuspidal modular forms.
See the documentation for the ModularForms command for a
description of the input parameters.
EXAMPLES::
sage: CuspForms(11,2)
Cuspidal subspace of dimension 1 of Modular Forms space of dimension 2 for Congruence Subgroup Gamma0(11) of weight 2 over Rational Field
"""
return ModularForms(group, weight, base_ring,
use_cache=use_cache, prec=prec).cuspidal_submodule()
def EisensteinForms(group = 1,
weight = 2,
base_ring = None,
use_cache = True,
prec = defaults.DEFAULT_PRECISION):
"""
Create a space of eisenstein modular forms.
See the documentation for the ModularForms command for a
description of the input parameters.
EXAMPLES::
sage: EisensteinForms(11,2)
Eisenstein subspace of dimension 1 of Modular Forms space of dimension 2 for Congruence Subgroup Gamma0(11) of weight 2 over Rational Field
"""
return ModularForms(group, weight, base_ring,
use_cache=use_cache, prec=prec).eisenstein_submodule()
def Newforms(group, weight=2, base_ring=None, names=None):
r"""
Returns a list of the newforms of the given weight and level (or weight,
level and character). These are calculated as
`\operatorname{Gal}(\overline{F} / F)`-orbits, where `F` is the given base
field.
INPUT:
- ``group`` - the congruence subgroup of the newform, or a Nebentypus
character
- ``weight`` - the weight of the newform (default 2)
- ``base_ring`` - the base ring (defaults to `\QQ` for spaces without
character, or the base ring of the character otherwise)
- ``names`` - if the newform has coefficients in a
number field, a generator name must be specified
EXAMPLES::
sage: Newforms(11, 2)
[q - 2*q^2 - q^3 + 2*q^4 + q^5 + O(q^6)]
sage: Newforms(65, names='a')
[q - q^2 - 2*q^3 - q^4 - q^5 + O(q^6),
q + a1*q^2 + (a1 + 1)*q^3 + (-2*a1 - 1)*q^4 + q^5 + O(q^6),
q + a2*q^2 + (-a2 + 1)*q^3 + q^4 - q^5 + O(q^6)]
A more complicated example involving both a nontrivial character, and a
base field that is not minimal for that character::
sage: K.<i> = QuadraticField(-1)
sage: chi = DirichletGroup(5, K).gen(0)
sage: len(Newforms(chi, 7, names='a'))
1
sage: x = polygen(K); L.<c> = K.extension(x^2 - 402*i)
sage: N = Newforms(chi, 7, base_ring = L); len(N)
2
sage: sorted([N[0][2], N[1][2]]) == sorted([1/2*c - 5/2*i - 5/2, -1/2*c - 5/2*i - 5/2])
True
We test that #8630 is fixed::
sage: chi = DirichletGroup(109, CyclotomicField(3)).0
sage: CuspForms(chi, 2, base_ring = CyclotomicField(9))
Cuspidal subspace of dimension 8 of Modular Forms space of dimension 10, character [zeta3 + 1] and weight 2 over Cyclotomic Field of order 9 and degree 6
"""
return CuspForms(group, weight, base_ring).newforms(names)
def Newform(identifier, group=None, weight=2, base_ring=rings.QQ, names=None):
"""
INPUT:
- ``identifier`` - a canonical label, or the index of
the specific newform desired
- ``group`` - the congruence subgroup of the newform
- ``weight`` - the weight of the newform (default 2)
- ``base_ring`` - the base ring
- ``names`` - if the newform has coefficients in a
number field, a generator name must be specified
EXAMPLES::
sage: Newform('67a', names='a')
q + 2*q^2 - 2*q^3 + 2*q^4 + 2*q^5 + O(q^6)
sage: Newform('67b', names='a')
q + a1*q^2 + (-a1 - 3)*q^3 + (-3*a1 - 3)*q^4 - 3*q^5 + O(q^6)
"""
if isinstance(group, str) and names is None:
names = group
if isinstance(identifier, str):
group, identifier = parse_label(identifier)
if weight != 2:
raise ValueError, "Canonical label not implemented for higher weight forms."
elif base_ring != rings.QQ:
raise ValueError, "Canonical label not implemented except for over Q."
elif group is None:
raise ValueError, "Must specify a group or a label."
return Newforms(group, weight, base_ring, names=names)[identifier]
def parse_label(s):
"""
Given a string s corresponding to a newform label, return the
corresponding group and index.
EXAMPLES::
sage: sage.modular.modform.constructor.parse_label('11a')
(Congruence Subgroup Gamma0(11), 0)
sage: sage.modular.modform.constructor.parse_label('11aG1')
(Congruence Subgroup Gamma1(11), 0)
sage: sage.modular.modform.constructor.parse_label('11wG1')
(Congruence Subgroup Gamma1(11), 22)
"""
m = re.match(r'(\d+)([a-z]+)((?:G.*)?)$', s)
if not m:
raise ValueError, "Invalid label: %s" % s
N, order, G = m.groups()
N = int(N)
index = 0
for c in reversed(order):
index = 26*index + ord(c)-ord('a')
if G == '' or G == 'G0':
G = arithgroup.Gamma0(N)
elif G == 'G1':
G = arithgroup.Gamma1(N)
elif G[:2] == 'GH':
if G[2] != '[' or G[-1] != ']':
raise ValueError, "Invalid congruence subgroup label: %s" % G
gens = [int(g.strip()) for g in G[3:-1].split(',')]
return arithgroup.GammaH(N, gens)
else:
raise ValueError, "Invalid congruence subgroup label: %s" % G
return G, index