r"""
Creation of modular symbols spaces
EXAMPLES: We create a space and output its category.
::
sage: C = HeckeModules(RationalField()); C
Category of Hecke modules over Rational Field
sage: M = ModularSymbols(11)
sage: M.category()
Category of Hecke modules over Rational Field
sage: M in C
True
We create a space compute the charpoly, then compute the same but
over a bigger field. In each case we also decompose the space using
`T_2`.
::
sage: M = ModularSymbols(23,2,base_ring=QQ)
sage: print M.T(2).charpoly('x').factor()
(x - 3) * (x^2 + x - 1)^2
sage: print M.decomposition(2)
[
Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 5 for Gamma_0(23) of weight 2 with sign 0 over Rational Field,
Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 5 for Gamma_0(23) of weight 2 with sign 0 over Rational Field
]
::
sage: M = ModularSymbols(23,2,base_ring=QuadraticField(5, 'sqrt5'))
sage: print M.T(2).charpoly('x').factor()
(x - 3) * (x - 1/2*sqrt5 + 1/2)^2 * (x + 1/2*sqrt5 + 1/2)^2
sage: print M.decomposition(2)
[
Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 5 for Gamma_0(23) of weight 2 with sign 0 over Number Field in sqrt5 with defining polynomial x^2 - 5,
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 5 for Gamma_0(23) of weight 2 with sign 0 over Number Field in sqrt5 with defining polynomial x^2 - 5,
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 5 for Gamma_0(23) of weight 2 with sign 0 over Number Field in sqrt5 with defining polynomial x^2 - 5
]
We compute some Hecke operators and do a consistency check::
sage: m = ModularSymbols(39, 2)
sage: t2 = m.T(2); t5 = m.T(5)
sage: t2*t5 - t5*t2 == 0
True
This tests the bug reported in trac #1220::
sage: G = GammaH(36, [13, 19])
sage: G.modular_symbols()
Modular Symbols space of dimension 13 for Congruence Subgroup Gamma_H(36) with H generated by [13, 19] of weight 2 with sign 0 and over Rational Field
sage: G.modular_symbols().cuspidal_subspace()
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 13 for Congruence Subgroup Gamma_H(36) with H generated by [13, 19] of weight 2 with sign 0 and over Rational Field
This test catches a tricky corner case for spaces with character::
sage: ModularSymbols(DirichletGroup(20).1**3, weight=3, sign=1).cuspidal_subspace()
Modular Symbols subspace of dimension 3 of Modular Symbols space of dimension 6 and level 20, weight 3, character [1, -zeta4], sign 1, over Cyclotomic Field of order 4 and degree 2
"""
import weakref
import ambient
import sage.modular.arithgroup.all as arithgroup
import sage.modular.dirichlet as dirichlet
import sage.rings.rational_field as rational_field
import sage.rings.all as rings
def canonical_parameters(group, weight, sign, base_ring):
"""
Return the canonically normalized parameters associated to a choice
of group, weight, sign, and base_ring. That is, normalize each of
these to be of the correct type, perform all appropriate type
checking, etc.
EXAMPLES::
sage: p1 = sage.modular.modsym.modsym.canonical_parameters(5,int(2),1,QQ) ; p1
(Congruence Subgroup Gamma0(5), 2, 1, Rational Field)
sage: p2 = sage.modular.modsym.modsym.canonical_parameters(Gamma0(5),2,1,QQ) ; p2
(Congruence Subgroup Gamma0(5), 2, 1, Rational Field)
sage: p1 == p2
True
sage: type(p1[1])
<type 'sage.rings.integer.Integer'>
"""
sign = rings.Integer(sign)
if not (sign in [-1,0,1]):
raise ValueError, "sign must be -1, 0, or 1"
weight = rings.Integer(weight)
if weight <= 1:
raise ValueError, "the weight must be at least 2"
if isinstance(group, (int, rings.Integer)):
group = arithgroup.Gamma0(group)
elif isinstance(group, dirichlet.DirichletCharacter):
try:
eps = group.minimize_base_ring()
except NotImplementedError:
eps = group
G = eps.parent()
if eps.is_trivial():
group = arithgroup.Gamma0(eps.modulus())
else:
group = (eps, G)
if base_ring is None: base_ring = eps.base_ring()
if base_ring is None: base_ring = rational_field.RationalField()
if not rings.is_CommutativeRing(base_ring):
raise TypeError, "base_ring (=%s) must be a commutative ring"%base_ring
if not base_ring.is_field():
raise TypeError, "(currently) base_ring (=%s) must be a field"%base_ring
return group, weight, sign, base_ring
_cache = {}
def ModularSymbols_clear_cache():
"""
Clear the global cache of modular symbols spaces.
EXAMPLES::
sage: sage.modular.modsym.modsym.ModularSymbols_clear_cache()
sage: sage.modular.modsym.modsym._cache.keys()
[]
sage: M = ModularSymbols(6,2)
sage: sage.modular.modsym.modsym._cache.keys()
[(Congruence Subgroup Gamma0(6), 2, 0, Rational Field)]
sage: sage.modular.modsym.modsym.ModularSymbols_clear_cache()
sage: sage.modular.modsym.modsym._cache.keys()
[]
TESTS:
Make sure #10548 is fixed
sage: import gc
sage: m=ModularSymbols(Gamma1(29))
sage: m=[]
sage: ModularSymbols_clear_cache()
sage: gc.collect() # random
3422
sage: a=[x for x in gc.get_objects() if isinstance(x,sage.modular.modsym.ambient.ModularSymbolsAmbient_wtk_g1)]
sage: a
[]
"""
global _cache
_cache = {}
def ModularSymbols(group = 1,
weight = 2,
sign = 0,
base_ring = None,
use_cache = True,
custom_init=None):
r"""
Create an ambient space of modular symbols.
INPUT:
- ``group`` - A congruence subgroup or a Dirichlet character eps.
- ``weight`` - int, the weight, which must be = 2.
- ``sign`` - int, The sign of the involution on modular symbols
induced by complex conjugation. The default is 0, which means
"no sign", i.e., take the whole space.
- ``base_ring`` - the base ring. Defaults to `\QQ` if no character
is given, or to the minimal extension of `\QQ` containing the
values of the character.
- ``custom_init`` - a function that is called with self as input
before any computations are done using self; this could be used
to set a custom modular symbols presentation. If self is
already in the cache and use_cache=True, then this function is
not called.
EXAMPLES: First we create some spaces with trivial character::
sage: ModularSymbols(Gamma0(11),2).dimension()
3
sage: ModularSymbols(Gamma0(1),12).dimension()
3
If we give an integer N for the congruence subgroup, it defaults to
`\Gamma_0(N)`::
sage: ModularSymbols(1,12,-1).dimension()
1
sage: ModularSymbols(11,4, sign=1)
Modular Symbols space of dimension 4 for Gamma_0(11) of weight 4 with sign 1 over Rational Field
We create some spaces for `\Gamma_1(N)`.
::
sage: ModularSymbols(Gamma1(13),2)
Modular Symbols space of dimension 15 for Gamma_1(13) of weight 2 with sign 0 and over Rational Field
sage: ModularSymbols(Gamma1(13),2, sign=1).dimension()
13
sage: ModularSymbols(Gamma1(13),2, sign=-1).dimension()
2
sage: [ModularSymbols(Gamma1(7),k).dimension() for k in [2,3,4,5]]
[5, 8, 12, 16]
sage: ModularSymbols(Gamma1(5),11).dimension()
20
We create a space for `\Gamma_H(N)`::
sage: G = GammaH(15,[4,13])
sage: M = ModularSymbols(G,2)
sage: M.decomposition()
[
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 5 for Congruence Subgroup Gamma_H(15) with H generated by [4, 13] of weight 2 with sign 0 and over Rational Field,
Modular Symbols subspace of dimension 3 of Modular Symbols space of dimension 5 for Congruence Subgroup Gamma_H(15) with H generated by [4, 13] of weight 2 with sign 0 and over Rational Field
]
We create a space with character::
sage: e = (DirichletGroup(13).0)^2
sage: e.order()
6
sage: M = ModularSymbols(e, 2); M
Modular Symbols space of dimension 4 and level 13, weight 2, character [zeta6], sign 0, over Cyclotomic Field of order 6 and degree 2
sage: f = M.T(2).charpoly('x'); f
x^4 + (-zeta6 - 1)*x^3 - 8*zeta6*x^2 + (10*zeta6 - 5)*x + 21*zeta6 - 21
sage: f.factor()
(x - 2*zeta6 - 1) * (x - zeta6 - 2) * (x + zeta6 + 1)^2
We create a space with character over a larger base ring than the values of the character::
sage: ModularSymbols(e, 2, base_ring = CyclotomicField(24))
Modular Symbols space of dimension 4 and level 13, weight 2, character [zeta24^4], sign 0, over Cyclotomic Field of order 24 and degree 8
More examples of spaces with character::
sage: e = DirichletGroup(5, RationalField()).gen(); e
Dirichlet character modulo 5 of conductor 5 mapping 2 |--> -1
sage: m = ModularSymbols(e, 2); m
Modular Symbols space of dimension 2 and level 5, weight 2, character [-1], sign 0, over Rational Field
::
sage: m.T(2).charpoly('x')
x^2 - 1
sage: m = ModularSymbols(e, 6); m.dimension()
6
sage: m.T(2).charpoly('x')
x^6 - 873*x^4 - 82632*x^2 - 1860496
We create a space of modular symbols with nontrivial character in
characteristic 2.
::
sage: G = DirichletGroup(13,GF(4,'a')); G
Group of Dirichlet characters of modulus 13 over Finite Field in a of size 2^2
sage: e = G.list()[2]; e
Dirichlet character modulo 13 of conductor 13 mapping 2 |--> a + 1
sage: M = ModularSymbols(e,4); M
Modular Symbols space of dimension 8 and level 13, weight 4, character [a + 1], sign 0, over Finite Field in a of size 2^2
sage: M.basis()
([X*Y,(1,0)], [X*Y,(1,5)], [X*Y,(1,10)], [X*Y,(1,11)], [X^2,(0,1)], [X^2,(1,10)], [X^2,(1,11)], [X^2,(1,12)])
sage: M.T(2).matrix()
[ 0 0 0 0 0 0 1 1]
[ 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 a + 1 1 a]
[ 0 0 0 0 0 1 a + 1 a]
[ 0 0 0 0 a + 1 0 1 1]
[ 0 0 0 0 0 a 1 a]
[ 0 0 0 0 0 0 a + 1 a]
[ 0 0 0 0 0 0 1 0]
We illustrate the custom_init function, which can be used to make
arbitrary changes to the modular symbols object before its
presentation is computed::
sage: ModularSymbols_clear_cache()
sage: def custom_init(M):
... M.customize='hi'
sage: M = ModularSymbols(1,12, custom_init=custom_init)
sage: M.customize
'hi'
We illustrate the relation between custom_init and use_cache::
sage: def custom_init(M):
... M.customize='hi2'
sage: M = ModularSymbols(1,12, custom_init=custom_init)
sage: M.customize
'hi'
sage: M = ModularSymbols(1,12, custom_init=custom_init, use_cache=False)
sage: M.customize
'hi2'
TESTS: We test use_cache::
sage: ModularSymbols_clear_cache()
sage: M = ModularSymbols(11,use_cache=False)
sage: sage.modular.modsym.modsym._cache
{}
sage: M = ModularSymbols(11,use_cache=True)
sage: sage.modular.modsym.modsym._cache
{(Congruence Subgroup Gamma0(11), 2, 0, Rational Field): <weakref at ...; to 'ModularSymbolsAmbient_wt2_g0_with_category' at ...>}
sage: M is ModularSymbols(11,use_cache=True)
True
sage: M is ModularSymbols(11,use_cache=False)
False
"""
key = canonical_parameters(group, weight, sign, base_ring)
if use_cache and _cache.has_key(key):
M = _cache[key]()
if not (M is None): return M
(group, weight, sign, base_ring) = key
M = None
if arithgroup.is_Gamma0(group):
if weight == 2:
M = ambient.ModularSymbolsAmbient_wt2_g0(
group.level(),sign, base_ring, custom_init=custom_init)
else:
M = ambient.ModularSymbolsAmbient_wtk_g0(
group.level(), weight, sign, base_ring, custom_init=custom_init)
elif arithgroup.is_Gamma1(group):
M = ambient.ModularSymbolsAmbient_wtk_g1(group.level(),
weight, sign, base_ring, custom_init=custom_init)
elif arithgroup.is_GammaH(group):
M = ambient.ModularSymbolsAmbient_wtk_gamma_h(group,
weight, sign, base_ring, custom_init=custom_init)
elif isinstance(group, tuple):
eps = group[0]
M = ambient.ModularSymbolsAmbient_wtk_eps(eps,
weight, sign, base_ring, custom_init=custom_init)
if M is None:
raise NotImplementedError, "computation of requested space of modular symbols not defined or implemented"
if use_cache:
_cache[key] = weakref.ref(M)
return M