r"""
Lists of Manin symbols (elements of `\mathbb{P}^1(R/N)`) over number fields
Lists of elements of `\mathbb{P}^1(R/N)` where `R` is the ring of integers of a number
field `K` and `N` is an integral ideal.
AUTHORS:
- Maite Aranes (2009): Initial version
EXAMPLES:
We define a P1NFList:
::
sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(5, a^2 - a + 1)
sage: P = P1NFList(N); P
The projective line over the ring of integers modulo the Fractional ideal (5, a^2 - a + 1)
List operations with the P1NFList:
::
sage: len(P)
26
sage: [p for p in P]
[M-symbol (0: 1) of level Fractional ideal (5, a^2 - a + 1),
...
M-symbol (1: 2*a^2 + 2*a) of level Fractional ideal (5, a^2 - a + 1)]
The elements of the P1NFList are M-symbols:
::
sage: type(P[2])
<class 'sage.modular.modsym.p1list_nf.MSymbol'>
Definition of MSymbols:
::
sage: alpha = MSymbol(N, 3, a^2); alpha
M-symbol (3: a^2) of level Fractional ideal (5, a^2 - a + 1)
Find the index of the class of an M-Symbol `(c: d)` in the list:
::
sage: i = P.index(alpha)
sage: P[i].c*alpha.d - P[i].d*alpha.c in N
True
Lift an MSymbol to a matrix in `SL(2, R)`:
::
sage: alpha = MSymbol(N, a + 2, 3*a^2)
sage: alpha.lift_to_sl2_Ok()
[1, -4*a^2 + 9*a - 21, a + 2, a^2 - 3*a + 3]
sage: Ok = k.ring_of_integers()
sage: M = Matrix(Ok, 2, alpha.lift_to_sl2_Ok())
sage: det(M)
1
sage: M[1][1] - alpha.d in N
True
Lift an MSymbol from P1NFList to a matrix in `SL(2, R)`
::
sage: P[3]
M-symbol (1: -2*a) of level Fractional ideal (5, a^2 - a + 1)
sage: P.lift_to_sl2_Ok(3)
[0, -1, 1, -2*a]
"""
from sage.structure.sage_object import SageObject
from sage.misc.search import search
_level_cache = {}
def P1NFList_clear_level_cache():
"""
Clear the global cache of data for the level ideals.
EXAMPLES::
sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(a+1)
sage: alpha = MSymbol(N, 2*a^2, 5)
sage: alpha.normalize()
M-symbol (-4*a^2: 5*a^2) of level Fractional ideal (a + 1)
sage: sage.modular.modsym.p1list_nf._level_cache
{Fractional ideal (a + 1): (...)}
sage: sage.modular.modsym.p1list_nf.P1NFList_clear_level_cache()
sage: sage.modular.modsym.p1list_nf._level_cache
{}
"""
global _level_cache
_level_cache = {}
class MSymbol(SageObject):
"""
The constructor for an M-symbol over a number field.
INPUT:
- ``N`` -- integral ideal (the modulus or level).
- ``c`` -- integral element of the underlying number field or an MSymbol of
level N.
- ``d`` -- (optional) when present, it must be an integral element such
that <c> + <d> + N = R, where R is the corresponding ring of integers.
- ``check`` -- bool (default True). If ``check=False`` the constructor does
not check the condition <c> + <d> + N = R.
OUTPUT:
An M-symbol modulo the given ideal N, i.e. an element of the
projective line `\\mathbb{P}^1(R/N)`, where R is the ring of integers of
the underlying number field.
EXAMPLES::
sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(a + 1, 2)
sage: MSymbol(N, 3, a^2 + 1)
M-symbol (3: a^2 + 1) of level Fractional ideal (2, a + 1)
We can give a tuple as input:
::
sage: MSymbol(N, (1, 0))
M-symbol (1: 0) of level Fractional ideal (2, a + 1)
We get an error if <c>, <d> and N are not coprime:
::
sage: MSymbol(N, 2*a, a - 1)
Traceback (most recent call last):
...
ValueError: (2*a, a - 1) is not an element of P1(R/N).
sage: MSymbol(N, (0, 0))
Traceback (most recent call last):
...
ValueError: (0, 0) is not an element of P1(R/N).
Saving and loading works:
::
sage: alpha = MSymbol(N, 3, a^2 + 1)
sage: loads(dumps(alpha))==alpha
True
"""
def __init__(self, N, c, d=None, check=True):
"""
See ``MSymbol`` for full documentation.
EXAMPLES::
sage: k.<a> = NumberField(x^4 + 13*x - 7)
sage: N = k.ideal(5)
sage: MSymbol(N, 0, 6*a)
M-symbol (0: 6*a) of level Fractional ideal (5)
sage: MSymbol(N, a^2 + 3, 7)
M-symbol (a^2 + 3: 7) of level Fractional ideal (5)
"""
k = N.number_field()
R = k.ring_of_integers()
self.__N = N
if d is None:
if isinstance(c, MSymbol):
if c.N() is N:
c1 = R(c[0])
d1 = R(c[1])
else:
raise ValueError, "Cannot change level of an MSymbol"
else:
try:
c1 = R(c[0])
d1 = R(c[1])
except (ValueError, TypeError):
raise TypeError, "Unable to create a Manin symbol from %s"%c
else:
try:
c1 = R(c)
d1 = R(d)
except (ValueError, TypeError):
raise TypeError, "Unable to create a Manin symbol from (%s, %s)"%(c, d)
if check:
if (c1.is_zero() and d1.is_zero()) or not N.is_coprime(k.ideal(c1, d1)):
raise ValueError, "(%s, %s) is not an element of P1(R/N)."%(c1, d1)
self.__c, self.__d = (c1, d1)
def __repr__(self):
"""
Returns the string representation of this MSymbol.
EXAMPLES::
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3, a - 1)
sage: MSymbol(N, 3, a)
M-symbol (3: a) of level Fractional ideal (3, 1/2*a - 1/2)
"""
return "M-symbol (%s: %s) of level %s"%(self.__c, self.__d, self.__N)
def _latex_(self):
r"""
Return latex representation of self.
EXAMPLES::
sage: k.<a> = NumberField(x^4 + 13*x - 7)
sage: N = k.ideal(a^3 - 1)
sage: alpha = MSymbol(N, 3, 5*a^2 - 1)
sage: latex(alpha) # indirect doctest
\(3: 5 a^{2} - 1\)
"""
return "\\(%s: %s\)"%(self.c._latex_(), self.d._latex_())
def __cmp__(self, other):
"""
Comparison function for objects of the class MSymbol.
The order is the same as for the underlying lists of lists.
EXAMPLES::
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3, a - 1)
sage: alpha = MSymbol(N, 3, a)
sage: beta = MSymbol(N, 1, 0)
sage: alpha < beta
False
sage: beta = MSymbol(N, 3, a + 1)
sage: alpha < beta
True
"""
if not isinstance(other, MSymbol):
raise ValueError, "You can only compare with another M-symbol"
return cmp([self.__c.list(), self.__d.list()],
[other.__c.list(), other.__d.list()])
def N(self):
"""
Returns the level or modulus of this MSymbol.
EXAMPLES::
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3, a - 1)
sage: alpha = MSymbol(N, 3, a)
sage: alpha.N()
Fractional ideal (3, 1/2*a - 1/2)
"""
return self.__N
def tuple(self):
"""
Returns the MSymbol as a list (c, d).
EXAMPLES::
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3, a - 1)
sage: alpha = MSymbol(N, 3, a); alpha
M-symbol (3: a) of level Fractional ideal (3, 1/2*a - 1/2)
sage: alpha.tuple()
(3, a)
"""
return self.__c, self.__d
def __getitem__(self, n):
"""
Indexing function for the list defined by an M-symbol.
INPUT:
- ``n`` -- integer (0 or 1, since the list defined by an M-symbol has
length 2)
EXAMPLES::
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3, a - 1)
sage: alpha = MSymbol(N, 3, a); alpha
M-symbol (3: a) of level Fractional ideal (3, 1/2*a - 1/2)
sage: alpha[0]
3
sage: alpha[1]
a
"""
return self.tuple()[n]
def __get_c(self):
"""
Returns the first coefficient of the M-symbol.
EXAMPLES::
sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(a + 1, 2)
sage: alpha = MSymbol(N, 3, a^2 + 1)
sage: alpha.c # indirect doctest
3
"""
return self.__c
c = property(__get_c)
def __get_d(self):
"""
Returns the second coefficient of the M-symbol.
EXAMPLES::
sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(a + 1, 2)
sage: alpha = MSymbol(N, 3, a^2 + 1)
sage: alpha.d # indirect doctest
a^2 + 1
"""
return self.__d
d = property(__get_d)
def lift_to_sl2_Ok(self):
"""
Lift the MSymbol to an element of `SL(2, Ok)`, where `Ok` is the ring
of integers of the corresponding number field.
OUTPUT:
A list of integral elements `[a, b, c', d']` that are the entries of
a 2x2 matrix with determinant 1. The lower two entries are congruent
(modulo the level) to the coefficients `c, d` of the MSymbol self.
EXAMPLES::
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3, a - 1)
sage: alpha = MSymbol(N, 3*a + 1, a)
sage: alpha.lift_to_sl2_Ok()
[0, -1, 1, a]
"""
return lift_to_sl2_Ok(self.__N, self.__c, self.__d)
def normalize(self, with_scalar=False):
"""
Returns a normalized MSymbol (a canonical representative of an element
of `\mathbb{P}^1(R/N)` ) equivalent to ``self``.
INPUT:
- ``with_scalar`` -- bool (default False)
OUTPUT:
- (only if ``with_scalar=True``) a transforming scalar `u`, such that
`(u*c', u*d')` is congruent to `(c: d)` (mod `N`), where `(c: d)`
are the coefficients of ``self`` and `N` is the level.
- a normalized MSymbol (c': d') equivalent to ``self``.
EXAMPLES::
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3, a - 1)
sage: alpha1 = MSymbol(N, 3, a); alpha1
M-symbol (3: a) of level Fractional ideal (3, 1/2*a - 1/2)
sage: alpha1.normalize()
M-symbol (0: 1) of level Fractional ideal (3, 1/2*a - 1/2)
sage: alpha2 = MSymbol(N, 4, a + 1)
sage: alpha2.normalize()
M-symbol (1: -a) of level Fractional ideal (3, 1/2*a - 1/2)
We get the scaling factor by setting ``with_scalar=True``:
::
sage: alpha1.normalize(with_scalar=True)
(a, M-symbol (0: 1) of level Fractional ideal (3, 1/2*a - 1/2))
sage: r, beta1 = alpha1.normalize(with_scalar=True)
sage: r*beta1.c - alpha1.c in N
True
sage: r*beta1.d - alpha1.d in N
True
sage: r, beta2 = alpha2.normalize(with_scalar=True)
sage: r*beta2.c - alpha2.c in N
True
sage: r*beta2.d - alpha2.d in N
True
"""
N = self.__N
k = N.number_field()
R = k.ring_of_integers()
if self.__c in N:
if with_scalar:
return N.reduce(self.d), MSymbol(N, 0, 1)
else:
return MSymbol(N, 0, 1)
if self.d in N:
if with_scalar:
return N.reduce(self.c), MSymbol(N, 1, 0)
else:
return MSymbol(N, 1, 0)
if N.is_coprime(self.c):
cinv = R(self.c).inverse_mod(N)
if with_scalar:
return N.reduce(self.c), MSymbol(N, 1, N.reduce(self.d*cinv))
else:
return MSymbol(N, 1, N.reduce(self.d*cinv))
if _level_cache.has_key(N):
Lfacs, Lxs = _level_cache[N]
else:
Lfacs = [p**e for p, e in N.factor()]
Lxs = [(N/p).element_1_mod(p) for p in Lfacs]
_level_cache[N] = (Lfacs, Lxs)
u = 0
p_i = 0
for p in Lfacs:
if p.is_coprime(self.c):
inv = self.c.inverse_mod(p)
else:
inv = self.d.inverse_mod(p)
u = u + inv*Lxs[p_i]
p_i = p_i + 1
c, d = (N.reduce(u*self.c), N.reduce(u*self.d))
if (c - 1) in N:
c = R(1)
if with_scalar:
return u.inverse_mod(N), MSymbol(N, c, d)
else:
return MSymbol(N, c, d)
class P1NFList(SageObject):
"""
The class for `\mathbb{P}^1(R/N)`, the projective line modulo `N`, where
`R` is the ring of integers of a number field `K` and `N` is an integral ideal.
INPUT:
- ``N`` - integral ideal (the modulus or level).
OUTPUT:
A P1NFList object representing `\mathbb{P}^1(R/N)`.
EXAMPLES::
sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(5, a + 1)
sage: P = P1NFList(N); P
The projective line over the ring of integers modulo the Fractional ideal (5, a + 1)
Saving and loading works.
::
sage: loads(dumps(P)) == P
True
"""
def __init__(self, N):
"""
The constructor for the class P1NFList. See ``P1NFList`` for full
documentation.
EXAMPLES::
sage: k.<a> = NumberField(x^2 + 5)
sage: N = k.ideal(3, a - 1)
sage: P = P1NFList(N); P
The projective line over the ring of integers modulo the Fractional ideal (3, a + 2)
"""
self.__N = N
self.__list = p1NFlist(N)
self.__list.sort()
def __cmp__(self, other):
"""
Comparison function for objects of the class P1NFList.
The order is the same as for the underlying modulus.
EXAMPLES::
sage: k.<a> = NumberField(x^2 + 23)
sage: N1 = k.ideal(3, a + 1)
sage: P1 = P1NFList(N1)
sage: N2 = k.ideal(a + 2)
sage: P2 = P1NFList(N2)
sage: P1 < P2
False
sage: P1 > P2
True
sage: P1 == P1NFList(N1)
True
"""
if not isinstance(other, P1NFList):
raise ValueError, "You can only compare with another P1NFList"
return cmp(self.__N, other.__N)
def __getitem__(self, n):
"""
Standard indexing function for the class P1NFList.
EXAMPLES::
sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(a)
sage: P = P1NFList(N)
sage: list(P) == P._P1NFList__list
True
sage: j = randint(0,len(P)-1)
sage: P[j] == P._P1NFList__list[j]
True
"""
return self.__list[n]
def __len__(self):
"""
Returns the length of this P1NFList.
EXAMPLES::
sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(5, a^2 - a + 1)
sage: P = P1NFList(N)
sage: len(P)
26
"""
return len(self.__list)
def __repr__(self):
"""
Returns the string representation of this P1NFList.
EXAMPLES::
sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(5, a+1)
sage: P = P1NFList(N); P
The projective line over the ring of integers modulo the Fractional ideal (5, a + 1)
"""
return "The projective line over the ring of integers modulo the %s"%self.__N
def list(self):
"""
Returns the underlying list of this P1NFList object.
EXAMPLES::
sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(5, a+1)
sage: P = P1NFList(N)
sage: type(P)
<class 'sage.modular.modsym.p1list_nf.P1NFList'>
sage: type(P.list())
<type 'list'>
"""
return self.__list
def normalize(self, c, d=None, with_scalar=False):
"""
Returns a normalised element of `\mathbb{P}^1(R/N)`.
INPUT:
- ``c`` -- integral element of the underlying number field, or an
MSymbol.
- ``d`` -- (optional) when present, it must be an integral element of
the number field such that `(c, d)` defines an M-symbol of level `N`.
- ``with_scalar`` -- bool (default False)
OUTPUT:
- (only if ``with_scalar=True``) a transforming scalar `u`, such that
`(u*c', u*d')` is congruent to `(c: d)` (mod `N`).
- a normalized MSymbol (c': d') equivalent to `(c: d)`.
EXAMPLES::
sage: k.<a> = NumberField(x^2 + 31)
sage: N = k.ideal(5, a + 3)
sage: P = P1NFList(N)
sage: P.normalize(3, a)
M-symbol (1: 2*a) of level Fractional ideal (5, 1/2*a + 3/2)
We can use an MSymbol as input:
::
sage: alpha = MSymbol(N, 3, a)
sage: P.normalize(alpha)
M-symbol (1: 2*a) of level Fractional ideal (5, 1/2*a + 3/2)
If we are interested in the normalizing scalar:
::
sage: P.normalize(alpha, with_scalar=True)
(-a, M-symbol (1: 2*a) of level Fractional ideal (5, 1/2*a + 3/2))
sage: r, beta = P.normalize(alpha, with_scalar=True)
sage: (r*beta.c - alpha.c in N) and (r*beta.d - alpha.d in N)
True
"""
if d is None:
try:
c = MSymbol(self.__N, c)
except ValueError:
raise ValueError, "The MSymbol is of a different level"
return c.normalize(with_scalar)
return MSymbol(self.N(), c, d).normalize(with_scalar)
def N(self):
"""
Returns the level or modulus of this P1NFList.
EXAMPLES::
sage: k.<a> = NumberField(x^2 + 31)
sage: N = k.ideal(5, a + 3)
sage: P = P1NFList(N)
sage: P.N()
Fractional ideal (5, 1/2*a + 3/2)
"""
return self.__N
def index(self, c, d=None, with_scalar=False):
"""
Returns the index of the class of the pair `(c, d)` in the fixed list
of representatives of `\mathbb{P}^1(R/N)`.
INPUT:
- ``c`` -- integral element of the corresponding number field, or an
MSymbol.
- ``d`` -- (optional) when present, it must be an integral element of
the number field such that `(c, d)` defines an M-symbol of level `N`.
- ``with_scalar`` -- bool (default False)
OUTPUT:
- ``u`` - the normalizing scalar (only if ``with_scalar=True``)
- ``i`` - the index of `(c, d)` in the list.
EXAMPLES::
sage: k.<a> = NumberField(x^2 + 31)
sage: N = k.ideal(5, a + 3)
sage: P = P1NFList(N)
sage: P.index(3,a)
5
sage: P[5]==MSymbol(N, 3, a).normalize()
True
We can give an MSymbol as input:
::
sage: alpha = MSymbol(N, 3, a)
sage: P.index(alpha)
5
We cannot look for the class of an MSymbol of a different level:
::
sage: M = k.ideal(a + 1)
sage: beta = MSymbol(M, 0, 1)
sage: P.index(beta)
Traceback (most recent call last):
...
ValueError: The MSymbol is of a different level
If we are interested in the transforming scalar:
::
sage: alpha = MSymbol(N, 3, a)
sage: P.index(alpha, with_scalar=True)
(-a, 5)
sage: u, i = P.index(alpha, with_scalar=True)
sage: (u*P[i].c - alpha.c in N) and (u*P[i].d - alpha.d in N)
True
"""
if d is None:
try:
c = MSymbol(self.__N, c)
except ValueError:
raise ValueError, "The MSymbol is of a different level"
if with_scalar:
u, norm_c = c.normalize(with_scalar=True)
else:
norm_c = c.normalize()
else:
if with_scalar:
u, norm_c = MSymbol(self.__N, c, d).normalize(with_scalar=True)
else:
norm_c = MSymbol(self.__N, c, d).normalize()
t, i = search(self.__list, norm_c)
if t:
if with_scalar:
return u, i
else:
return i
return False
def index_of_normalized_pair(self, c, d=None):
"""
Returns the index of the class `(c, d)` in the fixed list of
representatives of `\mathbb(P)^1(R/N)`.
INPUT:
- ``c`` -- integral element of the corresponding number field, or a
normalized MSymbol.
- ``d`` -- (optional) when present, it must be an integral element of
the number field such that `(c, d)` defines a normalized M-symbol of
level `N`.
OUTPUT:
- ``i`` - the index of `(c, d)` in the list.
EXAMPLES::
sage: k.<a> = NumberField(x^2 + 31)
sage: N = k.ideal(5, a + 3)
sage: P = P1NFList(N)
sage: P.index_of_normalized_pair(1, 0)
3
sage: j = randint(0,len(P)-1)
sage: P.index_of_normalized_pair(P[j])==j
True
"""
if d is None:
try:
c = MSymbol(self.__N, c)
except ValueError:
raise ValueError, "The MSymbol is of a different level"
t, i = search(self.__list, c)
else:
t, i = search(self.__list, MSymbol(self.__N, c, d))
if t: return i
return False
def lift_to_sl2_Ok(self, i):
"""
Lift the `i`-th element of this P1NFList to an element of `SL(2, R)`,
where `R` is the ring of integers of the corresponding number field.
INPUT:
- ``i`` - integer (index of the element to lift)
OUTPUT:
If the `i`-th element is `(c : d)`, the function returns a list of
integral elements `[a, b, c', d']` that defines a 2x2 matrix with
determinant 1 and such that `c=c'` (mod `N`) and `d=d'` (mod `N`).
EXAMPLES::
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3)
sage: P = P1NFList(N)
sage: len(P)
16
sage: P[5]
M-symbol (1/2*a + 1/2: -a) of level Fractional ideal (3)
sage: P.lift_to_sl2_Ok(5)
[1, -2, 1/2*a + 1/2, -a]
::
sage: Ok = k.ring_of_integers()
sage: L = [Matrix(Ok, 2, P.lift_to_sl2_Ok(i)) for i in range(len(P))]
sage: all([det(L[i]) == 1 for i in range(len(L))])
True
"""
return self[i].lift_to_sl2_Ok()
def apply_S(self, i):
"""
Applies the matrix S = [0, -1, 1, 0] to the i-th M-Symbol of the list.
INPUT:
- ``i`` -- integer
OUTPUT:
integer -- the index of the M-Symbol obtained by the right action of
the matrix S = [0, -1, 1, 0] on the i-th M-Symbol.
EXAMPLES::
sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(5, a + 1)
sage: P = P1NFList(N)
sage: j = P.apply_S(P.index_of_normalized_pair(1, 0))
sage: P[j]
M-symbol (0: 1) of level Fractional ideal (5, a + 1)
We test that S has order 2:
::
sage: j = randint(0,len(P)-1)
sage: P.apply_S(P.apply_S(j))==j
True
"""
c, d = self.__list[i].tuple()
t, j = search(self.__list, self.normalize(d, -c))
return j
def apply_TS(self, i):
"""
Applies the matrix TS = [1, -1, 0, 1] to the i-th M-Symbol of the list.
INPUT:
- ``i`` -- integer
OUTPUT:
integer -- the index of the M-Symbol obtained by the right action of
the matrix TS = [1, -1, 0, 1] on the i-th M-Symbol.
EXAMPLES::
sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(5, a + 1)
sage: P = P1NFList(N)
sage: P.apply_TS(3)
2
We test that TS has order 3:
::
sage: j = randint(0,len(P)-1)
sage: P.apply_TS(P.apply_TS(P.apply_TS(j)))==j
True
"""
c, d = self.__list[i].tuple()
t, j = search(self.__list, self.normalize(c + d, -c))
return j
def apply_T_alpha(self, i, alpha=1):
"""
Applies the matrix T_alpha = [1, alpha, 0, 1] to the i-th M-Symbol of
the list.
INPUT:
- ``i`` -- integer
- ``alpha`` -- element of the corresponding ring of integers(default 1)
OUTPUT:
integer -- the index of the M-Symbol obtained by the right action of
the matrix T_alpha = [1, alpha, 0, 1] on the i-th M-Symbol.
EXAMPLES::
sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(5, a + 1)
sage: P = P1NFList(N)
sage: P.apply_T_alpha(4, a^ 2 - 2)
3
We test that T_a*T_b = T_(a+b):
::
sage: P.apply_T_alpha(3, a^2 - 2)==P.apply_T_alpha(P.apply_T_alpha(3,a^2),-2)
True
"""
c, d = self.__list[i].tuple()
t, j = search(self.__list, self.normalize(c, alpha*c + d))
return j
def apply_J_epsilon(self, i, e1, e2=1):
"""
Applies the matrix `J_{\epsilon}` = [e1, 0, 0, e2] to the i-th
M-Symbol of the list.
e1, e2 are units of the underlying number field.
INPUT:
- ``i`` -- integer
- ``e1`` -- unit
- ``e2`` -- unit (default 1)
OUTPUT:
integer -- the index of the M-Symbol obtained by the right action of
the matrix `J_{\epsilon}` = [e1, 0, 0, e2] on the i-th M-Symbol.
EXAMPLES::
sage: k.<a> = NumberField(x^3 + 11)
sage: N = k.ideal(5, a + 1)
sage: P = P1NFList(N)
sage: u = k.unit_group().gens(); u
[-1, 2*a^2 + 4*a - 1]
sage: P.apply_J_epsilon(4, -1)
2
sage: P.apply_J_epsilon(4, u[0], u[1])
1
::
sage: k.<a> = NumberField(x^4 + 13*x - 7)
sage: N = k.ideal(a + 1)
sage: P = P1NFList(N)
sage: u = k.unit_group().gens(); u
[-1, a^3 + a^2 + a + 12, a^3 + 3*a^2 - 1]
sage: P.apply_J_epsilon(3, u[2]^2)==P.apply_J_epsilon(P.apply_J_epsilon(3, u[2]),u[2])
True
"""
c, d = self.__list[i].tuple()
t, j = search(self.__list, self.normalize(c*e1, d*e2))
return j
def p1NFlist(N):
"""
Returns a list of the normalized elements of `\\mathbb{P}^1(R/N)`, where
`N` is an integral ideal.
INPUT:
- ``N`` - integral ideal (the level or modulus).
EXAMPLES::
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3)
sage: from sage.modular.modsym.p1list_nf import p1NFlist, psi
sage: len(p1NFlist(N))==psi(N)
True
"""
k = N.number_field()
L = [MSymbol(N, k(0),k(1), check=False)]
L = L+[MSymbol(N, k(1), r, check=False) for r in N.residues()]
from sage.rings.arith import divisors
for D in divisors(N):
if not D.is_trivial() and D!=N:
if D.is_principal():
Dp = k.ideal(1)
c = D.gens_reduced()[0]
else:
it = k.primes_of_degree_one_iter()
Dp = it.next()
while not Dp.is_coprime(N) or not (Dp*D).is_principal():
Dp = it.next()
c = (D*Dp).gens_reduced()[0]
I = D + N/D
for d in (N/D).residues():
if I.is_coprime(d):
M = D.prime_to_idealM_part(N/D)
u = (Dp*M).element_1_mod(N/D)
d1 = u*d + (1-u)
L.append(MSymbol(N, c, d1, check=False).normalize())
return L
def lift_to_sl2_Ok(N, c, d):
"""
Lift a pair (c, d) to an element of `SL(2, O_k)`, where `O_k` is the ring
of integers of the corresponding number field.
INPUT:
- ``N`` -- number field ideal
- ``c`` -- integral element of the number field
- ``d`` -- integral element of the number field
OUTPUT:
A list [a, b, c', d'] of integral elements that are the entries of
a 2x2 matrix with determinant 1. The lower two entries are congruent to
c, d modulo the ideal `N`.
EXAMPLES::
sage: from sage.modular.modsym.p1list_nf import lift_to_sl2_Ok
sage: k.<a> = NumberField(x^2 + 23)
sage: Ok = k.ring_of_integers(k)
sage: N = k.ideal(3)
sage: M = Matrix(Ok, 2, lift_to_sl2_Ok(N, 1, a))
sage: det(M)
1
sage: M = Matrix(Ok, 2, lift_to_sl2_Ok(N, 0, a))
sage: det(M)
1
sage: (M[1][0] in N) and (M[1][1] - a in N)
True
sage: M = Matrix(Ok, 2, lift_to_sl2_Ok(N, 0, 0))
Traceback (most recent call last):
...
ValueError: Cannot lift (0, 0) to an element of Sl2(Ok).
::
sage: k.<a> = NumberField(x^3 + 11)
sage: Ok = k.ring_of_integers(k)
sage: N = k.ideal(3, a - 1)
sage: M = Matrix(Ok, 2, lift_to_sl2_Ok(N, 2*a, 0))
sage: det(M)
1
sage: (M[1][0] - 2*a in N) and (M[1][1] in N)
True
sage: M = Matrix(Ok, 2, lift_to_sl2_Ok(N, 4*a^2, a + 1))
sage: det(M)
1
sage: (M[1][0] - 4*a^2 in N) and (M[1][1] - (a+1) in N)
True
::
sage: k.<a> = NumberField(x^4 - x^3 -21*x^2 + 17*x + 133)
sage: Ok = k.ring_of_integers(k)
sage: N = k.ideal(7, a)
sage: M = Matrix(Ok, 2, lift_to_sl2_Ok(N, 0, a^2 - 1))
sage: det(M)
1
sage: (M[1][0] in N) and (M[1][1] - (a^2-1) in N)
True
sage: M = Matrix(Ok, 2, lift_to_sl2_Ok(N, 0, 7))
Traceback (most recent call last):
...
ValueError: <0> + <7> and the Fractional ideal (7, a) are not coprime.
"""
k = N.number_field()
if c.is_zero() and d.is_zero():
raise ValueError, "Cannot lift (%s, %s) to an element of Sl2(Ok)."%(c, d)
if not N.is_coprime(k.ideal(c, d)):
raise ValueError, "<%s> + <%s> and the %s are not coprime."%(c, d, N)
if c - 1 in N:
return [k(0), k(-1), 1, d]
if d - 1 in N:
return [k(1), k(0), c, 1]
if c.is_zero():
it = k.primes_of_degree_one_iter()
q = k.ideal(1)
while not (q.is_coprime(d) and (q*N).is_principal()):
q = it.next()
m = (q*N).gens_reduced()[0]
B = k.ideal(m).element_1_mod(k.ideal(d))
return [(1-B)/d, -B/m, m, d]
if d.is_zero():
it = k.primes_of_degree_one_iter()
q = k.ideal(1)
while not (q.is_coprime(c) and (q*N).is_principal()):
q = it.next()
m = (q*N).gens_reduced()[0]
B = k.ideal(c).element_1_mod(k.ideal(m))
return [(1-B)/m, -B/c, c, m]
c, d = make_coprime(N, c, d)
B = k.ideal(c).element_1_mod(k.ideal(d))
b = -B/c
a = (1-B)/d
return [a, b, c, d]
def make_coprime(N, c, d):
"""
Returns (c, d') so d' is congruent to d modulo N, and such that c and d' are
coprime (<c> + <d'> = R).
INPUT:
- ``N`` -- number field ideal
- ``c`` -- integral element of the number field
- ``d`` -- integral element of the number field
OUTPUT:
A pair (c, d') where c, d' are integral elements of the corresponding
number field, with d' congruent to d mod N, and such that <c> + <d'> = R
(R being the corresponding ring of integers).
EXAMPLES::
sage: from sage.modular.modsym.p1list_nf import make_coprime
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3, a - 1)
sage: c = 2*a; d = a + 1
sage: N.is_coprime(k.ideal(c, d))
True
sage: k.ideal(c).is_coprime(d)
False
sage: c, dp = make_coprime(N, c, d)
sage: k.ideal(c).is_coprime(dp)
True
"""
k = N.number_field()
if k.ideal(c).is_coprime(d):
return c, d
else:
q = k.ideal(c).prime_to_idealM_part(d)
it = k.primes_of_degree_one_iter()
r = k.ideal(1)
qN = q*N
while not (r.is_coprime(c) and (r*qN).is_principal()):
r = it.next()
m = (r*qN).gens_reduced()[0]
d1 = d + m
return c, d1
def psi(N):
"""
The index `[\Gamma : \Gamma_0(N)]`, where `\Gamma = GL(2, R)` for `R` the
corresponding ring of integers, and `\Gamma_0(N)` standard congruence
subgroup.
EXAMPLES::
sage: from sage.modular.modsym.p1list_nf import psi
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3, a - 1)
sage: psi(N)
4
::
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(5)
sage: psi(N)
26
"""
if not N.is_integral():
raise ValueError, "psi only defined for integral ideals"
from sage.misc.misc import prod
return prod([(np+1)*np**(e-1) \
for np,e in [(p.absolute_norm(),e) \
for p,e in N.factor()]])