r"""
Platonic Solids
EXAMPLES: The five platonic solids in a row;
::
sage: G = tetrahedron((0,-3.5,0), color='blue') + cube((0,-2,0),color=(.25,0,.5)) +\
octahedron(color='red') + dodecahedron((0,2,0), color='orange') +\
icosahedron(center=(0,4,0), color='yellow')
sage: G.show(aspect_ratio=[1,1,1])
All the platonic solids in the same place::
sage: G = tetrahedron(color='blue',opacity=0.7) + \
cube(color=(.25,0,.5), opacity=0.7) +\
octahedron(color='red', opacity=0.7) + \
dodecahedron(color='orange', opacity=0.7) + icosahedron(opacity=0.7)
sage: G.show(aspect_ratio=[1,1,1])
Display nice faces only::
sage: icosahedron().stickers(['red','blue'], .075, .1)
AUTHORS:
- Robert Bradshaw (2007, 2008): initial version
- William Stein
"""
from sage.rings.all import RDF
from sage.matrix.constructor import matrix
from shapes import Box, ColorCube
from shapes2 import frame3d
from index_face_set import IndexFaceSet
def index_face_set(face_list, point_list, enclosed, **kwds):
"""
Helper function that creates ``IndexFaceSet`` object for the
tetrahedron, dodecahedron, and icosahedron.
INPUT:
- ``face_list`` - list of faces, given explicitly from the
solid invocation
- ``point_list`` - list of points, given explicitly from the
solid invocation
- ``enclosed`` - boolean (default passed is always True
for these solids)
TESTS:
Verify that these are working and passing on keywords::
sage: tetrahedron(center=(2,0,0),size=2,color='red')
::
sage: dodecahedron(center=(2,0,0),size=2,color='red')
::
sage: icosahedron(center=(2,0,0),size=2,color='red')
"""
if kwds.has_key('center'):
center = kwds['center']
del kwds['center']
else:
center = (0,0,0)
if kwds.has_key('size'):
size = kwds['size']
del kwds['size']
else:
size = 1
I = IndexFaceSet(face_list, point_list, enclosed=enclosed, **kwds)
return prep(I, center, size, kwds)
def prep(G, center, size, kwds):
"""
Helper function that scales and translates the platonic
solid, and passes extra keywords on.
INPUT:
- ``center`` - 3-tuple indicating the center (default passed
from :func:`index_face_set` is the origin `(0,0,0)`)
- ``size`` - number indicating amount to scale by (default
passed from :func:`index_face_set` is 1)
- ``kwds`` - a dictionary of keywords, passed from solid
invocation by :func:`index_face_set`
TESTS:
Verify that scaling and moving the center work together properly,
and that keywords are passed (see Trac #10796)::
sage: octahedron(center=(2,0,0),size=2,color='red')
"""
if size != 1:
G = G.scale(size)
if center != (0,0,0):
G = G.translate(center)
G._set_extra_kwds(kwds)
return G
def tetrahedron(center=(0,0,0), size=1, **kwds):
"""
A 3d tetrahedron.
INPUT:
- ``center`` - (default: (0,0,0))
- ``size`` - (default: 1)
- ``color`` - a word that describes a color
- ``rgbcolor`` - (r,g,b) with r, g, b between 0 and 1
that describes a color
- ``opacity`` - (default: 1) if less than 1 then is
transparent
EXAMPLES: A default colored tetrahedron at the origin::
sage: tetrahedron()
A transparent green tetrahedron in front of a solid red one::
sage: tetrahedron(opacity=0.8, color='green') + tetrahedron((-2,1,0),color='red')
A translucent tetrahedron sharing space with a sphere::
sage: tetrahedron(color='yellow',opacity=0.7) + sphere(r=.5, color='red')
A big tetrahedron::
sage: tetrahedron(size=10)
A wide tetrahedron::
sage: tetrahedron(aspect_ratio=[1,1,1]).scale((4,4,1))
A red and blue tetrahedron touching noses::
sage: tetrahedron(color='red') + tetrahedron((0,0,-2)).scale([1,1,-1])
A Dodecahedral complex of 5 tetrahedrons (a more elaborate examples
from Peter Jipsen)::
sage: v=(sqrt(5.)/2-5/6, 5/6*sqrt(3.)-sqrt(15.)/2, sqrt(5.)/3)
sage: t=acos(sqrt(5.)/3)/2
sage: t1=tetrahedron(aspect_ratio=(1,1,1), opacity=0.5).rotateZ(t)
sage: t2=tetrahedron(color='red', opacity=0.5).rotateZ(t).rotate(v,2*pi/5)
sage: t3=tetrahedron(color='green', opacity=0.5).rotateZ(t).rotate(v,4*pi/5)
sage: t4=tetrahedron(color='yellow', opacity=0.5).rotateZ(t).rotate(v,6*pi/5)
sage: t5=tetrahedron(color='orange', opacity=0.5).rotateZ(t).rotate(v,8*pi/5)
sage: show(t1+t2+t3+t4+t5, frame=False, zoom=1.3)
AUTHORS:
- Robert Bradshaw and William Stein
"""
RR = RDF
one = RR(1)
sqrt2 = RR(2).sqrt()
sqrt6 = RR(6).sqrt()
point_list = [(0,0,1),
(2*sqrt2/3, 0, -one/3),
( -sqrt2/3, sqrt6/3, -one/3),
( -sqrt2/3, -sqrt6/3, -one/3)]
face_list = [[0,1,2],[1,3,2],[0,2,3],[0,3,1]]
if 'aspect_ratio' not in kwds:
kwds['aspect_ratio'] = [1,1,1]
return index_face_set(face_list, point_list, enclosed=True, center=center, size=size, **kwds)
def cube(center=(0,0,0), size=1, color=None, frame_thickness=0, frame_color=None, **kwds):
"""
A 3D cube centered at the origin with default side lengths 1.
INPUT:
- ``center`` - (default: (0,0,0))
- ``size`` - (default: 1) the side lengths of the
cube
- ``color`` - a string that describes a color; this
can also be a list of 3-tuples or strings length 6 or 3, in which
case the faces (and oppositive faces) are colored.
- ``frame_thickness`` - (default: 0) if positive,
then thickness of the frame
- ``frame_color`` - (default: None) if given, gives
the color of the frame
- ``opacity`` - (default: 1) if less than 1 then it's
transparent
EXAMPLES:
A simple cube::
sage: cube()
A red cube::
sage: cube(color="red")
A transparent grey cube that contains a red cube::
sage: cube(opacity=0.8, color='grey') + cube(size=3/4)
A transparent colored cube::
sage: cube(color=['red', 'green', 'blue'], opacity=0.5)
A bunch of random cubes::
sage: v = [(random(), random(), random()) for _ in [1..30]]
sage: sum([cube((10*a,10*b,10*c), size=random()/3, color=(a,b,c)) for a,b,c in v])
Non-square cubes (boxes)::
sage: cube(aspect_ratio=[1,1,1]).scale([1,2,3])
sage: cube(color=['red', 'blue', 'green'],aspect_ratio=[1,1,1]).scale([1,2,3])
And one that is colored::
sage: cube(color=['red', 'blue', 'green', 'black', 'white', 'orange'], \
aspect_ratio=[1,1,1]).scale([1,2,3])
A nice translucent color cube with a frame::
sage: c = cube(color=['red', 'blue', 'green'], frame=False, frame_thickness=2, \
frame_color='brown', opacity=0.8)
sage: c
A raytraced color cube with frame and transparency::
sage: c.show(viewer='tachyon')
This shows #11272 has been fixed::
sage: cube(center=(10, 10, 10), size=0.5).bounding_box()
((9.75, 9.75, 9.75), (10.25, 10.25, 10.25))
AUTHORS:
- William Stein
"""
if isinstance(color, (list, tuple)) and len(color) > 0 and isinstance(color[0], (list,tuple,str)):
B = ColorCube(size=[0.5,0.5,0.5], colors=color, **kwds)
else:
if color is not None:
kwds['color'] = color
B = Box(0.5,0.5,0.5, **kwds)
if frame_thickness > 0:
if frame_color is None:
B += frame3d((-0.5,-0.5,-0.5),(0.5,0.5,0.5), thickness=frame_thickness)
else:
B += frame3d((-0.5,-0.5,-0.5),(0.5,0.5,0.5), thickness=frame_thickness, color=frame_color)
return prep(B, center, size, kwds)
def octahedron(center=(0,0,0), size=1, **kwds):
r"""
Return an octahedron.
INPUT:
- ``center`` - (default: (0,0,0))
- ``size`` - (default: 1)
- ``color`` - a string that describes a color; this
can also be a list of 3-tuples or strings length 6 or 3, in which
case the faces (and oppositive faces) are colored.
- ``opacity`` - (default: 1) if less than 1 then is
transparent
EXAMPLES::
sage: octahedron((1,4,3), color='orange') + \
octahedron((0,2,1), size=2, opacity=0.6)
"""
if 'aspect_ratio' not in kwds:
kwds['aspect_ratio'] = [1,1,1]
return prep(Box(1,1,1).dual(**kwds), center, size, kwds)
def dodecahedron(center=(0,0,0), size=1, **kwds):
r"""
A dodecahedron.
INPUT:
- ``center`` - (default: (0,0,0))
- ``size`` - (default: 1)
- ``color`` - a string that describes a color; this
can also be a list of 3-tuples or strings length 6 or 3, in which
case the faces (and oppositive faces) are colored.
- ``opacity`` - (default: 1) if less than 1 then is
transparent
EXAMPLES: A plain Dodecahedron::
sage: dodecahedron()
A translucent dodecahedron that contains a black sphere::
sage: dodecahedron(color='orange', opacity=0.8) + \
sphere(size=0.5, color='black')
CONSTRUCTION: This is how we construct a dodecahedron. We let one
point be `Q = (0,1,0)`.
Now there are three points spaced equally on a circle around the
north pole. The other requirement is that the angle between them be
the angle of a pentagon, namely `3\pi/5`. This is enough to
determine them. Placing one on the `xz`-plane we have.
`P_1 = \left(t, 0, \sqrt{1-t^2}\right)`
`P_2 = \left(-\frac{1}{2}t, \frac{\sqrt{3}}{2}t, \sqrt{1-t^2}\right)`
`P_3 = \left(-\frac{1}{2}t, \frac{\sqrt{3}}{2}t, \sqrt{1-t^2}\right)`
Solving
`\frac{(P_1-Q) \cdot (P_2-Q)}{|P_1-Q||P_2-Q|} = \cos(3\pi/5)`
we get `t = 2/3`.
Now we have 6 points `R_1, ..., R_6` to close the three
top pentagons. These can be found by mirroring `P_2` and
`P_3` by the `yz`-plane and rotating around the
`y`-axis by the angle `\theta` from `Q` to
`P_1`. Note that `\cos(\theta) = t = 2/3` and so
`\sin(\theta) = \sqrt{5}/3`. Rotation gives us the other
four.
Now we reflect through the origin for the bottom half.
AUTHORS:
- Robert Bradshaw, William Stein
"""
RR = RDF
one = RR(1)
sqrt3 = RR(3).sqrt();
sqrt5 = RR(5).sqrt()
R3 = RR**3
rot = matrix(RR, [[ -one/2,-sqrt3/2, 0],
[ sqrt3/2, -one/2, 0],
[ 0, 0, 1]])
rot2 = rot*rot
Q = R3([0,0,1])
P1 = R3([2*one/3, 0, sqrt5/3])
R1 = R3([sqrt5/3, 1/sqrt3, one/3])
R2 = R3([sqrt5/3, -1/sqrt3, one/3])
top = [Q, P1, rot*P1, rot2*P1, R1, rot*R2, rot*R1, rot2*R2, rot2*R1, R2]
point_list = top + [-p for p in reversed(top)]
top_faces = [[0,1,4,5,2],
[0,2,6,7,3],
[0,3,8,9,1],
[1,9,13,12,4],
[2,5,11,10,6],
[3,7,15,14,8]]
face_list = top_faces + [[19-p for p in reversed(f)] for f in top_faces]
if 'aspect_ratio' not in kwds:
kwds['aspect_ratio'] = [1,1,1]
return index_face_set(face_list, point_list, enclosed=True, center=center, size=size, **kwds)
def icosahedron(center=(0,0,0), size=1, **kwds):
r"""
An icosahedron.
INPUT:
- ``center`` - (default: (0,0,0))
- ``size`` - (default: 1)
- ``color`` - a string that describes a color; this
can also be a list of 3-tuples or strings length 6 or 3, in which
case the faces (and oppositive faces) are colored.
- ``opacity`` - (default: 1) if less than 1 then is
transparent
EXAMPLES::
sage: icosahedron()
Two icosahedrons at different positions of different sizes.
::
sage: icosahedron((-1/2,0,1), color='orange') + \
icosahedron((2,0,1), size=1/2, aspect_ratio=[1,1,1])
"""
if 'aspect_ratio' not in kwds:
kwds['aspect_ratio'] = [1,1,1]
return prep(dodecahedron().dual(**kwds), center, size, kwds)