r"""
The Tachyon 3D Ray Tracer
Given any 3D graphics object one can compute a raytraced
representation by typing ``show(viewer='tachyon')``.
For example, we draw two translucent spheres that contain a red
tube, and render the result using Tachyon.
::
sage: S = sphere(opacity=0.8, aspect_ratio=[1,1,1])
sage: L = line3d([(0,0,0),(2,0,0)], thickness=10, color='red')
sage: M = S + S.translate((2,0,0)) + L
sage: M.show(viewer='tachyon')
One can also directly control Tachyon, which gives a huge amount of
flexibility. For example, here we directly use Tachyon to draw 3
spheres on the coordinate axes. Notice that the result is
gorgeous::
sage: t = Tachyon(xres=500,yres=500, camera_center=(2,0,0))
sage: t.light((4,3,2), 0.2, (1,1,1))
sage: t.texture('t2', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(1,0,0))
sage: t.texture('t3', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(0,1,0))
sage: t.texture('t4', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(0,0,1))
sage: t.sphere((0,0.5,0), 0.2, 't2')
sage: t.sphere((0.5,0,0), 0.2, 't3')
sage: t.sphere((0,0,0.5), 0.2, 't4')
sage: t.show()
AUTHOR:
- John E. Stone ([email protected]): wrote tachyon ray tracer
- William Stein: sage-tachyon interface
- Joshua Kantor: 3d function plotting
- Tom Boothby: 3d function plotting n'stuff
- Leif Hille: key idea for bugfix for texfunc issue (trac #799)
- Marshall Hampton: improved doctests, rings, axis-aligned boxes.
TODO:
- clean up trianglefactory stuff
"""
from tri_plot import Triangle, SmoothTriangle, TriangleFactory, TrianglePlot
from sage.interfaces.tachyon import tachyon_rt
from sage.structure.sage_object import SageObject
from sage.misc.misc import SAGE_TMP
import os
from math import sqrt
class Tachyon(SageObject):
r"""
Create a scene the can be rendered using the Tachyon ray tracer.
INPUT:
- ``xres`` - (default 350)
- ``yres`` - (default 350)
- ``zoom`` - (default 1.0)
- ``antialiasing`` - (default False)
- ``aspectratio`` - (default 1.0)
- ``raydepth`` - (default 5)
- ``camera_center`` - (default (-3, 0, 0))
- ``updir`` - (default (0, 0, 1))
- ``look_at`` - (default (0,0,0))
- ``viewdir`` - (default None)
- ``projection`` - (default 'PERSPECTIVE')
OUTPUT: A Tachyon 3d scene.
Note that the coordinates are by default such that `z` is
up, positive `y` is to the {left} and `x` is toward
you. This is not oriented according to the right hand rule.
EXAMPLES: Spheres along the twisted cubic.
::
sage: t = Tachyon(xres=512,yres=512, camera_center=(3,0.3,0))
sage: t.light((4,3,2), 0.2, (1,1,1))
sage: t.texture('t0', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(1.0,0,0))
sage: t.texture('t1', ambient=0.1, diffuse=0.9, specular=0.3, opacity=1.0, color=(0,1.0,0))
sage: t.texture('t2', ambient=0.2,diffuse=0.7, specular=0.5, opacity=0.7, color=(0,0,1.0))
sage: k=0
sage: for i in srange(-1,1,0.05):
... k += 1
... t.sphere((i,i^2-0.5,i^3), 0.1, 't%s'%(k%3))
...
sage: t.show()
Another twisted cubic, but with a white background, got by putting
infinite planes around the scene.
::
sage: t = Tachyon(xres=512,yres=512, camera_center=(3,0.3,0), raydepth=8)
sage: t.light((4,3,2), 0.2, (1,1,1))
sage: t.texture('t0', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(1.0,0,0))
sage: t.texture('t1', ambient=0.1, diffuse=0.9, specular=0.3, opacity=1.0, color=(0,1.0,0))
sage: t.texture('t2', ambient=0.2,diffuse=0.7, specular=0.5, opacity=0.7, color=(0,0,1.0))
sage: t.texture('white', color=(1,1,1))
sage: t.plane((0,0,-1), (0,0,1), 'white')
sage: t.plane((0,-20,0), (0,1,0), 'white')
sage: t.plane((-20,0,0), (1,0,0), 'white')
::
sage: k=0
sage: for i in srange(-1,1,0.05):
... k += 1
... t.sphere((i,i^2 - 0.5,i^3), 0.1, 't%s'%(k%3))
... t.cylinder((0,0,0), (0,0,1), 0.05,'t1')
...
sage: t.show()
Many random spheres::
sage: t = Tachyon(xres=512,yres=512, camera_center=(2,0.5,0.5), look_at=(0.5,0.5,0.5), raydepth=4)
sage: t.light((4,3,2), 0.2, (1,1,1))
sage: t.texture('t0', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(1.0,0,0))
sage: t.texture('t1', ambient=0.1, diffuse=0.9, specular=0.3, opacity=1.0, color=(0,1.0,0))
sage: t.texture('t2', ambient=0.2, diffuse=0.7, specular=0.5, opacity=0.7, color=(0,0,1.0))
sage: k=0
sage: for i in range(100):
... k += 1
... t.sphere((random(),random(), random()), random()/10, 't%s'%(k%3))
...
sage: t.show()
Points on an elliptic curve, their height indicated by their height
above the axis::
sage: t = Tachyon(camera_center=(5,2,2), look_at=(0,1,0))
sage: t.light((10,3,2), 0.2, (1,1,1))
sage: t.texture('t0', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(1,0,0))
sage: t.texture('t1', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(0,1,0))
sage: t.texture('t2', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(0,0,1))
sage: E = EllipticCurve('37a')
sage: P = E([0,0])
sage: Q = P
sage: n = 100
sage: for i in range(n): # increase 20 for a better plot
... Q = Q + P
... t.sphere((Q[1], Q[0], ZZ(i)/n), 0.1, 't%s'%(i%3))
...
sage: t.show()
A beautiful picture of rational points on a rank 1 elliptic curve.
::
sage: t = Tachyon(xres=1000, yres=800, camera_center=(2,7,4), look_at=(2,0,0), raydepth=4)
sage: t.light((10,3,2), 1, (1,1,1))
sage: t.light((10,-3,2), 1, (1,1,1))
sage: t.texture('black', color=(0,0,0))
sage: t.texture('red', color=(1,0,0))
sage: t.texture('grey', color=(.9,.9,.9))
sage: t.plane((0,0,0),(0,0,1),'grey')
sage: t.cylinder((0,0,0),(1,0,0),.01,'black')
sage: t.cylinder((0,0,0),(0,1,0),.01,'black')
sage: E = EllipticCurve('37a')
sage: P = E([0,0])
sage: Q = P
sage: n = 100
sage: for i in range(n):
... Q = Q + P
... c = i/n + .1
... t.texture('r%s'%i,color=(float(i/n),0,0))
... t.sphere((Q[0], -Q[1], .01), .04, 'r%s'%i)
...
...
sage: t.show() # long time, e.g., 10-20 seconds
A beautiful spiral.
::
sage: t = Tachyon(xres=800,yres=800, camera_center=(2,5,2), look_at=(2.5,0,0))
sage: t.light((0,0,100), 1, (1,1,1))
sage: t.texture('r', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(1,0,0))
sage: for i in srange(0,50,0.1):
... t.sphere((i/10,sin(i),cos(i)), 0.05, 'r')
...
sage: t.texture('white', color=(1,1,1), opacity=1, specular=1, diffuse=1)
sage: t.plane((0,0,-100), (0,0,-100), 'white')
sage: t.show()
"""
def __init__(self,
xres=350, yres=350,
zoom = 1.0,
antialiasing = False,
aspectratio = 1.0,
raydepth = 8,
camera_center = (-3, 0, 0),
updir = (0, 0, 1),
look_at = (0,0,0),
viewdir = None,
projection = 'PERSPECTIVE'):
r"""
Creates an instance of the Tachyon class.
EXAMPLES::
sage: t = Tachyon()
sage: t._xres
350
"""
self._xres = xres
self._yres = yres
self._zoom = zoom
self._aspectratio = aspectratio
self._antialiasing = antialiasing
self._raydepth = raydepth
self._camera_center = camera_center
self._updir = updir
self._projection = projection
self._objects = []
if viewdir is None:
self._viewdir = [look_at[i] - camera_center[i] for i in range(3)]
else:
self._viewdir = viewdir
def __repr__(self):
r"""
Returns the string representation of the Tachyon object,
which is just the scene string input to tachyon.
EXAMPLES::
sage: q = Tachyon()
sage: q.light((1,1,1), 1,(1,1,1))
sage: q.texture('s')
sage: q.sphere((0,0,0),1,'s')
sage: q.__repr__()[-20:]
' \n end_scene'
"""
return self.str()
def save(self, filename='sage.png', verbose=0, block=True, extra_opts=''):
r"""
INPUT:
- ``filename`` - (default: 'sage.png') output
filename; the extension of the filename determines the type.
Supported types include:
- ``tga`` - 24-bit (uncompressed)
- ``bmp`` - 24-bit Windows BMP (uncompressed)
- ``ppm`` - 24-bit PPM (uncompressed)
- ``rgb`` - 24-bit SGI RGB (uncompressed)
- ``png`` - 24-bit PNG (compressed, lossless)
- ``verbose`` - integer; (default: 0)
- ``0`` - silent
- ``1`` - some output
- ``2`` - very verbose output
- ``block`` - bool (default: True); if False, run the
rendering command in the background.
- ``extra_opts`` - passed directly to tachyon command
line. Use tachyon_rt.usage() to see some of the possibilities.
EXAMPLES::
sage: q = Tachyon()
sage: q.light((1,1,11), 1,(1,1,1))
sage: q.texture('s')
sage: q.sphere((0,0,0),1,'s')
sage: tempname = tmp_filename()
sage: q.save(tempname)
sage: os.system('rm ' + tempname)
0
"""
tachyon_rt(self.str(), filename, verbose, block, extra_opts)
def show(self, verbose=0, extra_opts=''):
r"""
Creates a PNG file of the scene.
EXAMPLES::
sage: q = Tachyon()
sage: q.light((-1,-1,10), 1,(1,1,1))
sage: q.texture('s')
sage: q.sphere((0,0,0),1,'s')
sage: q.show(verbose = False)
"""
import sage.plot.plot
if sage.plot.plot.DOCTEST_MODE:
filename = sage.misc.misc.graphics_filename()
self.save(SAGE_TMP + '/test.png', verbose=verbose, extra_opts=extra_opts)
return
if sage.plot.plot.EMBEDDED_MODE:
filename = sage.misc.misc.graphics_filename()
self.save(filename, verbose=verbose, extra_opts=extra_opts)
return
filename = sage.misc.misc.tmp_filename() + '.png'
self.save(filename, verbose=verbose, extra_opts=extra_opts)
os.system('%s %s 2>/dev/null 1>/dev/null &'%(sage.misc.viewer.browser(), filename))
def _res(self):
r"""
An internal function that writes the tachyon string for the
resolution (x and y size of the image).
EXAMPLES::
sage: t = Tachyon(xres = 300, yres = 700)
sage: t._res()
'\nresolution 300 700\n'
"""
return '\nresolution %s %s\n'%(self._xres, self._yres)
def _camera(self):
r"""
An internal function that writes the tachyon string for the
camera and other rendering information (ray depth, antialiasing).
EXAMPLES::
sage: t = Tachyon(raydepth = 16, zoom = 2, antialiasing = True)
sage: t._camera().split()[3:10]
['aspectratio', '1.0', 'antialiasing', '1', 'raydepth', '16', 'center']
"""
return r"""
camera
zoom %s
aspectratio %s
antialiasing %s
raydepth %s
center %s
viewdir %s
updir %s
end_camera
"""%(float(self._zoom), float(self._aspectratio),
int(self._antialiasing),
int(self._raydepth),
tostr(self._camera_center),
tostr(self._viewdir),
tostr(self._updir))
def str(self):
r"""
Returns the complete tachyon scene file as a string.
EXAMPLES::
sage: t = Tachyon(xres=500,yres=500, camera_center=(2,0,0))
sage: t.light((4,3,2), 0.2, (1,1,1))
sage: t.texture('t2', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(1,0,0))
sage: t.texture('t3', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(0,1,0))
sage: t.texture('t4', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(0,0,1))
sage: t.sphere((0,0.5,0), 0.2, 't2')
sage: t.sphere((0.5,0,0), 0.2, 't3')
sage: t.sphere((0,0,0.5), 0.2, 't4')
sage: t.str().find('PLASTIC')
567
"""
return r"""
begin_scene
%s
%s
%s
end_scene"""%(
self._res(),
self._camera(),
'\n'.join([x.str() for x in self._objects])
)
def light(self, center, radius, color):
r"""
Creates a light source of the given center, radius, and color.
EXAMPLES::
sage: q = Tachyon()
sage: q.light((1,1,1),1.0,(.2,0,.8))
sage: q.str().split('\n')[17]
' light center 1.0 1.0 1.0 '
"""
self._objects.append(Light(center, radius, color))
def texfunc(self, type=0, center=(0,0,0), rotate=(0,0,0), scale=(1,1,1)):
r"""
INPUT:
- ``type`` - (default: 0)
0. No special texture, plain shading
1. 3D checkerboard function, like a rubik's cube
2. Grit Texture, randomized surface color
3. 3D marble texture, uses object's base color
4. 3D wood texture, light and dark brown, not very good yet
5. 3D gradient noise function (can't remember what it looks
like)
6. Don't remember
7. Cylindrical Image Map, requires ppm filename (don't know
how to specify name in sage?!)
8. Spherical Image Map, requires ppm filename (don't know
how to specify name in sage?!)
9. Planar Image Map, requires ppm filename (don't know how
to specify name in sage?!)
- ``center`` - (default: (0,0,0))
- ``rotate`` - (default: (0,0,0))
- ``scale`` - (default: (1,1,1))
EXAMPLES: We draw an infinite checkboard::
sage: t = Tachyon(camera_center=(2,7,4), look_at=(2,0,0))
sage: t.texture('black', color=(0,0,0), texfunc=1)
sage: t.plane((0,0,0),(0,0,1),'black')
sage: t.show()
"""
type = int(type)
if type < 0 or type > 9:
raise ValueError, "type must be an integer between 0 and 9"
return Texfunc(type,center,rotate,scale).str()
def texture(self, name, ambient=0.2, diffuse=0.8,
specular=0.0, opacity=1.0,
color=(1.0,0.0, 0.5), texfunc=0, phong=0, phongsize=.5, phongtype="PLASTIC"):
r"""
INPUT:
- ``name`` - string; the name of the texture (to be
used later)
- ``ambient`` - (default: 0.2)
- ``diffuse`` - (default: 0.8)
- ``specular`` - (default: 0.0)
- ``opacity`` - (default: 1.0)
- ``color`` - (default: (1.0,0.0,0.5))
- ``texfunc`` - (default: 0); a texture function; this
is either the output of self.texfunc, or a number between 0 and 9,
inclusive. See the docs for self.texfunc.
- ``phong`` - (default: 0)
- ``phongsize`` - (default: 0.5)
- ``phongtype`` - (default: "PLASTIC")
EXAMPLES: We draw a scene with 4 sphere that illustrates various
uses of the texture command::
sage: t = Tachyon(camera_center=(2,5,4), look_at=(2,0,0), raydepth=6)
sage: t.light((10,3,4), 1, (1,1,1))
sage: t.texture('mirror', ambient=0.05, diffuse=0.05, specular=.9, opacity=0.9, color=(.8,.8,.8))
sage: t.texture('grey', color=(.8,.8,.8), texfunc=3)
sage: t.plane((0,0,0),(0,0,1),'grey')
sage: t.sphere((4,-1,1), 1, 'mirror')
sage: t.sphere((0,-1,1), 1, 'mirror')
sage: t.sphere((2,-1,1), 0.5, 'mirror')
sage: t.sphere((2,1,1), 0.5, 'mirror')
sage: show(t)
"""
if texfunc and not isinstance(texfunc, Texfunc):
texfunc = self.texfunc(int(texfunc))
self._objects.append(Texture(name, ambient, diffuse,
specular, opacity, color, texfunc,
phong,phongsize,phongtype))
def texture_recolor(self, name, colors):
r"""
Recolors default textures.
EXAMPLES::
sage: t = Tachyon()
sage: t.texture('s')
sage: q = t.texture_recolor('s',[(0,0,1)])
sage: t._objects[1]._color
(0, 0, 1)
"""
base_tex = None
names = []
ident = "SAGETEX%d"%len(self._objects)
for o in self._objects:
if isinstance(o, Texture) and o._name == name:
base_tex = o
break
if base_tex is None:
base_tex = Texture(name)
for i in range(len(colors)):
n = "%s_%d"%(ident,i)
self._objects.append(base_tex.recolor(n, colors[i]))
names.append(n)
return names
def sphere(self, center, radius, texture):
r"""
Creates the scene information for a sphere with the given
center, radius, and texture.
EXAMPLES::
sage: t = Tachyon()
sage: t.texture('sphere_texture')
sage: t.sphere((1,2,3), .1, 'sphere_texture')
sage: t._objects[1].str()
'\n sphere center 1.0 2.0 3.0 rad 0.1 sphere_texture\n '
"""
self._objects.append(Sphere(center, radius, texture))
def ring(self, center, normal, inner, outer, texture):
r"""
Creates the scene information for a ring with the given parameters.
EXAMPLES::
sage: t = Tachyon()
sage: t.ring([0,0,0], [0,0,1], 1.0, 2.0, 's')
sage: t._objects[0]._center
[0, 0, 0]
"""
self._objects.append(Ring(center, normal, inner, outer, texture))
def cylinder(self, center, axis, radius, texture):
r"""
Creates the scene information for a infinite cylinder with the
given center, axis direction, radius, and texture.
EXAMPLES::
sage: t = Tachyon()
sage: t.texture('c')
sage: t.cylinder((0,0,0),(-1,-1,-1),.1,'c')
"""
self._objects.append(Cylinder(center, axis, radius, texture))
def plane(self, center, normal, texture):
r"""
Creates an infinite plane with the given center and normal.
EXAMPLES::
sage: t = Tachyon()
sage: t.plane((0,0,0),(1,1,1),'s')
sage: t.str()[338:380]
'plane center 0.0 0.0 0.0 normal 1.0 1.0'
"""
self._objects.append(Plane(center, normal, texture))
def axis_aligned_box(self, min_p, max_p, texture):
r"""
Creates an axis-aligned box with minimal point ``min_p`` and
maximum point ``max_p``.
EXAMPLES::
sage: t = Tachyon()
sage: t.axis_aligned_box((0,0,0),(2,2,2),'s')
"""
self._objects.append(Axis_aligned_box(min_p, max_p, texture))
def fcylinder(self, base, apex, radius, texture):
r"""
Finite cylinders are almost the same as infinite ones, but the
center and length of the axis determine the extents of the
cylinder. The finite cylinder is also really a shell, it
doesn't have any caps. If you need to close off the ends of
the cylinder, use two ring objects, with the inner radius set
to 0.0 and the normal set to be the axis of the cylinder.
Finite cylinders are built this way to enhance speed.
EXAMPLES::
sage: t = Tachyon()
sage: t.fcylinder((1,1,1),(1,2,3),.01,'s')
sage: len(t.str())
423
"""
self._objects.append(FCylinder(base, apex, radius, texture))
def triangle(self, vertex_1, vertex_2, vertex_3, texture):
r"""
Creates a triangle with the given vertices and texture.
EXAMPLES::
sage: t = Tachyon()
sage: t.texture('s')
sage: t.triangle([1,2,3],[4,5,6],[7,8,10],'s')
sage: t._objects[1]
[1, 2, 3] [4, 5, 6] [7, 8, 10] s
"""
self._objects.append(TachyonTriangle(vertex_1,vertex_2,vertex_3,texture))
def smooth_triangle(self, vertex_1, vertex_2, vertex_3, normal_1, normal_2, normal_3, texture):
r"""
Creates a triangle along with a normal vector for smoothing.
EXAMPLES::
sage: t = Tachyon()
sage: t.light((1,1,1),.1,(1,1,1))
sage: t.texture('s')
sage: t.smooth_triangle([0,0,0],[0,0,1],[0,1,0],[0,1,1],[-1,1,2],[3,0,0],'s')
sage: t._objects[2]
[0, 0, 0] [0, 0, 1] [0, 1, 0] s [0, 1, 1] [-1, 1, 2] [3, 0, 0]
"""
self._objects.append(TachyonSmoothTriangle(vertex_1, vertex_2, vertex_3, normal_1, normal_2, normal_3, texture))
def fractal_landscape(self, res, scale, center, texture):
r"""
Axis-aligned fractal landscape. Not very useful at the moment.
EXAMPLES::
sage: t = Tachyon()
sage: t.texture('s')
sage: t.fractal_landscape([30,30],[80,80],[0,0,0],'s')
sage: len(t._objects)
2
"""
self._objects.append(FractalLandscape(res, scale, center, texture))
def plot(self,f,(xmin,xmax),(ymin,ymax),texture,grad_f=None,
max_bend=.7,max_depth=5,initial_depth=3, num_colors=None):
r"""
INPUT:
- ``f`` - Function of two variables, which returns a
float (or coercible to a float) (xmin,xmax)
- ``(ymin,ymax)`` - defines the rectangle to plot over
texture: Name of texture to be used Optional arguments:
- ``grad_f`` - gradient function. If specified,
smooth triangles will be used.
- ``max_bend`` - Cosine of the threshold angle
between triangles used to determine whether or not to recurse after
the minimum depth
- ``max_depth`` - maximum recursion depth. Maximum
triangles plotted = `2^{2*max_depth}`
- ``initial_depth`` - minimum recursion depth. No
error-tolerance checking is performed below this depth. Minimum
triangles plotted: `2^{2*min_depth}`
- ``num_colors`` - Number of rainbow bands to color
the plot with. Texture supplied will be cloned (with different
colors) using the texture_recolor method of the Tachyon object.
Plots a function by constructing a mesh with nonstandard sampling
density without gaps. At very high resolutions (depths 10) it
becomes very slow. Cython may help. Complexity is approx.
`O(2^{2*maxdepth})`. This algorithm has been optimized for
speed, not memory - values from f(x,y) are recycled rather than
calling the function multiple times. At high recursion depth, this
may cause problems for some machines.
Flat Triangles::
sage: t = Tachyon(xres=512,yres=512, camera_center=(4,-4,3),viewdir=(-4,4,-3), raydepth=4)
sage: t.light((4.4,-4.4,4.4), 0.2, (1,1,1))
sage: def f(x,y): return float(sin(x*y))
sage: t.texture('t0', ambient=0.1, diffuse=0.9, specular=0.1, opacity=1.0, color=(1.0,0,0))
sage: t.plot(f,(-4,4),(-4,4),"t0",max_depth=5,initial_depth=3, num_colors=60) # increase min_depth for better picture
sage: t.show()
Plotting with Smooth Triangles (requires explicit gradient
function)::
sage: t = Tachyon(xres=512,yres=512, camera_center=(4,-4,3),viewdir=(-4,4,-3), raydepth=4)
sage: t.light((4.4,-4.4,4.4), 0.2, (1,1,1))
sage: def f(x,y): return float(sin(x*y))
sage: def g(x,y): return ( float(y*cos(x*y)), float(x*cos(x*y)), 1 )
sage: t.texture('t0', ambient=0.1, diffuse=0.9, specular=0.1, opacity=1.0, color=(1.0,0,0))
sage: t.plot(f,(-4,4),(-4,4),"t0",max_depth=5,initial_depth=3, grad_f = g) # increase min_depth for better picture
sage: t.show()
Preconditions: f is a scalar function of two variables, grad_f is
None or a triple-valued function of two variables, min_x !=
max_x, min_y != max_y
::
sage: f = lambda x,y: x*y
sage: t = Tachyon()
sage: t.plot(f,(2.,2.),(-2.,2.),'')
Traceback (most recent call last):
...
ValueError: Plot rectangle is really a line. Make sure min_x != max_x and min_y != max_y.
"""
factory = TachyonTriangleFactory(self,texture)
plot = TrianglePlot(factory, f, (xmin, xmax), (ymin, ymax), g = grad_f,
min_depth=initial_depth, max_depth=max_depth, max_bend=max_bend, num_colors = num_colors)
self._objects.append(plot)
def parametric_plot(self, f, t_0, t_f, tex, r=.1, cylinders = True, min_depth=4, max_depth=8, e_rel = .01, e_abs = .01):
r"""
Plots a space curve as a series of spheres and finite cylinders.
Example (twisted cubic) ::
sage: f = lambda t: (t,t^2,t^3)
sage: t = Tachyon(camera_center=(5,0,4))
sage: t.texture('t')
sage: t.light((-20,-20,40), 0.2, (1,1,1))
sage: t.parametric_plot(f,-5,5,'t',min_depth=6)
"""
self._objects.append(ParametricPlot(f, t_0, t_f, tex, r=r, cylinders=cylinders,min_depth=min_depth,max_depth=max_depth,e_rel=.01,e_abs=.01))
class Light:
r"""
Represents lighting objects.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import Light
sage: q = Light((1,1,1),1,(1,1,1))
sage: q._center
(1, 1, 1)
"""
def __init__(self, center, radius, color):
r"""
Stores the center, radius and color.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import Light
sage: q = Light((1,1,1),1,(1,1,1))
sage: q._color
(1, 1, 1)
"""
self._center = center
self._radius = radius
self._color = color
def str(self):
r"""
Returns the tachyon string defining the light source.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import Light
sage: q = Light((1,1,1),1,(1,1,1))
sage: q._radius
1
"""
return r"""
light center %s
rad %s
color %s
"""%(tostr(self._center), float(self._radius),
tostr(self._color))
class Texfunc:
def __init__(self, type=0,center=(0,0,0), rotate=(0,0,0), scale=(1,1,1)):
r"""
Creates a texture function.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import Texfunc
sage: t = Texfunc()
sage: t._type
0
"""
self._type = type
self._center = center
self._rotate = rotate
self._scale = scale
def str(self):
r"""
Returns the scene string for this texture function.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import Texfunc
sage: t = Texfunc()
sage: t.str()
'0 center 0.0 0.0 0.0 rotate 0.0 0.0 0.0 scale 1.0 1.0 1.0 '
"""
if type == 0:
return "0"
return r"""%d center %s rotate %s scale %s"""%(self._type,
tostr(self._center),
tostr(self._rotate),
tostr(self._scale))
class Texture:
def __init__(self, name, ambient=0.2, diffuse=0.8,
specular=0.0, opacity=1.0,
color=(1.0,0.0, 0.5), texfunc=0, phong=0, phongsize=0, phongtype="PLASTIC"):
r"""
Stores texture information.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import Texture
sage: t = Texture('w')
sage: t.str().split()[2:6]
['ambient', '0.2', 'diffuse', '0.8']
"""
self._name = name
self._ambient = ambient
self._diffuse = diffuse
self._specular = specular
self._opacity = opacity
self._color = color
self._texfunc = texfunc
self._phong = phong
self._phongsize = phongsize
self._phongtype = phongtype
def recolor(self, name, color):
r"""
Returns a texture with the new given color.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import Texture
sage: t2 = Texture('w')
sage: t2w = t2.recolor('w2', (.1,.2,.3))
sage: t2ws = t2w.str()
sage: color_index = t2ws.find('color')
sage: t2ws[color_index:color_index+20]
'color 0.1 0.2 0.3 '
"""
return Texture(name, self._ambient, self._diffuse, self._specular, self._opacity,
color, self._texfunc, self._phong, self._phongsize, self._phongtype)
def str(self):
r"""
Returns the scene string for this texture.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import Texture
sage: t = Texture('w')
sage: t.str().split()[2:6]
['ambient', '0.2', 'diffuse', '0.8']
"""
return r"""
texdef %s ambient %s diffuse %s specular %s opacity %s
phong %s %s phong_size %s
color %s texfunc %s
"""%(self._name,
self._ambient,
self._diffuse,
self._specular,
self._opacity,
self._phongtype,
self._phong,
self._phongsize,
tostr(self._color),
self._texfunc)
class Sphere:
r"""
A class for creating spheres in tachyon.
"""
def __init__(self, center, radius, texture):
r"""
Stores the center, radius, and texture information in a class.
EXAMPLES::
sage: t = Tachyon()
sage: from sage.plot.plot3d.tachyon import Sphere
sage: t.texture('r', color=(.8,0,0), ambient = .1)
sage: s = Sphere((1,1,1),1,'r')
sage: s._radius
1
"""
self._center = center
self._radius = radius
self._texture = texture
def str(self):
r"""
Returns the scene string for the sphere.
EXAMPLES::
sage: t = Tachyon()
sage: from sage.plot.plot3d.tachyon import Sphere
sage: t.texture('r', color=(.8,0,0), ambient = .1)
sage: s = Sphere((1,1,1),1,'r')
sage: s.str()
'\n sphere center 1.0 1.0 1.0 rad 1.0 r\n '
"""
return r"""
sphere center %s rad %s %s
"""%(tostr(self._center), float(self._radius), self._texture)
class Ring:
r"""
An annulus of zero thickness.
"""
def __init__(self, center, normal, inner, outer, texture):
r"""
Creates a ring with the given center, normal, inner radius,
outer radius, and texture.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import Ring
sage: r = Ring((1,1,1), (1,1,0), 1.0, 2.0, 's')
sage: r._center
(1, 1, 1)
"""
self._center = center
self._normal = normal
self._inner = inner
self._outer = outer
self._texture = texture
def str(self):
r"""
Returns the scene string of the ring.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import Ring
sage: r = Ring((0,0,0), (1,1,0), 1.0, 2.0, 's')
sage: r.str()
'\n ring center 0.0 0.0 0.0 normal 1.0 1.0 0.0 inner 1.0 outer 2.0 s\n '
"""
return r"""
ring center %s normal %s inner %s outer %s %s
"""%(tostr(self._center), tostr(self._normal), float(self._inner), float(self._outer), self._texture)
class FractalLandscape:
r"""
Axis-aligned fractal landscape.
Does not seem very useful at the moment, but perhaps will be improved in the future.
"""
def __init__(self, res, scale, center, texture):
r"""
Creates a fractal landscape in tachyon.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import FractalLandscape
sage: fl = FractalLandscape([20,20],[30,30],[1,2,3],'s')
sage: fl._center
[1, 2, 3]
"""
self._res = res
self._scale = scale
self._center = center
self._texture = texture
def str(self):
r"""
Returns the scene string of the fractal landscape.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import FractalLandscape
sage: fl = FractalLandscape([20,20],[30,30],[1,2,3],'s')
sage: fl.str()
'\n scape res 20 20 scale 30 30 center 1.0 2.0 3.0 s\n '
"""
return r"""
scape res %s scale %s center %s %s
"""%(tostr(self._res, 2, int), tostr(self._scale, 2, int), tostr(self._center), self._texture)
class Cylinder:
r"""
An infinite cylinder.
"""
def __init__(self, center, axis, radius, texture):
r"""
Creates a cylinder with the given parameters.
EXAMPLES::
sage: t = Tachyon()
sage: from sage.plot.plot3d.tachyon import Cylinder
sage: c = Cylinder((0,0,0),(1,1,1),.1,'s')
sage: c.str()
'\n cylinder center 0.0 0.0 0.0 axis 1.0 1.0 1.0 rad 0.1 s\n '
"""
self._center = center
self._axis = axis
self._radius = radius
self._texture = texture
def str(self):
r"""
Returns the scene string of the cylinder.
EXAMPLES::
sage: t = Tachyon()
sage: from sage.plot.plot3d.tachyon import Cylinder
sage: c = Cylinder((0,0,0),(1,1,1),.1,'s')
sage: c.str()
'\n cylinder center 0.0 0.0 0.0 axis 1.0 1.0 1.0 rad 0.1 s\n '
"""
return r"""
cylinder center %s axis %s rad %s %s
"""%(tostr(self._center), tostr(self._axis), float(self._radius), self._texture)
class Plane:
r"""
An infinite plane.
"""
def __init__(self, center, normal, texture):
r"""
Creates the plane object.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import Plane
sage: p = Plane((1,2,3),(1,2,4),'s')
sage: p.str()
'\n plane center 1.0 2.0 3.0 normal 1.0 2.0 4.0 s\n '
"""
self._center = center
self._normal = normal
self._texture = texture
def str(self):
r"""
Returns the scene string of the plane.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import Plane
sage: p = Plane((1,2,3),(1,2,4),'s')
sage: p.str()
'\n plane center 1.0 2.0 3.0 normal 1.0 2.0 4.0 s\n '
"""
return r"""
plane center %s normal %s %s
"""%(tostr(self._center), tostr(self._normal), self._texture)
class FCylinder:
r"""
A finite cylinder.
"""
def __init__(self, base, apex, radius, texture):
r"""
Creates a finite cylinder object.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import FCylinder
sage: fc = FCylinder((0,0,0),(1,1,1),.1,'s')
sage: fc.str()
'\n fcylinder base 0.0 0.0 0.0 apex 1.0 1.0 1.0 rad 0.1 s\n '
"""
self._center = base
self._axis = apex
self._radius = radius
self._texture = texture
def str(self):
r"""
Returns the scene string of the finite cylinder.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import FCylinder
sage: fc = FCylinder((0,0,0),(1,1,1),.1,'s')
sage: fc.str()
'\n fcylinder base 0.0 0.0 0.0 apex 1.0 1.0 1.0 rad 0.1 s\n '
"""
return r"""
fcylinder base %s apex %s rad %s %s
"""%(tostr(self._center), tostr(self._axis), float(self._radius), self._texture)
class Axis_aligned_box():
r"""
Box with axis-aligned edges with the given min and max coordinates.
"""
def __init__(self, min_p, max_p, texture):
r"""
Creates the axis-aligned box object.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import Axis_aligned_box
sage: aab = Axis_aligned_box((0,0,0),(1,1,1),'s')
sage: aab.str()
'\n box min 0.0 0.0 0.0 max 1.0 1.0 1.0 s\n '
"""
self._min_p = min_p
self._max_p = max_p
self._texture = texture
def str(self):
r"""
Returns the scene string of the axis-aligned box.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import Axis_aligned_box
sage: aab = Axis_aligned_box((0,0,0),(1,1,1),'s')
sage: aab.str()
'\n box min 0.0 0.0 0.0 max 1.0 1.0 1.0 s\n '
"""
return r"""
box min %s max %s %s
"""%(tostr(self._min_p), tostr(self._max_p), self._texture)
class TachyonTriangle(Triangle):
r"""
Basic triangle class.
"""
def str(self):
r"""
Returns the scene string for a triangle.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import TachyonTriangle
sage: t = TachyonTriangle([-1,-1,-1],[0,0,0],[1,2,3])
sage: t.str()
'\n TRI V0 -1.0 -1.0 -1.0 V1 0.0 0.0 0.0 V2 1.0 2.0 3.0 \n 0\n '
"""
return r"""
TRI V0 %s V1 %s V2 %s
%s
"""%(tostr(self._a), tostr(self._b),tostr(self._c), self._color)
class TachyonSmoothTriangle(SmoothTriangle):
r"""
A triangle along with a normal vector, which is used for smoothing.
"""
def str(self):
r"""
Returns the scene string for a smoothed triangle.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import TachyonSmoothTriangle
sage: t = TachyonSmoothTriangle([-1,-1,-1],[0,0,0],[1,2,3],[1,0,0],[0,1,0],[0,0,1])
sage: t.str()
'\n STRI V0 ... 1.0 0.0 0.0 N1 0.0 1.0 0.0 N2 0.0 0.0 1.0 \n 0\n '
"""
return r"""
STRI V0 %s V1 %s V2 %s
N0 %s N1 %s N2 %s
%s
"""%(tostr(self._a), tostr(self._b), tostr(self._c),
tostr(self._da), tostr(self._db), tostr(self._dc), self._color)
class TachyonTriangleFactory(TriangleFactory):
r"""
A class to produce triangles of various rendering types.
"""
def __init__(self, tach, tex):
r"""
Initializes with tachyon instance and texture.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import TachyonTriangleFactory
sage: t = Tachyon()
sage: t.texture('s')
sage: ttf = TachyonTriangleFactory(t, 's')
sage: ttf._texture
's'
"""
self._tachyon = tach
self._texture = tex
def triangle(self,a,b,c,color=None):
r"""
Creates a TachyonTriangle with vertices a, b, and c.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import TachyonTriangleFactory
sage: t = Tachyon()
sage: t.texture('s')
sage: ttf = TachyonTriangleFactory(t, 's')
sage: ttft = ttf.triangle([1,2,3],[3,2,1],[0,2,1])
sage: ttft.str()
'\n TRI V0 1.0 2.0 3.0 V1 3.0 2.0 1.0 V2 0.0 2.0 1.0 \n s\n '
"""
if color is None:
return TachyonTriangle(a,b,c,self._texture)
else:
return TachyonTriangle(a,b,c,color)
def smooth_triangle(self,a,b,c,da,db,dc,color=None):
r"""
Creates a TachyonSmoothTriangle.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import TachyonTriangleFactory
sage: t = Tachyon()
sage: t.texture('s')
sage: ttf = TachyonTriangleFactory(t, 's')
sage: ttfst = ttf.smooth_triangle([0,0,0],[1,0,0],[0,0,1],[1,1,1],[1,2,3],[-1,-1,2])
sage: ttfst.str()
'\n STRI V0 0.0 0.0 0.0 ...'
"""
if color is None:
return TachyonSmoothTriangle(a,b,c,da,db,dc,self._texture)
else:
return TachyonSmoothTriangle(a,b,c,da,db,dc,color)
def get_colors(self, list):
r"""
Returns a list of color labels.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import TachyonTriangleFactory
sage: t = Tachyon()
sage: t.texture('s')
sage: ttf = TachyonTriangleFactory(t, 's')
sage: ttf.get_colors([1])
['SAGETEX1_0']
"""
return self._tachyon.texture_recolor(self._texture, list)
class ParametricPlot:
r"""
Parametric plotting routines.
"""
def str(self):
r"""
Returns the tachyon string representation of the parameterized curve.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import ParametricPlot
sage: t = var('t')
sage: f = lambda t: (t,t^2,t^3)
sage: q = ParametricPlot(f,0,1,'s')
sage: q.str()[9:69]
'sphere center 0.0 0.0 0.0 rad 0.1 s\n \n fcyli'
"""
return "".join([o.str() for o in self._objects])
def __init__(self, f, t_0, t_f, tex, r=.1, cylinders = True, min_depth=4, max_depth=8, e_rel = .01, e_abs = .01):
r"""
Creates the parametric plotting class.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import ParametricPlot
sage: t = var('t')
sage: f = lambda t: (t,t^2,t^3)
sage: q = ParametricPlot(f,0,1,'s')
sage: q._e_rel
0.01
"""
self._e_rel = e_rel
self._e_abs = e_abs
self._r = r
self._f = f
self._tex = tex
self._cylinders = cylinders
self._max_depth = max_depth
self._min_depth = min_depth
f_0 = f(t_0)
f_f = f(t_f)
self._objects = [Sphere(f_0, r, texture=tex) ]
self._plot_step(0, t_0, t_f, f_0, f_f)
def _plot_step(self, depth, t_0,t_f,f_0,f_f):
r"""
Recursively subdivides interval, eventually plotting with cylinders and spheres.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import ParametricPlot
sage: t = var('t')
sage: f = lambda t: (t,t^2,t^3)
sage: q = ParametricPlot(f,0,1,'s')
sage: q._plot_step(8,0,1,[0,0,0],[1,1,1])
sage: len(q._objects)
515
"""
if depth < self._max_depth:
t_mid = (t_f + t_0)/2
f_mid = ((f_f[0] + f_0[0])/2, (f_f[1] + f_0[1])/2, (f_f[2] + f_0[2])/2)
f_val = self._f(t_mid)
if depth < self._min_depth or self.tol(f_mid, f_val):
new_depth = depth + 1
else:
new_depth = self._max_depth
self._plot_step(new_depth, t_0,t_mid, f_0, f_val)
self._plot_step(new_depth, t_mid,t_f, f_val, f_f)
else:
if self._cylinders:
self._objects.append(FCylinder(f_0,f_f,self._r,self._tex))
self._objects.append(Sphere(f_f,self._r,self._tex))
def tol(self, est, val):
r"""
Check relative, then absolute tolerance. If both fail, return False.
This is a zero-safe error checker.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import ParametricPlot
sage: t = var('t')
sage: f = lambda t: (t,t^2,t^3)
sage: q = ParametricPlot(f,0,1,'s')
sage: q.tol([0,0,0],[1,0,0])
False
sage: q.tol([0,0,0],[.0001,0,0])
True
"""
delta = sqrt((val[0]-est[0])**2 + (val[1]-est[1])**2 + (val[2]-val[2])**2)
if delta < self._e_abs:
return True
r = sqrt(val[0]**2+val[1]**2+val[2]**2)
if delta < self._e_rel*r:
return True
return False
def tostr(s, length = 3, out_type = float):
r"""
Converts vector information to a space-separated string.
EXAMPLES::
sage: from sage.plot.plot3d.tachyon import tostr
sage: tostr((1,1,1))
' 1.0 1.0 1.0 '
sage: tostr('2 3 2')
'2 3 2'
"""
if isinstance(s, str):
return s
output = ' '
for an_item in s:
output = output + str(out_type(an_item)) + ' '
return output