Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
sagemath
GitHub Repository: sagemath/sagelib
Path: blob/master/sage/schemes/plane_quartics/quartic_generic.py
4077 views
1
"""
2
Plane quartic curves over a general ring. These are generic genus 3 curves,
3
as distinct from hyperelliptic curves of genus 3.
4
5
EXAMPLE:
6
sage: PP, (X,Y,Z) = ProjectiveSpace(2,QQ,'X,Y,Z').objgens()
7
sage: f = X^4 + Y^4 + Z^4 - 3*X*Y*Z*(X+Y+Z)
8
sage: C = QuarticCurve(f); C
9
Quartic Curve over Rational Field defined by X^4 + Y^4 - 3*X^2*Y*Z - 3*X*Y^2*Z - 3*X*Y*Z^2 + Z^4
10
"""
11
12
#*****************************************************************************
13
# Copyright (C) 2006 David Kohel <[email protected]>
14
# Distributed under the terms of the GNU General Public License (GPL)
15
# http://www.gnu.org/licenses/
16
#*****************************************************************************
17
18
19
import sage.schemes.plane_curves.projective_curve as projective_curve
20
21
def is_QuarticCurve(C):
22
return isinstance(C,QuarticCurve_generic)
23
24
class QuarticCurve_generic(projective_curve.ProjectiveCurve_generic):
25
# DRK: Note that we should check whether the curve is
26
27
def _repr_type(self):
28
return "Quartic"
29
30
def genus(self):
31
return 3
32
33