Path: blob/master/sage/schemes/plane_quartics/quartic_generic.py
4077 views
"""1Plane quartic curves over a general ring. These are generic genus 3 curves,2as distinct from hyperelliptic curves of genus 3.34EXAMPLE:5sage: PP, (X,Y,Z) = ProjectiveSpace(2,QQ,'X,Y,Z').objgens()6sage: f = X^4 + Y^4 + Z^4 - 3*X*Y*Z*(X+Y+Z)7sage: C = QuarticCurve(f); C8Quartic Curve over Rational Field defined by X^4 + Y^4 - 3*X^2*Y*Z - 3*X*Y^2*Z - 3*X*Y*Z^2 + Z^49"""1011#*****************************************************************************12# Copyright (C) 2006 David Kohel <[email protected]>13# Distributed under the terms of the GNU General Public License (GPL)14# http://www.gnu.org/licenses/15#*****************************************************************************161718import sage.schemes.plane_curves.projective_curve as projective_curve1920def is_QuarticCurve(C):21return isinstance(C,QuarticCurve_generic)2223class QuarticCurve_generic(projective_curve.ProjectiveCurve_generic):24# DRK: Note that we should check whether the curve is2526def _repr_type(self):27return "Quartic"2829def genus(self):30return 3313233