Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Path: blob/master/sage/interact/LoopQuantumGravity/quantumTetNumbers.sagews
Views: 1209
import numpy @interact def _(j1 = input_box(6.0, 'J1'), j2= input_box(6.0, 'J2'), j3= input_box(6.0, 'J3'), j4= input_box(7.0, 'J1'), auto_update=False): if (j1+j2)<= (j3+j4): html('<h3>Value of Angle eigenvalue in radians</h3>') d2=j3*(j3+1) d3=j1*(j1+1) d4=j2*(j2+1) d5=d2-d3-d4 d6=2*sqrt(d3*d4) d7=d5/d6 d8=arccos(d7) d8a=numerical_approx(d8, digits=4) angle = numerical_approx(d8*180/pi, digits=4) if angle != NaN: print 'angle between faces 1 and 2 in quantum tetrahedron = ',d8a, 'radians' print 'angle between faces 1 and 2 in quantum tetrahedron = ',angle,'degrees' html('<h3>main sequence Area eigenvalues</h3>') lp=1.61619926*10^-35 main1=numerical_approx(sqrt(j1*(j1+1)),digits=4) areamain1 =0.5*lp^2*main1 print 'Area of face 1=', areamain1, 'm2' main2=numerical_approx(sqrt(j2*(j2+1)),digits=4) areamain2 =0.5*lp^2*main2 print 'Area of face 2=', areamain2, 'm2' main3=numerical_approx(sqrt(j3*(j3+1)),digits=4) areamain3 =0.5*lp^2*main3 print 'Area of face 3=', areamain3, 'm2' main4=numerical_approx(sqrt(j4*(j4+1)),digits=4) areamain4 =0.5*lp^2*main4 print 'Area of face 4=', areamain4, 'm2' area = areamain1 + areamain3 +areamain3+areamain4 print 'Total area of quantum tetrahedron =', area, 'm2' html('<h3>Values of Volume Eigenvalue</h3>') kmin = int(max(abs(j1-j2),abs(j3 -j4))) kmax = int(min((j1+j2),(j3 +j4))) d = kmax -kmin + 1 y=numpy.arange(kmin,kmax+1,1) kmatrix = matrix(CDF,int(d), int(d)) r=list() for j in range(d): k=int(y[j]) c1 = -i*k c2 = sqrt(4*k*k - 1) c3 = sqrt(j1*(j1+1)) c4 = sqrt((2*j1+1)) c5 = sqrt(j3*(j3+1)) c6 = sqrt((2*j3+1)) c7 = wigner_6j(j1,1,j1,k,j2,k-1) c8 = wigner_6j(j3,1,j3,k,j4,k-1) a = c1*c2*c3*c4*c5*c6*c7*c8 r.append(a) q=numerical_approx(a, digits=10) #print r for j in range(d-1): kmatrix[[j],[j+1]]=r[j+1] kmatrix[[j+1],[j]]=-r[j+1] #print kmatrix M = (2/9)*kmatrix #print M s=M.eigenvalues() #print s lp3=6*10^-104 for j in range(d): e= sqrt(s[j]) vol = lp3*e volume = numerical_approx(vol, digits=2) if e.imag() ==0: print "volume eigenvalue =",(e) print "volume of tetrahedron =", volume, 'm3'
Interact: please open in CoCalc