CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
sagemathinc

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

GitHub Repository: sagemathinc/cocalc
Path: blob/master/src/packages/util/compute/gpu-specs.ts
Views: 687
1
// key specs of various NVidia GPUs -- useful to show to a user.
2
3
export interface Specs {
4
// url of official datasheet pdf
5
datasheet: string;
6
// amount of GPU memory in GB
7
memory: number;
8
// memory bandwidth in GB/s
9
memory_bw: number;
10
// CUDA cores
11
cuda_cores: number;
12
// tensor cores
13
tensor_cores: number;
14
}
15
16
export const GPU_SPECS = {
17
"RTX-A4000": {
18
datasheet:
19
"https://www.nvidia.com/content/dam/en-zz/Solutions/gtcs21/rtx-a4000/nvidia-rtx-a4000-datasheet.pdf",
20
hyperstack: "https://www.hyperstack.cloud/rtx-a4000",
21
memory: 16,
22
memory_bw: 448,
23
cuda_cores: 6144,
24
tensor_cores: 192,
25
},
26
"RTX-A5000": {
27
datasheet:
28
"https://www.nvidia.com/content/dam/en-zz/Solutions/gtcs21/rtx-a5000/nvidia-rtx-a5000-datasheet.pdf",
29
hyperstack: "https://www.hyperstack.cloud/rtx-a5000",
30
memory: 20,
31
memory_bw: 640,
32
cuda_cores: 7168,
33
tensor_cores: 224,
34
},
35
"RTX-A6000": {
36
datasheet:
37
"https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/proviz-print-nvidia-rtx-a6000-datasheet-us-nvidia-1454980-r9-web%20(1).pdf",
38
hyperstack: "https://www.hyperstack.cloud/rtx-a6000",
39
memory: 48,
40
memory_bw: 768,
41
cuda_cores: 10752,
42
tensor_cores: 336,
43
},
44
"RTX-A6000-ada": {
45
datasheet:
46
"https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/proviz-print-nvidia-rtx-a6000-datasheet-us-nvidia-1454980-r9-web%20(1).pdf",
47
hyperstack: "https://www.hyperstack.cloud/rtx-a6000",
48
memory: 48,
49
memory_bw: 768,
50
cuda_cores: 10752,
51
tensor_cores: 336,
52
},
53
A10: {
54
datasheet:
55
"https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a10/pdf/a10-datasheet.pdf",
56
memory: 24,
57
memory_bw: 600,
58
cuda_cores: 9216,
59
tensor_cores: 288,
60
},
61
A40: {
62
datasheet:
63
"https://images.nvidia.com/content/Solutions/data-center/a40/nvidia-a40-datasheet.pdf",
64
memory: 48,
65
memory_bw: 696,
66
cuda_cores: 10752,
67
tensor_cores: 336,
68
},
69
T4: {
70
datasheet:
71
"https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf",
72
memory: 16,
73
memory_bw: 300,
74
cuda_cores: 2560,
75
tensor_cores: 320,
76
},
77
L4: {
78
datasheet:
79
"https://resources.nvidia.com/en-us-data-center-overview-mc/en-us-data-center-overview/l4-gpu-datasheet",
80
memory: 24,
81
memory_bw: 300,
82
cuda_cores: 7424,
83
tensor_cores: 240,
84
},
85
L40: {
86
datasheet:
87
"https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/support-guide/NVIDIA-L40-Datasheet-January-2023.pdf",
88
hyperstack: "https://www.hyperstack.cloud/l40",
89
memory: 48,
90
memory_bw: 864,
91
cuda_cores: 18176,
92
tensor_cores: 568,
93
},
94
"A100-40GB-PCIe": {
95
datasheet:
96
"https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf",
97
memory: 40,
98
memory_bw: 1555,
99
cuda_cores: 6912,
100
tensor_cores: 432,
101
},
102
"A100-80GB-PCIe": {
103
datasheet:
104
"https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf",
105
hyperstack: "https://www.hyperstack.cloud/a100",
106
memory: 80,
107
memory_bw: 1935,
108
cuda_cores: 6912,
109
tensor_cores: 432,
110
},
111
"H100-80GB-PCIe": {
112
datasheet:
113
"https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet",
114
hyperstack: "https://www.hyperstack.cloud/h100-pcie",
115
memory: 80,
116
memory_bw: 2000,
117
cuda_cores: 14592,
118
tensor_cores: 640,
119
},
120
};
121
122