Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
screetsec
GitHub Repository: screetsec/TheFatRat
Path: blob/master/tools/android-sdk/renderscript/clang-include/avxintrin.h
496 views
1
/*===---- avxintrin.h - AVX intrinsics -------------------------------------===
2
*
3
* Permission is hereby granted, free of charge, to any person obtaining a copy
4
* of this software and associated documentation files (the "Software"), to deal
5
* in the Software without restriction, including without limitation the rights
6
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7
* copies of the Software, and to permit persons to whom the Software is
8
* furnished to do so, subject to the following conditions:
9
*
10
* The above copyright notice and this permission notice shall be included in
11
* all copies or substantial portions of the Software.
12
*
13
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19
* THE SOFTWARE.
20
*
21
*===-----------------------------------------------------------------------===
22
*/
23
24
#ifndef __IMMINTRIN_H
25
#error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
26
#endif
27
28
#ifndef __AVXINTRIN_H
29
#define __AVXINTRIN_H
30
31
typedef double __v4df __attribute__ ((__vector_size__ (32)));
32
typedef float __v8sf __attribute__ ((__vector_size__ (32)));
33
typedef long long __v4di __attribute__ ((__vector_size__ (32)));
34
typedef int __v8si __attribute__ ((__vector_size__ (32)));
35
typedef short __v16hi __attribute__ ((__vector_size__ (32)));
36
typedef char __v32qi __attribute__ ((__vector_size__ (32)));
37
38
/* Unsigned types */
39
typedef unsigned long long __v4du __attribute__ ((__vector_size__ (32)));
40
typedef unsigned int __v8su __attribute__ ((__vector_size__ (32)));
41
typedef unsigned short __v16hu __attribute__ ((__vector_size__ (32)));
42
typedef unsigned char __v32qu __attribute__ ((__vector_size__ (32)));
43
44
/* We need an explicitly signed variant for char. Note that this shouldn't
45
* appear in the interface though. */
46
typedef signed char __v32qs __attribute__((__vector_size__(32)));
47
48
typedef float __m256 __attribute__ ((__vector_size__ (32)));
49
typedef double __m256d __attribute__((__vector_size__(32)));
50
typedef long long __m256i __attribute__((__vector_size__(32)));
51
52
/* Define the default attributes for the functions in this file. */
53
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx")))
54
55
/* Arithmetic */
56
/// \brief Adds two 256-bit vectors of [4 x double].
57
///
58
/// \headerfile <x86intrin.h>
59
///
60
/// This intrinsic corresponds to the \c VADDPD / ADDPD instruction.
61
///
62
/// \param __a
63
/// A 256-bit vector of [4 x double] containing one of the source operands.
64
/// \param __b
65
/// A 256-bit vector of [4 x double] containing one of the source operands.
66
/// \returns A 256-bit vector of [4 x double] containing the sums of both
67
/// operands.
68
static __inline __m256d __DEFAULT_FN_ATTRS
69
_mm256_add_pd(__m256d __a, __m256d __b)
70
{
71
return (__m256d)((__v4df)__a+(__v4df)__b);
72
}
73
74
/// \brief Adds two 256-bit vectors of [8 x float].
75
///
76
/// \headerfile <x86intrin.h>
77
///
78
/// This intrinsic corresponds to the \c VADDPS / ADDPS instruction.
79
///
80
/// \param __a
81
/// A 256-bit vector of [8 x float] containing one of the source operands.
82
/// \param __b
83
/// A 256-bit vector of [8 x float] containing one of the source operands.
84
/// \returns A 256-bit vector of [8 x float] containing the sums of both
85
/// operands.
86
static __inline __m256 __DEFAULT_FN_ATTRS
87
_mm256_add_ps(__m256 __a, __m256 __b)
88
{
89
return (__m256)((__v8sf)__a+(__v8sf)__b);
90
}
91
92
/// \brief Subtracts two 256-bit vectors of [4 x double].
93
///
94
/// \headerfile <x86intrin.h>
95
///
96
/// This intrinsic corresponds to the \c VSUBPD / SUBPD instruction.
97
///
98
/// \param __a
99
/// A 256-bit vector of [4 x double] containing the minuend.
100
/// \param __b
101
/// A 256-bit vector of [4 x double] containing the subtrahend.
102
/// \returns A 256-bit vector of [4 x double] containing the differences between
103
/// both operands.
104
static __inline __m256d __DEFAULT_FN_ATTRS
105
_mm256_sub_pd(__m256d __a, __m256d __b)
106
{
107
return (__m256d)((__v4df)__a-(__v4df)__b);
108
}
109
110
/// \brief Subtracts two 256-bit vectors of [8 x float].
111
///
112
/// \headerfile <x86intrin.h>
113
///
114
/// This intrinsic corresponds to the \c VSUBPS / SUBPS instruction.
115
///
116
/// \param __a
117
/// A 256-bit vector of [8 x float] containing the minuend.
118
/// \param __b
119
/// A 256-bit vector of [8 x float] containing the subtrahend.
120
/// \returns A 256-bit vector of [8 x float] containing the differences between
121
/// both operands.
122
static __inline __m256 __DEFAULT_FN_ATTRS
123
_mm256_sub_ps(__m256 __a, __m256 __b)
124
{
125
return (__m256)((__v8sf)__a-(__v8sf)__b);
126
}
127
128
/// \brief Adds the even-indexed values and subtracts the odd-indexed values of
129
/// two 256-bit vectors of [4 x double].
130
///
131
/// \headerfile <x86intrin.h>
132
///
133
/// This intrinsic corresponds to the \c VADDSUBPD / ADDSUBPD instruction.
134
///
135
/// \param __a
136
/// A 256-bit vector of [4 x double] containing the left source operand.
137
/// \param __b
138
/// A 256-bit vector of [4 x double] containing the right source operand.
139
/// \returns A 256-bit vector of [4 x double] containing the alternating sums
140
/// and differences between both operands.
141
static __inline __m256d __DEFAULT_FN_ATTRS
142
_mm256_addsub_pd(__m256d __a, __m256d __b)
143
{
144
return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b);
145
}
146
147
/// \brief Adds the even-indexed values and subtracts the odd-indexed values of
148
/// two 256-bit vectors of [8 x float].
149
///
150
/// \headerfile <x86intrin.h>
151
///
152
/// This intrinsic corresponds to the \c VADDSUBPS / ADDSUBPS instruction.
153
///
154
/// \param __a
155
/// A 256-bit vector of [8 x float] containing the left source operand.
156
/// \param __b
157
/// A 256-bit vector of [8 x float] containing the right source operand.
158
/// \returns A 256-bit vector of [8 x float] containing the alternating sums and
159
/// differences between both operands.
160
static __inline __m256 __DEFAULT_FN_ATTRS
161
_mm256_addsub_ps(__m256 __a, __m256 __b)
162
{
163
return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b);
164
}
165
166
/// \brief Divides two 256-bit vectors of [4 x double].
167
///
168
/// \headerfile <x86intrin.h>
169
///
170
/// This intrinsic corresponds to the \c VDIVPD / DIVPD instruction.
171
///
172
/// \param __a
173
/// A 256-bit vector of [4 x double] containing the dividend.
174
/// \param __b
175
/// A 256-bit vector of [4 x double] containing the divisor.
176
/// \returns A 256-bit vector of [4 x double] containing the quotients of both
177
/// operands.
178
static __inline __m256d __DEFAULT_FN_ATTRS
179
_mm256_div_pd(__m256d __a, __m256d __b)
180
{
181
return (__m256d)((__v4df)__a/(__v4df)__b);
182
}
183
184
/// \brief Divides two 256-bit vectors of [8 x float].
185
///
186
/// \headerfile <x86intrin.h>
187
///
188
/// This intrinsic corresponds to the \c VDIVPS / DIVPS instruction.
189
///
190
/// \param __a
191
/// A 256-bit vector of [8 x float] containing the dividend.
192
/// \param __b
193
/// A 256-bit vector of [8 x float] containing the divisor.
194
/// \returns A 256-bit vector of [8 x float] containing the quotients of both
195
/// operands.
196
static __inline __m256 __DEFAULT_FN_ATTRS
197
_mm256_div_ps(__m256 __a, __m256 __b)
198
{
199
return (__m256)((__v8sf)__a/(__v8sf)__b);
200
}
201
202
/// \brief Compares two 256-bit vectors of [4 x double] and returns the greater
203
/// of each pair of values.
204
///
205
/// \headerfile <x86intrin.h>
206
///
207
/// This intrinsic corresponds to the \c VMAXPD / MAXPD instruction.
208
///
209
/// \param __a
210
/// A 256-bit vector of [4 x double] containing one of the operands.
211
/// \param __b
212
/// A 256-bit vector of [4 x double] containing one of the operands.
213
/// \returns A 256-bit vector of [4 x double] containing the maximum values
214
/// between both operands.
215
static __inline __m256d __DEFAULT_FN_ATTRS
216
_mm256_max_pd(__m256d __a, __m256d __b)
217
{
218
return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b);
219
}
220
221
/// \brief Compares two 256-bit vectors of [8 x float] and returns the greater
222
/// of each pair of values.
223
///
224
/// \headerfile <x86intrin.h>
225
///
226
/// This intrinsic corresponds to the \c VMAXPS / MAXPS instruction.
227
///
228
/// \param __a
229
/// A 256-bit vector of [8 x float] containing one of the operands.
230
/// \param __b
231
/// A 256-bit vector of [8 x float] containing one of the operands.
232
/// \returns A 256-bit vector of [8 x float] containing the maximum values
233
/// between both operands.
234
static __inline __m256 __DEFAULT_FN_ATTRS
235
_mm256_max_ps(__m256 __a, __m256 __b)
236
{
237
return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b);
238
}
239
240
/// \brief Compares two 256-bit vectors of [4 x double] and returns the lesser
241
/// of each pair of values.
242
///
243
/// \headerfile <x86intrin.h>
244
///
245
/// This intrinsic corresponds to the \c VMINPD / MINPD instruction.
246
///
247
/// \param __a
248
/// A 256-bit vector of [4 x double] containing one of the operands.
249
/// \param __b
250
/// A 256-bit vector of [4 x double] containing one of the operands.
251
/// \returns A 256-bit vector of [4 x double] containing the minimum values
252
/// between both operands.
253
static __inline __m256d __DEFAULT_FN_ATTRS
254
_mm256_min_pd(__m256d __a, __m256d __b)
255
{
256
return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b);
257
}
258
259
/// \brief Compares two 256-bit vectors of [8 x float] and returns the lesser
260
/// of each pair of values.
261
///
262
/// \headerfile <x86intrin.h>
263
///
264
/// This intrinsic corresponds to the \c VMINPS / MINPS instruction.
265
///
266
/// \param __a
267
/// A 256-bit vector of [8 x float] containing one of the operands.
268
/// \param __b
269
/// A 256-bit vector of [8 x float] containing one of the operands.
270
/// \returns A 256-bit vector of [8 x float] containing the minimum values
271
/// between both operands.
272
static __inline __m256 __DEFAULT_FN_ATTRS
273
_mm256_min_ps(__m256 __a, __m256 __b)
274
{
275
return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b);
276
}
277
278
/// \brief Multiplies two 256-bit vectors of [4 x double].
279
///
280
/// \headerfile <x86intrin.h>
281
///
282
/// This intrinsic corresponds to the \c VMULPD / MULPD instruction.
283
///
284
/// \param __a
285
/// A 256-bit vector of [4 x double] containing one of the operands.
286
/// \param __b
287
/// A 256-bit vector of [4 x double] containing one of the operands.
288
/// \returns A 256-bit vector of [4 x double] containing the products of both
289
/// operands.
290
static __inline __m256d __DEFAULT_FN_ATTRS
291
_mm256_mul_pd(__m256d __a, __m256d __b)
292
{
293
return (__m256d)((__v4df)__a * (__v4df)__b);
294
}
295
296
/// \brief Multiplies two 256-bit vectors of [8 x float].
297
///
298
/// \headerfile <x86intrin.h>
299
///
300
/// This intrinsic corresponds to the \c VMULPS / MULPS instruction.
301
///
302
/// \param __a
303
/// A 256-bit vector of [8 x float] containing one of the operands.
304
/// \param __b
305
/// A 256-bit vector of [8 x float] containing one of the operands.
306
/// \returns A 256-bit vector of [8 x float] containing the products of both
307
/// operands.
308
static __inline __m256 __DEFAULT_FN_ATTRS
309
_mm256_mul_ps(__m256 __a, __m256 __b)
310
{
311
return (__m256)((__v8sf)__a * (__v8sf)__b);
312
}
313
314
/// \brief Calculates the square roots of the values in a 256-bit vector of
315
/// [4 x double].
316
///
317
/// \headerfile <x86intrin.h>
318
///
319
/// This intrinsic corresponds to the \c VSQRTPD / SQRTPD instruction.
320
///
321
/// \param __a
322
/// A 256-bit vector of [4 x double].
323
/// \returns A 256-bit vector of [4 x double] containing the square roots of the
324
/// values in the operand.
325
static __inline __m256d __DEFAULT_FN_ATTRS
326
_mm256_sqrt_pd(__m256d __a)
327
{
328
return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a);
329
}
330
331
/// \brief Calculates the square roots of the values in a 256-bit vector of
332
/// [8 x float].
333
///
334
/// \headerfile <x86intrin.h>
335
///
336
/// This intrinsic corresponds to the \c VSQRTPS / SQRTPS instruction.
337
///
338
/// \param __a
339
/// A 256-bit vector of [8 x float].
340
/// \returns A 256-bit vector of [8 x float] containing the square roots of the
341
/// values in the operand.
342
static __inline __m256 __DEFAULT_FN_ATTRS
343
_mm256_sqrt_ps(__m256 __a)
344
{
345
return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a);
346
}
347
348
/// \brief Calculates the reciprocal square roots of the values in a 256-bit
349
/// vector of [8 x float].
350
///
351
/// \headerfile <x86intrin.h>
352
///
353
/// This intrinsic corresponds to the \c VRSQRTPS / RSQRTPS instruction.
354
///
355
/// \param __a
356
/// A 256-bit vector of [8 x float].
357
/// \returns A 256-bit vector of [8 x float] containing the reciprocal square
358
/// roots of the values in the operand.
359
static __inline __m256 __DEFAULT_FN_ATTRS
360
_mm256_rsqrt_ps(__m256 __a)
361
{
362
return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a);
363
}
364
365
/// \brief Calculates the reciprocals of the values in a 256-bit vector of
366
/// [8 x float].
367
///
368
/// \headerfile <x86intrin.h>
369
///
370
/// This intrinsic corresponds to the \c VRCPPS / RCPPS instruction.
371
///
372
/// \param __a
373
/// A 256-bit vector of [8 x float].
374
/// \returns A 256-bit vector of [8 x float] containing the reciprocals of the
375
/// values in the operand.
376
static __inline __m256 __DEFAULT_FN_ATTRS
377
_mm256_rcp_ps(__m256 __a)
378
{
379
return (__m256)__builtin_ia32_rcpps256((__v8sf)__a);
380
}
381
382
/// \brief Rounds the values in a 256-bit vector of [4 x double] as specified
383
/// by the byte operand. The source values are rounded to integer values and
384
/// returned as 64-bit double-precision floating-point values.
385
///
386
/// \headerfile <x86intrin.h>
387
///
388
/// \code
389
/// __m256d _mm256_round_pd(__m256d V, const int M);
390
/// \endcode
391
///
392
/// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
393
///
394
/// \param V
395
/// A 256-bit vector of [4 x double].
396
/// \param M
397
/// An integer value that specifies the rounding operation.
398
/// Bits [7:4] are reserved.
399
/// Bit [3] is a precision exception value:
400
/// 0: A normal PE exception is used.
401
/// 1: The PE field is not updated.
402
/// Bit [2] is the rounding control source:
403
/// 0: Use bits [1:0] of M.
404
/// 1: Use the current MXCSR setting.
405
/// Bits [1:0] contain the rounding control definition:
406
/// 00: Nearest.
407
/// 01: Downward (toward negative infinity).
408
/// 10: Upward (toward positive infinity).
409
/// 11: Truncated.
410
/// \returns A 256-bit vector of [4 x double] containing the rounded values.
411
#define _mm256_round_pd(V, M) __extension__ ({ \
412
(__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M)); })
413
414
/// \brief Rounds the values stored in a 256-bit vector of [8 x float] as
415
/// specified by the byte operand. The source values are rounded to integer
416
/// values and returned as floating-point values.
417
///
418
/// \headerfile <x86intrin.h>
419
///
420
/// \code
421
/// __m256 _mm256_round_ps(__m256 V, const int M);
422
/// \endcode
423
///
424
/// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
425
///
426
/// \param V
427
/// A 256-bit vector of [8 x float].
428
/// \param M
429
/// An integer value that specifies the rounding operation.
430
/// Bits [7:4] are reserved.
431
/// Bit [3] is a precision exception value:
432
/// 0: A normal PE exception is used.
433
/// 1: The PE field is not updated.
434
/// Bit [2] is the rounding control source:
435
/// 0: Use bits [1:0] of M.
436
/// 1: Use the current MXCSR setting.
437
/// Bits [1:0] contain the rounding control definition:
438
/// 00: Nearest.
439
/// 01: Downward (toward negative infinity).
440
/// 10: Upward (toward positive infinity).
441
/// 11: Truncated.
442
/// \returns A 256-bit vector of [8 x float] containing the rounded values.
443
#define _mm256_round_ps(V, M) __extension__ ({ \
444
(__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M)); })
445
446
/// \brief Rounds up the values stored in a 256-bit vector of [4 x double]. The
447
/// source values are rounded up to integer values and returned as 64-bit
448
/// double-precision floating-point values.
449
///
450
/// \headerfile <x86intrin.h>
451
///
452
/// \code
453
/// __m256d _mm256_ceil_pd(__m256d V);
454
/// \endcode
455
///
456
/// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
457
///
458
/// \param V
459
/// A 256-bit vector of [4 x double].
460
/// \returns A 256-bit vector of [4 x double] containing the rounded up values.
461
#define _mm256_ceil_pd(V) _mm256_round_pd((V), _MM_FROUND_CEIL)
462
463
/// \brief Rounds down the values stored in a 256-bit vector of [4 x double].
464
/// The source values are rounded down to integer values and returned as
465
/// 64-bit double-precision floating-point values.
466
///
467
/// \headerfile <x86intrin.h>
468
///
469
/// \code
470
/// __m256d _mm256_floor_pd(__m256d V);
471
/// \endcode
472
///
473
/// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
474
///
475
/// \param V
476
/// A 256-bit vector of [4 x double].
477
/// \returns A 256-bit vector of [4 x double] containing the rounded down
478
/// values.
479
#define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)
480
481
/// \brief Rounds up the values stored in a 256-bit vector of [8 x float]. The
482
/// source values are rounded up to integer values and returned as
483
/// floating-point values.
484
///
485
/// \headerfile <x86intrin.h>
486
///
487
/// \code
488
/// __m256 _mm256_ceil_ps(__m256 V);
489
/// \endcode
490
///
491
/// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
492
///
493
/// \param V
494
/// A 256-bit vector of [8 x float].
495
/// \returns A 256-bit vector of [8 x float] containing the rounded up values.
496
#define _mm256_ceil_ps(V) _mm256_round_ps((V), _MM_FROUND_CEIL)
497
498
/// \brief Rounds down the values stored in a 256-bit vector of [8 x float]. The
499
/// source values are rounded down to integer values and returned as
500
/// floating-point values.
501
///
502
/// \headerfile <x86intrin.h>
503
///
504
/// \code
505
/// __m256 _mm256_floor_ps(__m256 V);
506
/// \endcode
507
///
508
/// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
509
///
510
/// \param V
511
/// A 256-bit vector of [8 x float].
512
/// \returns A 256-bit vector of [8 x float] containing the rounded down values.
513
#define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)
514
515
/* Logical */
516
/// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double].
517
///
518
/// \headerfile <x86intrin.h>
519
///
520
/// This intrinsic corresponds to the \c VANDPD / ANDPD instruction.
521
///
522
/// \param __a
523
/// A 256-bit vector of [4 x double] containing one of the source operands.
524
/// \param __b
525
/// A 256-bit vector of [4 x double] containing one of the source operands.
526
/// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
527
/// values between both operands.
528
static __inline __m256d __DEFAULT_FN_ATTRS
529
_mm256_and_pd(__m256d __a, __m256d __b)
530
{
531
return (__m256d)((__v4du)__a & (__v4du)__b);
532
}
533
534
/// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float].
535
///
536
/// \headerfile <x86intrin.h>
537
///
538
/// This intrinsic corresponds to the \c VANDPS / ANDPS instruction.
539
///
540
/// \param __a
541
/// A 256-bit vector of [8 x float] containing one of the source operands.
542
/// \param __b
543
/// A 256-bit vector of [8 x float] containing one of the source operands.
544
/// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
545
/// values between both operands.
546
static __inline __m256 __DEFAULT_FN_ATTRS
547
_mm256_and_ps(__m256 __a, __m256 __b)
548
{
549
return (__m256)((__v8su)__a & (__v8su)__b);
550
}
551
552
/// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double], using
553
/// the one's complement of the values contained in the first source operand.
554
///
555
/// \headerfile <x86intrin.h>
556
///
557
/// This intrinsic corresponds to the \c VANDNPD / ANDNPD instruction.
558
///
559
/// \param __a
560
/// A 256-bit vector of [4 x double] containing the left source operand. The
561
/// one's complement of this value is used in the bitwise AND.
562
/// \param __b
563
/// A 256-bit vector of [4 x double] containing the right source operand.
564
/// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
565
/// values of the second operand and the one's complement of the first
566
/// operand.
567
static __inline __m256d __DEFAULT_FN_ATTRS
568
_mm256_andnot_pd(__m256d __a, __m256d __b)
569
{
570
return (__m256d)(~(__v4du)__a & (__v4du)__b);
571
}
572
573
/// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float], using
574
/// the one's complement of the values contained in the first source operand.
575
///
576
/// \headerfile <x86intrin.h>
577
///
578
/// This intrinsic corresponds to the \c VANDNPS / ANDNPS instruction.
579
///
580
/// \param __a
581
/// A 256-bit vector of [8 x float] containing the left source operand. The
582
/// one's complement of this value is used in the bitwise AND.
583
/// \param __b
584
/// A 256-bit vector of [8 x float] containing the right source operand.
585
/// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
586
/// values of the second operand and the one's complement of the first
587
/// operand.
588
static __inline __m256 __DEFAULT_FN_ATTRS
589
_mm256_andnot_ps(__m256 __a, __m256 __b)
590
{
591
return (__m256)(~(__v8su)__a & (__v8su)__b);
592
}
593
594
/// \brief Performs a bitwise OR of two 256-bit vectors of [4 x double].
595
///
596
/// \headerfile <x86intrin.h>
597
///
598
/// This intrinsic corresponds to the \c VORPD / ORPD instruction.
599
///
600
/// \param __a
601
/// A 256-bit vector of [4 x double] containing one of the source operands.
602
/// \param __b
603
/// A 256-bit vector of [4 x double] containing one of the source operands.
604
/// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the
605
/// values between both operands.
606
static __inline __m256d __DEFAULT_FN_ATTRS
607
_mm256_or_pd(__m256d __a, __m256d __b)
608
{
609
return (__m256d)((__v4du)__a | (__v4du)__b);
610
}
611
612
/// \brief Performs a bitwise OR of two 256-bit vectors of [8 x float].
613
///
614
/// \headerfile <x86intrin.h>
615
///
616
/// This intrinsic corresponds to the \c VORPS / ORPS instruction.
617
///
618
/// \param __a
619
/// A 256-bit vector of [8 x float] containing one of the source operands.
620
/// \param __b
621
/// A 256-bit vector of [8 x float] containing one of the source operands.
622
/// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the
623
/// values between both operands.
624
static __inline __m256 __DEFAULT_FN_ATTRS
625
_mm256_or_ps(__m256 __a, __m256 __b)
626
{
627
return (__m256)((__v8su)__a | (__v8su)__b);
628
}
629
630
/// \brief Performs a bitwise XOR of two 256-bit vectors of [4 x double].
631
///
632
/// \headerfile <x86intrin.h>
633
///
634
/// This intrinsic corresponds to the \c VXORPD / XORPD instruction.
635
///
636
/// \param __a
637
/// A 256-bit vector of [4 x double] containing one of the source operands.
638
/// \param __b
639
/// A 256-bit vector of [4 x double] containing one of the source operands.
640
/// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the
641
/// values between both operands.
642
static __inline __m256d __DEFAULT_FN_ATTRS
643
_mm256_xor_pd(__m256d __a, __m256d __b)
644
{
645
return (__m256d)((__v4du)__a ^ (__v4du)__b);
646
}
647
648
/// \brief Performs a bitwise XOR of two 256-bit vectors of [8 x float].
649
///
650
/// \headerfile <x86intrin.h>
651
///
652
/// This intrinsic corresponds to the \c VXORPS / XORPS instruction.
653
///
654
/// \param __a
655
/// A 256-bit vector of [8 x float] containing one of the source operands.
656
/// \param __b
657
/// A 256-bit vector of [8 x float] containing one of the source operands.
658
/// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the
659
/// values between both operands.
660
static __inline __m256 __DEFAULT_FN_ATTRS
661
_mm256_xor_ps(__m256 __a, __m256 __b)
662
{
663
return (__m256)((__v8su)__a ^ (__v8su)__b);
664
}
665
666
/* Horizontal arithmetic */
667
/// \brief Horizontally adds the adjacent pairs of values contained in two
668
/// 256-bit vectors of [4 x double].
669
///
670
/// \headerfile <x86intrin.h>
671
///
672
/// This intrinsic corresponds to the \c VHADDPD / HADDPD instruction.
673
///
674
/// \param __a
675
/// A 256-bit vector of [4 x double] containing one of the source operands.
676
/// The horizontal sums of the values are returned in the even-indexed
677
/// elements of a vector of [4 x double].
678
/// \param __b
679
/// A 256-bit vector of [4 x double] containing one of the source operands.
680
/// The horizontal sums of the values are returned in the odd-indexed
681
/// elements of a vector of [4 x double].
682
/// \returns A 256-bit vector of [4 x double] containing the horizontal sums of
683
/// both operands.
684
static __inline __m256d __DEFAULT_FN_ATTRS
685
_mm256_hadd_pd(__m256d __a, __m256d __b)
686
{
687
return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b);
688
}
689
690
/// \brief Horizontally adds the adjacent pairs of values contained in two
691
/// 256-bit vectors of [8 x float].
692
///
693
/// \headerfile <x86intrin.h>
694
///
695
/// This intrinsic corresponds to the \c VHADDPS / HADDPS instruction.
696
///
697
/// \param __a
698
/// A 256-bit vector of [8 x float] containing one of the source operands.
699
/// The horizontal sums of the values are returned in the elements with
700
/// index 0, 1, 4, 5 of a vector of [8 x float].
701
/// \param __b
702
/// A 256-bit vector of [8 x float] containing one of the source operands.
703
/// The horizontal sums of the values are returned in the elements with
704
/// index 2, 3, 6, 7 of a vector of [8 x float].
705
/// \returns A 256-bit vector of [8 x float] containing the horizontal sums of
706
/// both operands.
707
static __inline __m256 __DEFAULT_FN_ATTRS
708
_mm256_hadd_ps(__m256 __a, __m256 __b)
709
{
710
return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b);
711
}
712
713
/// \brief Horizontally subtracts the adjacent pairs of values contained in two
714
/// 256-bit vectors of [4 x double].
715
///
716
/// \headerfile <x86intrin.h>
717
///
718
/// This intrinsic corresponds to the \c VHSUBPD / HSUBPD instruction.
719
///
720
/// \param __a
721
/// A 256-bit vector of [4 x double] containing one of the source operands.
722
/// The horizontal differences between the values are returned in the
723
/// even-indexed elements of a vector of [4 x double].
724
/// \param __b
725
/// A 256-bit vector of [4 x double] containing one of the source operands.
726
/// The horizontal differences between the values are returned in the
727
/// odd-indexed elements of a vector of [4 x double].
728
/// \returns A 256-bit vector of [4 x double] containing the horizontal
729
/// differences of both operands.
730
static __inline __m256d __DEFAULT_FN_ATTRS
731
_mm256_hsub_pd(__m256d __a, __m256d __b)
732
{
733
return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b);
734
}
735
736
/// \brief Horizontally subtracts the adjacent pairs of values contained in two
737
/// 256-bit vectors of [8 x float].
738
///
739
/// \headerfile <x86intrin.h>
740
///
741
/// This intrinsic corresponds to the \c VHSUBPS / HSUBPS instruction.
742
///
743
/// \param __a
744
/// A 256-bit vector of [8 x float] containing one of the source operands.
745
/// The horizontal differences between the values are returned in the
746
/// elements with index 0, 1, 4, 5 of a vector of [8 x float].
747
/// \param __b
748
/// A 256-bit vector of [8 x float] containing one of the source operands.
749
/// The horizontal differences between the values are returned in the
750
/// elements with index 2, 3, 6, 7 of a vector of [8 x float].
751
/// \returns A 256-bit vector of [8 x float] containing the horizontal
752
/// differences of both operands.
753
static __inline __m256 __DEFAULT_FN_ATTRS
754
_mm256_hsub_ps(__m256 __a, __m256 __b)
755
{
756
return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b);
757
}
758
759
/* Vector permutations */
760
/// \brief Copies the values in a 128-bit vector of [2 x double] as specified
761
/// by the 128-bit integer vector operand.
762
///
763
/// \headerfile <x86intrin.h>
764
///
765
/// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
766
///
767
/// \param __a
768
/// A 128-bit vector of [2 x double].
769
/// \param __c
770
/// A 128-bit integer vector operand specifying how the values are to be
771
/// copied.
772
/// Bit [1]:
773
/// 0: Bits [63:0] of the source are copied to bits [63:0] of the
774
/// returned vector.
775
/// 1: Bits [127:64] of the source are copied to bits [63:0] of the
776
/// returned vector.
777
/// Bit [65]:
778
/// 0: Bits [63:0] of the source are copied to bits [127:64] of the
779
/// returned vector.
780
/// 1: Bits [127:64] of the source are copied to bits [127:64] of the
781
/// returned vector.
782
/// \returns A 128-bit vector of [2 x double] containing the copied values.
783
static __inline __m128d __DEFAULT_FN_ATTRS
784
_mm_permutevar_pd(__m128d __a, __m128i __c)
785
{
786
return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c);
787
}
788
789
/// \brief Copies the values in a 256-bit vector of [4 x double] as
790
/// specified by the 256-bit integer vector operand.
791
///
792
/// \headerfile <x86intrin.h>
793
///
794
/// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
795
///
796
/// \param __a
797
/// A 256-bit vector of [4 x double].
798
/// \param __c
799
/// A 256-bit integer vector operand specifying how the values are to be
800
/// copied.
801
/// Bit [1]:
802
/// 0: Bits [63:0] of the source are copied to bits [63:0] of the
803
/// returned vector.
804
/// 1: Bits [127:64] of the source are copied to bits [63:0] of the
805
/// returned vector.
806
/// Bit [65]:
807
/// 0: Bits [63:0] of the source are copied to bits [127:64] of the
808
/// returned vector.
809
/// 1: Bits [127:64] of the source are copied to bits [127:64] of the
810
/// returned vector.
811
/// Bit [129]:
812
/// 0: Bits [191:128] of the source are copied to bits [191:128] of the
813
/// returned vector.
814
/// 1: Bits [255:192] of the source are copied to bits [191:128] of the
815
/// returned vector.
816
/// Bit [193]:
817
/// 0: Bits [191:128] of the source are copied to bits [255:192] of the
818
/// returned vector.
819
/// 1: Bits [255:192] of the source are copied to bits [255:192] of the
820
/// returned vector.
821
/// \returns A 256-bit vector of [4 x double] containing the copied values.
822
static __inline __m256d __DEFAULT_FN_ATTRS
823
_mm256_permutevar_pd(__m256d __a, __m256i __c)
824
{
825
return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c);
826
}
827
828
/// \brief Copies the values stored in a 128-bit vector of [4 x float] as
829
/// specified by the 128-bit integer vector operand.
830
///
831
/// \headerfile <x86intrin.h>
832
///
833
/// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
834
///
835
/// \param __a
836
/// A 128-bit vector of [4 x float].
837
/// \param __c
838
/// A 128-bit integer vector operand specifying how the values are to be
839
/// copied.
840
/// Bits [1:0]:
841
/// 00: Bits [31:0] of the source are copied to bits [31:0] of the
842
/// returned vector.
843
/// 01: Bits [63:32] of the source are copied to bits [31:0] of the
844
/// returned vector.
845
/// 10: Bits [95:64] of the source are copied to bits [31:0] of the
846
/// returned vector.
847
/// 11: Bits [127:96] of the source are copied to bits [31:0] of the
848
/// returned vector.
849
/// Bits [33:32]:
850
/// 00: Bits [31:0] of the source are copied to bits [63:32] of the
851
/// returned vector.
852
/// 01: Bits [63:32] of the source are copied to bits [63:32] of the
853
/// returned vector.
854
/// 10: Bits [95:64] of the source are copied to bits [63:32] of the
855
/// returned vector.
856
/// 11: Bits [127:96] of the source are copied to bits [63:32] of the
857
/// returned vector.
858
/// Bits [65:64]:
859
/// 00: Bits [31:0] of the source are copied to bits [95:64] of the
860
/// returned vector.
861
/// 01: Bits [63:32] of the source are copied to bits [95:64] of the
862
/// returned vector.
863
/// 10: Bits [95:64] of the source are copied to bits [95:64] of the
864
/// returned vector.
865
/// 11: Bits [127:96] of the source are copied to bits [95:64] of the
866
/// returned vector.
867
/// Bits [97:96]:
868
/// 00: Bits [31:0] of the source are copied to bits [127:96] of the
869
/// returned vector.
870
/// 01: Bits [63:32] of the source are copied to bits [127:96] of the
871
/// returned vector.
872
/// 10: Bits [95:64] of the source are copied to bits [127:96] of the
873
/// returned vector.
874
/// 11: Bits [127:96] of the source are copied to bits [127:96] of the
875
/// returned vector.
876
/// \returns A 128-bit vector of [4 x float] containing the copied values.
877
static __inline __m128 __DEFAULT_FN_ATTRS
878
_mm_permutevar_ps(__m128 __a, __m128i __c)
879
{
880
return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c);
881
}
882
883
/// \brief Copies the values stored in a 256-bit vector of [8 x float] as
884
/// specified by the 256-bit integer vector operand.
885
///
886
/// \headerfile <x86intrin.h>
887
///
888
/// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
889
///
890
/// \param __a
891
/// A 256-bit vector of [8 x float].
892
/// \param __c
893
/// A 256-bit integer vector operand specifying how the values are to be
894
/// copied.
895
/// Bits [1:0]:
896
/// 00: Bits [31:0] of the source are copied to bits [31:0] of the
897
/// returned vector.
898
/// 01: Bits [63:32] of the source are copied to bits [31:0] of the
899
/// returned vector.
900
/// 10: Bits [95:64] of the source are copied to bits [31:0] of the
901
/// returned vector.
902
/// 11: Bits [127:96] of the source are copied to bits [31:0] of the
903
/// returned vector.
904
/// Bits [33:32]:
905
/// 00: Bits [31:0] of the source are copied to bits [63:32] of the
906
/// returned vector.
907
/// 01: Bits [63:32] of the source are copied to bits [63:32] of the
908
/// returned vector.
909
/// 10: Bits [95:64] of the source are copied to bits [63:32] of the
910
/// returned vector.
911
/// 11: Bits [127:96] of the source are copied to bits [63:32] of the
912
/// returned vector.
913
/// Bits [65:64]:
914
/// 00: Bits [31:0] of the source are copied to bits [95:64] of the
915
/// returned vector.
916
/// 01: Bits [63:32] of the source are copied to bits [95:64] of the
917
/// returned vector.
918
/// 10: Bits [95:64] of the source are copied to bits [95:64] of the
919
/// returned vector.
920
/// 11: Bits [127:96] of the source are copied to bits [95:64] of the
921
/// returned vector.
922
/// Bits [97:96]:
923
/// 00: Bits [31:0] of the source are copied to bits [127:96] of the
924
/// returned vector.
925
/// 01: Bits [63:32] of the source are copied to bits [127:96] of the
926
/// returned vector.
927
/// 10: Bits [95:64] of the source are copied to bits [127:96] of the
928
/// returned vector.
929
/// 11: Bits [127:96] of the source are copied to bits [127:96] of the
930
/// returned vector.
931
/// Bits [129:128]:
932
/// 00: Bits [159:128] of the source are copied to bits [159:128] of the
933
/// returned vector.
934
/// 01: Bits [191:160] of the source are copied to bits [159:128] of the
935
/// returned vector.
936
/// 10: Bits [223:192] of the source are copied to bits [159:128] of the
937
/// returned vector.
938
/// 11: Bits [255:224] of the source are copied to bits [159:128] of the
939
/// returned vector.
940
/// Bits [161:160]:
941
/// 00: Bits [159:128] of the source are copied to bits [191:160] of the
942
/// returned vector.
943
/// 01: Bits [191:160] of the source are copied to bits [191:160] of the
944
/// returned vector.
945
/// 10: Bits [223:192] of the source are copied to bits [191:160] of the
946
/// returned vector.
947
/// 11: Bits [255:224] of the source are copied to bits [191:160] of the
948
/// returned vector.
949
/// Bits [193:192]:
950
/// 00: Bits [159:128] of the source are copied to bits [223:192] of the
951
/// returned vector.
952
/// 01: Bits [191:160] of the source are copied to bits [223:192] of the
953
/// returned vector.
954
/// 10: Bits [223:192] of the source are copied to bits [223:192] of the
955
/// returned vector.
956
/// 11: Bits [255:224] of the source are copied to bits [223:192] of the
957
/// returned vector.
958
/// Bits [225:224]:
959
/// 00: Bits [159:128] of the source are copied to bits [255:224] of the
960
/// returned vector.
961
/// 01: Bits [191:160] of the source are copied to bits [255:224] of the
962
/// returned vector.
963
/// 10: Bits [223:192] of the source are copied to bits [255:224] of the
964
/// returned vector.
965
/// 11: Bits [255:224] of the source are copied to bits [255:224] of the
966
/// returned vector.
967
/// \returns A 256-bit vector of [8 x float] containing the copied values.
968
static __inline __m256 __DEFAULT_FN_ATTRS
969
_mm256_permutevar_ps(__m256 __a, __m256i __c)
970
{
971
return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c);
972
}
973
974
/// \brief Copies the values in a 128-bit vector of [2 x double] as
975
/// specified by the immediate integer operand.
976
///
977
/// \headerfile <x86intrin.h>
978
///
979
/// \code
980
/// __m128d _mm_permute_pd(__m128d A, const int C);
981
/// \endcode
982
///
983
/// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
984
///
985
/// \param A
986
/// A 128-bit vector of [2 x double].
987
/// \param C
988
/// An immediate integer operand specifying how the values are to be copied.
989
/// Bit [0]:
990
/// 0: Bits [63:0] of the source are copied to bits [63:0] of the
991
/// returned vector.
992
/// 1: Bits [127:64] of the source are copied to bits [63:0] of the
993
/// returned vector.
994
/// Bit [1]:
995
/// 0: Bits [63:0] of the source are copied to bits [127:64] of the
996
/// returned vector.
997
/// 1: Bits [127:64] of the source are copied to bits [127:64] of the
998
/// returned vector.
999
/// \returns A 128-bit vector of [2 x double] containing the copied values.
1000
#define _mm_permute_pd(A, C) __extension__ ({ \
1001
(__m128d)__builtin_shufflevector((__v2df)(__m128d)(A), \
1002
(__v2df)_mm_undefined_pd(), \
1003
((C) >> 0) & 0x1, ((C) >> 1) & 0x1); })
1004
1005
/// \brief Copies the values in a 256-bit vector of [4 x double] as
1006
/// specified by the immediate integer operand.
1007
///
1008
/// \headerfile <x86intrin.h>
1009
///
1010
/// \code
1011
/// __m256d _mm256_permute_pd(__m256d A, const int C);
1012
/// \endcode
1013
///
1014
/// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
1015
///
1016
/// \param A
1017
/// A 256-bit vector of [4 x double].
1018
/// \param C
1019
/// An immediate integer operand specifying how the values are to be copied.
1020
/// Bit [0]:
1021
/// 0: Bits [63:0] of the source are copied to bits [63:0] of the
1022
/// returned vector.
1023
/// 1: Bits [127:64] of the source are copied to bits [63:0] of the
1024
/// returned vector.
1025
/// Bit [1]:
1026
/// 0: Bits [63:0] of the source are copied to bits [127:64] of the
1027
/// returned vector.
1028
/// 1: Bits [127:64] of the source are copied to bits [127:64] of the
1029
/// returned vector.
1030
/// Bit [2]:
1031
/// 0: Bits [191:128] of the source are copied to bits [191:128] of the
1032
/// returned vector.
1033
/// 1: Bits [255:192] of the source are copied to bits [191:128] of the
1034
/// returned vector.
1035
/// Bit [3]:
1036
/// 0: Bits [191:128] of the source are copied to bits [255:192] of the
1037
/// returned vector.
1038
/// 1: Bits [255:192] of the source are copied to bits [255:192] of the
1039
/// returned vector.
1040
/// \returns A 256-bit vector of [4 x double] containing the copied values.
1041
#define _mm256_permute_pd(A, C) __extension__ ({ \
1042
(__m256d)__builtin_shufflevector((__v4df)(__m256d)(A), \
1043
(__v4df)_mm256_undefined_pd(), \
1044
0 + (((C) >> 0) & 0x1), \
1045
0 + (((C) >> 1) & 0x1), \
1046
2 + (((C) >> 2) & 0x1), \
1047
2 + (((C) >> 3) & 0x1)); })
1048
1049
/// \brief Copies the values in a 128-bit vector of [4 x float] as
1050
/// specified by the immediate integer operand.
1051
///
1052
/// \headerfile <x86intrin.h>
1053
///
1054
/// \code
1055
/// __m128 _mm_permute_ps(__m128 A, const int C);
1056
/// \endcode
1057
///
1058
/// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
1059
///
1060
/// \param A
1061
/// A 128-bit vector of [4 x float].
1062
/// \param C
1063
/// An immediate integer operand specifying how the values are to be copied.
1064
/// Bits [1:0]:
1065
/// 00: Bits [31:0] of the source are copied to bits [31:0] of the
1066
/// returned vector.
1067
/// 01: Bits [63:32] of the source are copied to bits [31:0] of the
1068
/// returned vector.
1069
/// 10: Bits [95:64] of the source are copied to bits [31:0] of the
1070
/// returned vector.
1071
/// 11: Bits [127:96] of the source are copied to bits [31:0] of the
1072
/// returned vector.
1073
/// Bits [3:2]:
1074
/// 00: Bits [31:0] of the source are copied to bits [63:32] of the
1075
/// returned vector.
1076
/// 01: Bits [63:32] of the source are copied to bits [63:32] of the
1077
/// returned vector.
1078
/// 10: Bits [95:64] of the source are copied to bits [63:32] of the
1079
/// returned vector.
1080
/// 11: Bits [127:96] of the source are copied to bits [63:32] of the
1081
/// returned vector.
1082
/// Bits [5:4]:
1083
/// 00: Bits [31:0] of the source are copied to bits [95:64] of the
1084
/// returned vector.
1085
/// 01: Bits [63:32] of the source are copied to bits [95:64] of the
1086
/// returned vector.
1087
/// 10: Bits [95:64] of the source are copied to bits [95:64] of the
1088
/// returned vector.
1089
/// 11: Bits [127:96] of the source are copied to bits [95:64] of the
1090
/// returned vector.
1091
/// Bits [7:6]:
1092
/// 00: Bits [31:0] of the source are copied to bits [127:96] of the
1093
/// returned vector.
1094
/// 01: Bits [63:32] of the source are copied to bits [127:96] of the
1095
/// returned vector.
1096
/// 10: Bits [95:64] of the source are copied to bits [127:96] of the
1097
/// returned vector.
1098
/// 11: Bits [127:96] of the source are copied to bits [127:96] of the
1099
/// returned vector.
1100
/// \returns A 128-bit vector of [4 x float] containing the copied values.
1101
#define _mm_permute_ps(A, C) __extension__ ({ \
1102
(__m128)__builtin_shufflevector((__v4sf)(__m128)(A), \
1103
(__v4sf)_mm_undefined_ps(), \
1104
((C) >> 0) & 0x3, ((C) >> 2) & 0x3, \
1105
((C) >> 4) & 0x3, ((C) >> 6) & 0x3); })
1106
1107
/// \brief Copies the values in a 256-bit vector of [8 x float] as
1108
/// specified by the immediate integer operand.
1109
///
1110
/// \headerfile <x86intrin.h>
1111
///
1112
/// \code
1113
/// __m256 _mm256_permute_ps(__m256 A, const int C);
1114
/// \endcode
1115
///
1116
/// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
1117
///
1118
/// \param A
1119
/// A 256-bit vector of [8 x float].
1120
/// \param C
1121
/// An immediate integer operand specifying how the values are to be copied.
1122
/// Bits [1:0]:
1123
/// 00: Bits [31:0] of the source are copied to bits [31:0] of the
1124
/// returned vector.
1125
/// 01: Bits [63:32] of the source are copied to bits [31:0] of the
1126
/// returned vector.
1127
/// 10: Bits [95:64] of the source are copied to bits [31:0] of the
1128
/// returned vector.
1129
/// 11: Bits [127:96] of the source are copied to bits [31:0] of the
1130
/// returned vector.
1131
/// Bits [3:2]:
1132
/// 00: Bits [31:0] of the source are copied to bits [63:32] of the
1133
/// returned vector.
1134
/// 01: Bits [63:32] of the source are copied to bits [63:32] of the
1135
/// returned vector.
1136
/// 10: Bits [95:64] of the source are copied to bits [63:32] of the
1137
/// returned vector.
1138
/// 11: Bits [127:96] of the source are copied to bits [63:32] of the
1139
/// returned vector.
1140
/// Bits [5:4]:
1141
/// 00: Bits [31:0] of the source are copied to bits [95:64] of the
1142
/// returned vector.
1143
/// 01: Bits [63:32] of the source are copied to bits [95:64] of the
1144
/// returned vector.
1145
/// 10: Bits [95:64] of the source are copied to bits [95:64] of the
1146
/// returned vector.
1147
/// 11: Bits [127:96] of the source are copied to bits [95:64] of the
1148
/// returned vector.
1149
/// Bits [7:6]:
1150
/// 00: Bits [31:0] of the source are copied to bits [127:96] of the
1151
/// returned vector.
1152
/// 01: Bits [63:32] of the source are copied to bits [127:96] of the
1153
/// returned vector.
1154
/// 10: Bits [95:64] of the source are copied to bits [127:96] of the
1155
/// returned vector.
1156
/// 11: Bits [127:96] of the source are copied to bits [127:96] of the
1157
/// returned vector.
1158
/// Bits [1:0]:
1159
/// 00: Bits [159:128] of the source are copied to bits [159:128] of the
1160
/// returned vector.
1161
/// 01: Bits [191:160] of the source are copied to bits [159:128] of the
1162
/// returned vector.
1163
/// 10: Bits [223:192] of the source are copied to bits [159:128] of the
1164
/// returned vector.
1165
/// 11: Bits [255:224] of the source are copied to bits [159:128] of the
1166
/// returned vector.
1167
/// Bits [3:2]:
1168
/// 00: Bits [159:128] of the source are copied to bits [191:160] of the
1169
/// returned vector.
1170
/// 01: Bits [191:160] of the source are copied to bits [191:160] of the
1171
/// returned vector.
1172
/// 10: Bits [223:192] of the source are copied to bits [191:160] of the
1173
/// returned vector.
1174
/// 11: Bits [255:224] of the source are copied to bits [191:160] of the
1175
/// returned vector.
1176
/// Bits [5:4]:
1177
/// 00: Bits [159:128] of the source are copied to bits [223:192] of the
1178
/// returned vector.
1179
/// 01: Bits [191:160] of the source are copied to bits [223:192] of the
1180
/// returned vector.
1181
/// 10: Bits [223:192] of the source are copied to bits [223:192] of the
1182
/// returned vector.
1183
/// 11: Bits [255:224] of the source are copied to bits [223:192] of the
1184
/// returned vector.
1185
/// Bits [7:6]:
1186
/// 00: Bits [159:128] of the source are copied to bits [255:224] of the
1187
/// returned vector.
1188
/// 01: Bits [191:160] of the source are copied to bits [255:224] of the
1189
/// returned vector.
1190
/// 10: Bits [223:192] of the source are copied to bits [255:224] of the
1191
/// returned vector.
1192
/// 11: Bits [255:224] of the source are copied to bits [255:224] of the
1193
/// returned vector.
1194
/// \returns A 256-bit vector of [8 x float] containing the copied values.
1195
#define _mm256_permute_ps(A, C) __extension__ ({ \
1196
(__m256)__builtin_shufflevector((__v8sf)(__m256)(A), \
1197
(__v8sf)_mm256_undefined_ps(), \
1198
0 + (((C) >> 0) & 0x3), \
1199
0 + (((C) >> 2) & 0x3), \
1200
0 + (((C) >> 4) & 0x3), \
1201
0 + (((C) >> 6) & 0x3), \
1202
4 + (((C) >> 0) & 0x3), \
1203
4 + (((C) >> 2) & 0x3), \
1204
4 + (((C) >> 4) & 0x3), \
1205
4 + (((C) >> 6) & 0x3)); })
1206
1207
/// \brief Permutes 128-bit data values stored in two 256-bit vectors of
1208
/// [4 x double], as specified by the immediate integer operand.
1209
///
1210
/// \headerfile <x86intrin.h>
1211
///
1212
/// \code
1213
/// __m256d _mm256_permute2f128_pd(__m256d V1, __m256d V2, const int M);
1214
/// \endcode
1215
///
1216
/// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction.
1217
///
1218
/// \param V1
1219
/// A 256-bit vector of [4 x double].
1220
/// \param V2
1221
/// A 256-bit vector of [4 x double.
1222
/// \param M
1223
/// An immediate integer operand specifying how the values are to be
1224
/// permuted.
1225
/// Bits [1:0]:
1226
/// 00: Bits [127:0] of operand V1 are copied to bits [127:0] of the
1227
/// destination.
1228
/// 01: Bits [255:128] of operand V1 are copied to bits [127:0] of the
1229
/// destination.
1230
/// 10: Bits [127:0] of operand V2 are copied to bits [127:0] of the
1231
/// destination.
1232
/// 11: Bits [255:128] of operand V2 are copied to bits [127:0] of the
1233
/// destination.
1234
/// Bits [5:4]:
1235
/// 00: Bits [127:0] of operand V1 are copied to bits [255:128] of the
1236
/// destination.
1237
/// 01: Bits [255:128] of operand V1 are copied to bits [255:128] of the
1238
/// destination.
1239
/// 10: Bits [127:0] of operand V2 are copied to bits [255:128] of the
1240
/// destination.
1241
/// 11: Bits [255:128] of operand V2 are copied to bits [255:128] of the
1242
/// destination.
1243
/// \returns A 256-bit vector of [4 x double] containing the copied values.
1244
#define _mm256_permute2f128_pd(V1, V2, M) __extension__ ({ \
1245
(__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \
1246
(__v4df)(__m256d)(V2), (M)); })
1247
1248
/// \brief Permutes 128-bit data values stored in two 256-bit vectors of
1249
/// [8 x float], as specified by the immediate integer operand.
1250
///
1251
/// \headerfile <x86intrin.h>
1252
///
1253
/// \code
1254
/// __m256 _mm256_permute2f128_ps(__m256 V1, __m256 V2, const int M);
1255
/// \endcode
1256
///
1257
/// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction.
1258
///
1259
/// \param V1
1260
/// A 256-bit vector of [8 x float].
1261
/// \param V2
1262
/// A 256-bit vector of [8 x float].
1263
/// \param M
1264
/// An immediate integer operand specifying how the values are to be
1265
/// permuted.
1266
/// Bits [1:0]:
1267
/// 00: Bits [127:0] of operand V1 are copied to bits [127:0] of the
1268
/// destination.
1269
/// 01: Bits [255:128] of operand V1 are copied to bits [127:0] of the
1270
/// destination.
1271
/// 10: Bits [127:0] of operand V2 are copied to bits [127:0] of the
1272
/// destination.
1273
/// 11: Bits [255:128] of operand V2 are copied to bits [127:0] of the
1274
/// destination.
1275
/// Bits [5:4]:
1276
/// 00: Bits [127:0] of operand V1 are copied to bits [255:128] of the
1277
/// destination.
1278
/// 01: Bits [255:128] of operand V1 are copied to bits [255:128] of the
1279
/// destination.
1280
/// 10: Bits [127:0] of operand V2 are copied to bits [255:128] of the
1281
/// destination.
1282
/// 11: Bits [255:128] of operand V2 are copied to bits [255:128] of the
1283
/// destination.
1284
/// \returns A 256-bit vector of [8 x float] containing the copied values.
1285
#define _mm256_permute2f128_ps(V1, V2, M) __extension__ ({ \
1286
(__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \
1287
(__v8sf)(__m256)(V2), (M)); })
1288
1289
/// \brief Permutes 128-bit data values stored in two 256-bit integer vectors,
1290
/// as specified by the immediate integer operand.
1291
///
1292
/// \headerfile <x86intrin.h>
1293
///
1294
/// \code
1295
/// __m256i _mm256_permute2f128_si256(__m256i V1, __m256i V2, const int M);
1296
/// \endcode
1297
///
1298
/// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction.
1299
///
1300
/// \param V1
1301
/// A 256-bit integer vector.
1302
/// \param V2
1303
/// A 256-bit integer vector.
1304
/// \param M
1305
/// An immediate integer operand specifying how the values are to be copied.
1306
/// Bits [1:0]:
1307
/// 00: Bits [127:0] of operand V1 are copied to bits [127:0] of the
1308
/// destination.
1309
/// 01: Bits [255:128] of operand V1 are copied to bits [127:0] of the
1310
/// destination.
1311
/// 10: Bits [127:0] of operand V2 are copied to bits [127:0] of the
1312
/// destination.
1313
/// 11: Bits [255:128] of operand V2 are copied to bits [127:0] of the
1314
/// destination.
1315
/// Bits [5:4]:
1316
/// 00: Bits [127:0] of operand V1 are copied to bits [255:128] of the
1317
/// destination.
1318
/// 01: Bits [255:128] of operand V1 are copied to bits [255:128] of the
1319
/// destination.
1320
/// 10: Bits [127:0] of operand V2 are copied to bits [255:128] of the
1321
/// destination.
1322
/// 11: Bits [255:128] of operand V2 are copied to bits [255:128] of the
1323
/// destination.
1324
/// \returns A 256-bit integer vector containing the copied values.
1325
#define _mm256_permute2f128_si256(V1, V2, M) __extension__ ({ \
1326
(__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \
1327
(__v8si)(__m256i)(V2), (M)); })
1328
1329
/* Vector Blend */
1330
/// \brief Merges 64-bit double-precision data values stored in either of the
1331
/// two 256-bit vectors of [4 x double], as specified by the immediate
1332
/// integer operand.
1333
///
1334
/// \headerfile <x86intrin.h>
1335
///
1336
/// \code
1337
/// __m256d _mm256_blend_pd(__m256d V1, __m256d V2, const int M);
1338
/// \endcode
1339
///
1340
/// This intrinsic corresponds to the \c VBLENDPD / BLENDPD instruction.
1341
///
1342
/// \param V1
1343
/// A 256-bit vector of [4 x double].
1344
/// \param V2
1345
/// A 256-bit vector of [4 x double].
1346
/// \param M
1347
/// An immediate integer operand, with mask bits [3:0] specifying how the
1348
/// values are to be copied. The position of the mask bit corresponds to the
1349
/// index of a copied value. When a mask bit is 0, the corresponding 64-bit
1350
/// element in operand V1 is copied to the same position in the destination.
1351
/// When a mask bit is 1, the corresponding 64-bit element in operand V2 is
1352
/// copied to the same position in the destination.
1353
/// \returns A 256-bit vector of [4 x double] containing the copied values.
1354
#define _mm256_blend_pd(V1, V2, M) __extension__ ({ \
1355
(__m256d)__builtin_shufflevector((__v4df)(__m256d)(V1), \
1356
(__v4df)(__m256d)(V2), \
1357
(((M) & 0x01) ? 4 : 0), \
1358
(((M) & 0x02) ? 5 : 1), \
1359
(((M) & 0x04) ? 6 : 2), \
1360
(((M) & 0x08) ? 7 : 3)); })
1361
1362
/// \brief Merges 32-bit single-precision data values stored in either of the
1363
/// two 256-bit vectors of [8 x float], as specified by the immediate
1364
/// integer operand.
1365
///
1366
/// \headerfile <x86intrin.h>
1367
///
1368
/// \code
1369
/// __m256 _mm256_blend_ps(__m256 V1, __m256 V2, const int M);
1370
/// \endcode
1371
///
1372
/// This intrinsic corresponds to the \c VBLENDPS / BLENDPS instruction.
1373
///
1374
/// \param V1
1375
/// A 256-bit vector of [8 x float].
1376
/// \param V2
1377
/// A 256-bit vector of [8 x float].
1378
/// \param M
1379
/// An immediate integer operand, with mask bits [7:0] specifying how the
1380
/// values are to be copied. The position of the mask bit corresponds to the
1381
/// index of a copied value. When a mask bit is 0, the corresponding 32-bit
1382
/// element in operand V1 is copied to the same position in the destination.
1383
/// When a mask bit is 1, the corresponding 32-bit element in operand V2 is
1384
/// copied to the same position in the destination.
1385
/// \returns A 256-bit vector of [8 x float] containing the copied values.
1386
#define _mm256_blend_ps(V1, V2, M) __extension__ ({ \
1387
(__m256)__builtin_shufflevector((__v8sf)(__m256)(V1), \
1388
(__v8sf)(__m256)(V2), \
1389
(((M) & 0x01) ? 8 : 0), \
1390
(((M) & 0x02) ? 9 : 1), \
1391
(((M) & 0x04) ? 10 : 2), \
1392
(((M) & 0x08) ? 11 : 3), \
1393
(((M) & 0x10) ? 12 : 4), \
1394
(((M) & 0x20) ? 13 : 5), \
1395
(((M) & 0x40) ? 14 : 6), \
1396
(((M) & 0x80) ? 15 : 7)); })
1397
1398
/// \brief Merges 64-bit double-precision data values stored in either of the
1399
/// two 256-bit vectors of [4 x double], as specified by the 256-bit vector
1400
/// operand.
1401
///
1402
/// \headerfile <x86intrin.h>
1403
///
1404
/// This intrinsic corresponds to the \c VBLENDVPD / BLENDVPD instruction.
1405
///
1406
/// \param __a
1407
/// A 256-bit vector of [4 x double].
1408
/// \param __b
1409
/// A 256-bit vector of [4 x double].
1410
/// \param __c
1411
/// A 256-bit vector operand, with mask bits 255, 191, 127, and 63 specifying
1412
/// how the values are to be copied. The position of the mask bit corresponds
1413
/// to the most significant bit of a copied value. When a mask bit is 0, the
1414
/// corresponding 64-bit element in operand __a is copied to the same
1415
/// position in the destination. When a mask bit is 1, the corresponding
1416
/// 64-bit element in operand __b is copied to the same position in the
1417
/// destination.
1418
/// \returns A 256-bit vector of [4 x double] containing the copied values.
1419
static __inline __m256d __DEFAULT_FN_ATTRS
1420
_mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c)
1421
{
1422
return (__m256d)__builtin_ia32_blendvpd256(
1423
(__v4df)__a, (__v4df)__b, (__v4df)__c);
1424
}
1425
1426
/// \brief Merges 32-bit single-precision data values stored in either of the
1427
/// two 256-bit vectors of [8 x float], as specified by the 256-bit vector
1428
/// operand.
1429
///
1430
/// \headerfile <x86intrin.h>
1431
///
1432
/// This intrinsic corresponds to the \c VBLENDVPS / BLENDVPS instruction.
1433
///
1434
/// \param __a
1435
/// A 256-bit vector of [8 x float].
1436
/// \param __b
1437
/// A 256-bit vector of [8 x float].
1438
/// \param __c
1439
/// A 256-bit vector operand, with mask bits 255, 223, 191, 159, 127, 95, 63,
1440
/// and 31 specifying how the values are to be copied. The position of the
1441
/// mask bit corresponds to the most significant bit of a copied value. When
1442
/// a mask bit is 0, the corresponding 32-bit element in operand __a is
1443
/// copied to the same position in the destination. When a mask bit is 1, the
1444
/// corresponding 32-bit element in operand __b is copied to the same
1445
/// position in the destination.
1446
/// \returns A 256-bit vector of [8 x float] containing the copied values.
1447
static __inline __m256 __DEFAULT_FN_ATTRS
1448
_mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c)
1449
{
1450
return (__m256)__builtin_ia32_blendvps256(
1451
(__v8sf)__a, (__v8sf)__b, (__v8sf)__c);
1452
}
1453
1454
/* Vector Dot Product */
1455
/// \brief Computes two dot products in parallel, using the lower and upper
1456
/// halves of two [8 x float] vectors as input to the two computations, and
1457
/// returning the two dot products in the lower and upper halves of the
1458
/// [8 x float] result. The immediate integer operand controls which
1459
/// input elements will contribute to the dot product, and where the final
1460
/// results are returned. In general, for each dot product, the four
1461
/// corresponding elements of the input vectors are multiplied; the first
1462
/// two and second two products are summed, then the two sums are added to
1463
/// form the final result.
1464
///
1465
/// \headerfile <x86intrin.h>
1466
///
1467
/// \code
1468
/// __m256 _mm256_dp_ps(__m256 V1, __m256 V2, const int M);
1469
/// \endcode
1470
///
1471
/// This intrinsic corresponds to the \c VDPPS / DPPS instruction.
1472
///
1473
/// \param V1
1474
/// A vector of [8 x float] values, treated as two [4 x float] vectors.
1475
/// \param V2
1476
/// A vector of [8 x float] values, treated as two [4 x float] vectors.
1477
/// \param M
1478
/// An immediate integer argument. Bits [7:4] determine which elements of
1479
/// the input vectors are used, with bit [4] corresponding to the lowest
1480
/// element and bit [7] corresponding to the highest element of each [4 x
1481
/// float] subvector. If a bit is set, the corresponding elements from the
1482
/// two input vectors are used as an input for dot product; otherwise that
1483
/// input is treated as zero. Bits [3:0] determine which elements of the
1484
/// result will receive a copy of the final dot product, with bit [0]
1485
/// corresponding to the lowest element and bit [3] corresponding to the
1486
/// highest element of each [4 x float] subvector. If a bit is set, the dot
1487
/// product is returned in the corresponding element; otherwise that element
1488
/// is set to zero. The bitmask is applied in the same way to each of the
1489
/// two parallel dot product computations.
1490
/// \returns A 256-bit vector of [8 x float] containing the two dot products.
1491
#define _mm256_dp_ps(V1, V2, M) __extension__ ({ \
1492
(__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \
1493
(__v8sf)(__m256)(V2), (M)); })
1494
1495
/* Vector shuffle */
1496
/// \brief Selects 8 float values from the 256-bit operands of [8 x float], as
1497
/// specified by the immediate value operand. The four selected elements in
1498
/// each operand are copied to the destination according to the bits
1499
/// specified in the immediate operand. The selected elements from the first
1500
/// 256-bit operand are copied to bits [63:0] and bits [191:128] of the
1501
/// destination, and the selected elements from the second 256-bit operand
1502
/// are copied to bits [127:64] and bits [255:192] of the destination. For
1503
/// example, if bits [7:0] of the immediate operand contain a value of 0xFF,
1504
/// the 256-bit destination vector would contain the following values: b[7],
1505
/// b[7], a[7], a[7], b[3], b[3], a[3], a[3].
1506
///
1507
/// \headerfile <x86intrin.h>
1508
///
1509
/// \code
1510
/// __m256 _mm256_shuffle_ps(__m256 a, __m256 b, const int mask);
1511
/// \endcode
1512
///
1513
/// This intrinsic corresponds to the \c VSHUFPS / SHUFPS instruction.
1514
///
1515
/// \param a
1516
/// A 256-bit vector of [8 x float]. The four selected elements in this
1517
/// operand are copied to bits [63:0] and bits [191:128] in the destination,
1518
/// according to the bits specified in the immediate operand.
1519
/// \param b
1520
/// A 256-bit vector of [8 x float]. The four selected elements in this
1521
/// operand are copied to bits [127:64] and bits [255:192] in the
1522
/// destination, according to the bits specified in the immediate operand.
1523
/// \param mask
1524
/// An immediate value containing an 8-bit value specifying which elements to
1525
/// copy from a and b. Bits [3:0] specify the values copied from operand a.
1526
/// Bits [7:4] specify the values copied from operand b.
1527
/// The destinations within the 256-bit destination are assigned values as
1528
/// follows, according to the bit value assignments described below:
1529
/// Bits [1:0] are used to assign values to bits [31:0] and [159:128] in the
1530
/// destination.
1531
/// Bits [3:2] are used to assign values to bits [63:32] and [191:160] in the
1532
/// destination.
1533
/// Bits [5:4] are used to assign values to bits [95:64] and [223:192] in the
1534
/// destination.
1535
/// Bits [7:6] are used to assign values to bits [127:96] and [255:224] in
1536
/// the destination.
1537
/// Bit value assignments:
1538
/// 00: Bits [31:0] and [159:128] are copied from the selected operand.
1539
/// 01: Bits [63:32] and [191:160] are copied from the selected operand.
1540
/// 10: Bits [95:64] and [223:192] are copied from the selected operand.
1541
/// 11: Bits [127:96] and [255:224] are copied from the selected operand.
1542
/// \returns A 256-bit vector of [8 x float] containing the shuffled values.
1543
#define _mm256_shuffle_ps(a, b, mask) __extension__ ({ \
1544
(__m256)__builtin_shufflevector((__v8sf)(__m256)(a), \
1545
(__v8sf)(__m256)(b), \
1546
0 + (((mask) >> 0) & 0x3), \
1547
0 + (((mask) >> 2) & 0x3), \
1548
8 + (((mask) >> 4) & 0x3), \
1549
8 + (((mask) >> 6) & 0x3), \
1550
4 + (((mask) >> 0) & 0x3), \
1551
4 + (((mask) >> 2) & 0x3), \
1552
12 + (((mask) >> 4) & 0x3), \
1553
12 + (((mask) >> 6) & 0x3)); })
1554
1555
/// \brief Selects four double-precision values from the 256-bit operands of
1556
/// [4 x double], as specified by the immediate value operand. The selected
1557
/// elements from the first 256-bit operand are copied to bits [63:0] and
1558
/// bits [191:128] in the destination, and the selected elements from the
1559
/// second 256-bit operand are copied to bits [127:64] and bits [255:192] in
1560
/// the destination. For example, if bits [3:0] of the immediate operand
1561
/// contain a value of 0xF, the 256-bit destination vector would contain the
1562
/// following values: b[3], a[3], b[1], a[1].
1563
///
1564
/// \headerfile <x86intrin.h>
1565
///
1566
/// \code
1567
/// __m256d _mm256_shuffle_pd(__m256d a, __m256d b, const int mask);
1568
/// \endcode
1569
///
1570
/// This intrinsic corresponds to the \c VSHUFPD / SHUFPD instruction.
1571
///
1572
/// \param a
1573
/// A 256-bit vector of [4 x double].
1574
/// \param b
1575
/// A 256-bit vector of [4 x double].
1576
/// \param mask
1577
/// An immediate value containing 8-bit values specifying which elements to
1578
/// copy from a and b:
1579
/// Bit [0]=0: Bits [63:0] are copied from a to bits [63:0] of the
1580
/// destination.
1581
/// Bit [0]=1: Bits [127:64] are copied from a to bits [63:0] of the
1582
/// destination.
1583
/// Bit [1]=0: Bits [63:0] are copied from b to bits [127:64] of the
1584
/// destination.
1585
/// Bit [1]=1: Bits [127:64] are copied from b to bits [127:64] of the
1586
/// destination.
1587
/// Bit [2]=0: Bits [191:128] are copied from a to bits [191:128] of the
1588
/// destination.
1589
/// Bit [2]=1: Bits [255:192] are copied from a to bits [191:128] of the
1590
/// destination.
1591
/// Bit [3]=0: Bits [191:128] are copied from b to bits [255:192] of the
1592
/// destination.
1593
/// Bit [3]=1: Bits [255:192] are copied from b to bits [255:192] of the
1594
/// destination.
1595
/// \returns A 256-bit vector of [4 x double] containing the shuffled values.
1596
#define _mm256_shuffle_pd(a, b, mask) __extension__ ({ \
1597
(__m256d)__builtin_shufflevector((__v4df)(__m256d)(a), \
1598
(__v4df)(__m256d)(b), \
1599
0 + (((mask) >> 0) & 0x1), \
1600
4 + (((mask) >> 1) & 0x1), \
1601
2 + (((mask) >> 2) & 0x1), \
1602
6 + (((mask) >> 3) & 0x1)); })
1603
1604
/* Compare */
1605
#define _CMP_EQ_OQ 0x00 /* Equal (ordered, non-signaling) */
1606
#define _CMP_LT_OS 0x01 /* Less-than (ordered, signaling) */
1607
#define _CMP_LE_OS 0x02 /* Less-than-or-equal (ordered, signaling) */
1608
#define _CMP_UNORD_Q 0x03 /* Unordered (non-signaling) */
1609
#define _CMP_NEQ_UQ 0x04 /* Not-equal (unordered, non-signaling) */
1610
#define _CMP_NLT_US 0x05 /* Not-less-than (unordered, signaling) */
1611
#define _CMP_NLE_US 0x06 /* Not-less-than-or-equal (unordered, signaling) */
1612
#define _CMP_ORD_Q 0x07 /* Ordered (nonsignaling) */
1613
#define _CMP_EQ_UQ 0x08 /* Equal (unordered, non-signaling) */
1614
#define _CMP_NGE_US 0x09 /* Not-greater-than-or-equal (unord, signaling) */
1615
#define _CMP_NGT_US 0x0a /* Not-greater-than (unordered, signaling) */
1616
#define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling) */
1617
#define _CMP_NEQ_OQ 0x0c /* Not-equal (ordered, non-signaling) */
1618
#define _CMP_GE_OS 0x0d /* Greater-than-or-equal (ordered, signaling) */
1619
#define _CMP_GT_OS 0x0e /* Greater-than (ordered, signaling) */
1620
#define _CMP_TRUE_UQ 0x0f /* True (unordered, non-signaling) */
1621
#define _CMP_EQ_OS 0x10 /* Equal (ordered, signaling) */
1622
#define _CMP_LT_OQ 0x11 /* Less-than (ordered, non-signaling) */
1623
#define _CMP_LE_OQ 0x12 /* Less-than-or-equal (ordered, non-signaling) */
1624
#define _CMP_UNORD_S 0x13 /* Unordered (signaling) */
1625
#define _CMP_NEQ_US 0x14 /* Not-equal (unordered, signaling) */
1626
#define _CMP_NLT_UQ 0x15 /* Not-less-than (unordered, non-signaling) */
1627
#define _CMP_NLE_UQ 0x16 /* Not-less-than-or-equal (unord, non-signaling) */
1628
#define _CMP_ORD_S 0x17 /* Ordered (signaling) */
1629
#define _CMP_EQ_US 0x18 /* Equal (unordered, signaling) */
1630
#define _CMP_NGE_UQ 0x19 /* Not-greater-than-or-equal (unord, non-sign) */
1631
#define _CMP_NGT_UQ 0x1a /* Not-greater-than (unordered, non-signaling) */
1632
#define _CMP_FALSE_OS 0x1b /* False (ordered, signaling) */
1633
#define _CMP_NEQ_OS 0x1c /* Not-equal (ordered, signaling) */
1634
#define _CMP_GE_OQ 0x1d /* Greater-than-or-equal (ordered, non-signaling) */
1635
#define _CMP_GT_OQ 0x1e /* Greater-than (ordered, non-signaling) */
1636
#define _CMP_TRUE_US 0x1f /* True (unordered, signaling) */
1637
1638
/// \brief Compares each of the corresponding double-precision values of two
1639
/// 128-bit vectors of [2 x double], using the operation specified by the
1640
/// immediate integer operand. Returns a [2 x double] vector consisting of
1641
/// two doubles corresponding to the two comparison results: zero if the
1642
/// comparison is false, and all 1's if the comparison is true.
1643
///
1644
/// \headerfile <x86intrin.h>
1645
///
1646
/// \code
1647
/// __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c);
1648
/// \endcode
1649
///
1650
/// This intrinsic corresponds to the \c VCMPPD / CMPPD instruction.
1651
///
1652
/// \param a
1653
/// A 128-bit vector of [2 x double].
1654
/// \param b
1655
/// A 128-bit vector of [2 x double].
1656
/// \param c
1657
/// An immediate integer operand, with bits [4:0] specifying which comparison
1658
/// operation to use:
1659
/// 00h, 08h, 10h, 18h: Equal
1660
/// 01h, 09h, 11h, 19h: Less than
1661
/// 02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
1662
/// operands)
1663
/// 03h, 0Bh, 13h, 1Bh: Unordered
1664
/// 04h, 0Ch, 14h, 1Ch: Not equal
1665
/// 05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
1666
/// 06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
1667
/// (swapped operands)
1668
/// 07h, 0Fh, 17h, 1Fh: Ordered
1669
/// \returns A 128-bit vector of [2 x double] containing the comparison results.
1670
#define _mm_cmp_pd(a, b, c) __extension__ ({ \
1671
(__m128d)__builtin_ia32_cmppd((__v2df)(__m128d)(a), \
1672
(__v2df)(__m128d)(b), (c)); })
1673
1674
/// \brief Compares each of the corresponding values of two 128-bit vectors of
1675
/// [4 x float], using the operation specified by the immediate integer
1676
/// operand. Returns a [4 x float] vector consisting of four floats
1677
/// corresponding to the four comparison results: zero if the comparison is
1678
/// false, and all 1's if the comparison is true.
1679
///
1680
/// \headerfile <x86intrin.h>
1681
///
1682
/// \code
1683
/// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c);
1684
/// \endcode
1685
///
1686
/// This intrinsic corresponds to the \c VCMPPS / CMPPS instruction.
1687
///
1688
/// \param a
1689
/// A 128-bit vector of [4 x float].
1690
/// \param b
1691
/// A 128-bit vector of [4 x float].
1692
/// \param c
1693
/// An immediate integer operand, with bits [4:0] specifying which comparison
1694
/// operation to use:
1695
/// 00h, 08h, 10h, 18h: Equal
1696
/// 01h, 09h, 11h, 19h: Less than
1697
/// 02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
1698
/// operands)
1699
/// 03h, 0Bh, 13h, 1Bh: Unordered
1700
/// 04h, 0Ch, 14h, 1Ch: Not equal
1701
/// 05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
1702
/// 06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
1703
/// (swapped operands)
1704
/// 07h, 0Fh, 17h, 1Fh: Ordered
1705
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
1706
#define _mm_cmp_ps(a, b, c) __extension__ ({ \
1707
(__m128)__builtin_ia32_cmpps((__v4sf)(__m128)(a), \
1708
(__v4sf)(__m128)(b), (c)); })
1709
1710
/// \brief Compares each of the corresponding double-precision values of two
1711
/// 256-bit vectors of [4 x double], using the operation specified by the
1712
/// immediate integer operand. Returns a [4 x double] vector consisting of
1713
/// four doubles corresponding to the four comparison results: zero if the
1714
/// comparison is false, and all 1's if the comparison is true.
1715
///
1716
/// \headerfile <x86intrin.h>
1717
///
1718
/// \code
1719
/// __m256d _mm256_cmp_pd(__m256d a, __m256d b, const int c);
1720
/// \endcode
1721
///
1722
/// This intrinsic corresponds to the \c VCMPPD / CMPPD instruction.
1723
///
1724
/// \param a
1725
/// A 256-bit vector of [4 x double].
1726
/// \param b
1727
/// A 256-bit vector of [4 x double].
1728
/// \param c
1729
/// An immediate integer operand, with bits [4:0] specifying which comparison
1730
/// operation to use:
1731
/// 00h, 08h, 10h, 18h: Equal
1732
/// 01h, 09h, 11h, 19h: Less than
1733
/// 02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
1734
/// operands)
1735
/// 03h, 0Bh, 13h, 1Bh: Unordered
1736
/// 04h, 0Ch, 14h, 1Ch: Not equal
1737
/// 05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
1738
/// 06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
1739
/// (swapped operands)
1740
/// 07h, 0Fh, 17h, 1Fh: Ordered
1741
/// \returns A 256-bit vector of [4 x double] containing the comparison results.
1742
#define _mm256_cmp_pd(a, b, c) __extension__ ({ \
1743
(__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \
1744
(__v4df)(__m256d)(b), (c)); })
1745
1746
/// \brief Compares each of the corresponding values of two 256-bit vectors of
1747
/// [8 x float], using the operation specified by the immediate integer
1748
/// operand. Returns a [8 x float] vector consisting of eight floats
1749
/// corresponding to the eight comparison results: zero if the comparison is
1750
/// false, and all 1's if the comparison is true.
1751
///
1752
/// \headerfile <x86intrin.h>
1753
///
1754
/// \code
1755
/// __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int c);
1756
/// \endcode
1757
///
1758
/// This intrinsic corresponds to the \c VCMPPS / CMPPS instruction.
1759
///
1760
/// \param a
1761
/// A 256-bit vector of [8 x float].
1762
/// \param b
1763
/// A 256-bit vector of [8 x float].
1764
/// \param c
1765
/// An immediate integer operand, with bits [4:0] specifying which comparison
1766
/// operation to use:
1767
/// 00h, 08h, 10h, 18h: Equal
1768
/// 01h, 09h, 11h, 19h: Less than
1769
/// 02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
1770
/// operands)
1771
/// 03h, 0Bh, 13h, 1Bh: Unordered
1772
/// 04h, 0Ch, 14h, 1Ch: Not equal
1773
/// 05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
1774
/// 06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
1775
/// (swapped operands)
1776
/// 07h, 0Fh, 17h, 1Fh: Ordered
1777
/// \returns A 256-bit vector of [8 x float] containing the comparison results.
1778
#define _mm256_cmp_ps(a, b, c) __extension__ ({ \
1779
(__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \
1780
(__v8sf)(__m256)(b), (c)); })
1781
1782
/// \brief Compares each of the corresponding scalar double-precision values of
1783
/// two 128-bit vectors of [2 x double], using the operation specified by the
1784
/// immediate integer operand. If the result is true, all 64 bits of the
1785
/// destination vector are set; otherwise they are cleared.
1786
///
1787
/// \headerfile <x86intrin.h>
1788
///
1789
/// \code
1790
/// __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c);
1791
/// \endcode
1792
///
1793
/// This intrinsic corresponds to the \c VCMPSD / CMPSD instruction.
1794
///
1795
/// \param a
1796
/// A 128-bit vector of [2 x double].
1797
/// \param b
1798
/// A 128-bit vector of [2 x double].
1799
/// \param c
1800
/// An immediate integer operand, with bits [4:0] specifying which comparison
1801
/// operation to use:
1802
/// 00h, 08h, 10h, 18h: Equal
1803
/// 01h, 09h, 11h, 19h: Less than
1804
/// 02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
1805
/// operands)
1806
/// 03h, 0Bh, 13h, 1Bh: Unordered
1807
/// 04h, 0Ch, 14h, 1Ch: Not equal
1808
/// 05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
1809
/// 06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
1810
/// (swapped operands)
1811
/// 07h, 0Fh, 17h, 1Fh: Ordered
1812
/// \returns A 128-bit vector of [2 x double] containing the comparison results.
1813
#define _mm_cmp_sd(a, b, c) __extension__ ({ \
1814
(__m128d)__builtin_ia32_cmpsd((__v2df)(__m128d)(a), \
1815
(__v2df)(__m128d)(b), (c)); })
1816
1817
/// \brief Compares each of the corresponding scalar values of two 128-bit
1818
/// vectors of [4 x float], using the operation specified by the immediate
1819
/// integer operand. If the result is true, all 32 bits of the destination
1820
/// vector are set; otherwise they are cleared.
1821
///
1822
/// \headerfile <x86intrin.h>
1823
///
1824
/// \code
1825
/// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c);
1826
/// \endcode
1827
///
1828
/// This intrinsic corresponds to the \c VCMPSS / CMPSS instruction.
1829
///
1830
/// \param a
1831
/// A 128-bit vector of [4 x float].
1832
/// \param b
1833
/// A 128-bit vector of [4 x float].
1834
/// \param c
1835
/// An immediate integer operand, with bits [4:0] specifying which comparison
1836
/// operation to use:
1837
/// 00h, 08h, 10h, 18h: Equal
1838
/// 01h, 09h, 11h, 19h: Less than
1839
/// 02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
1840
/// operands)
1841
/// 03h, 0Bh, 13h, 1Bh: Unordered
1842
/// 04h, 0Ch, 14h, 1Ch: Not equal
1843
/// 05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
1844
/// 06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
1845
/// (swapped operands)
1846
/// 07h, 0Fh, 17h, 1Fh: Ordered
1847
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
1848
#define _mm_cmp_ss(a, b, c) __extension__ ({ \
1849
(__m128)__builtin_ia32_cmpss((__v4sf)(__m128)(a), \
1850
(__v4sf)(__m128)(b), (c)); })
1851
1852
/// \brief Takes a [8 x i32] vector and returns the vector element value
1853
/// indexed by the immediate constant operand.
1854
///
1855
/// \headerfile <x86intrin.h>
1856
///
1857
/// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
1858
/// EXTRACTF128+COMPOSITE instruction.
1859
///
1860
/// \param __a
1861
/// A 256-bit vector of [8 x i32].
1862
/// \param __imm
1863
/// An immediate integer operand with bits [2:0] determining which vector
1864
/// element is extracted and returned.
1865
/// \returns A 32-bit integer containing the extracted 32 bits of extended
1866
/// packed data.
1867
static __inline int __DEFAULT_FN_ATTRS
1868
_mm256_extract_epi32(__m256i __a, const int __imm)
1869
{
1870
__v8si __b = (__v8si)__a;
1871
return __b[__imm & 7];
1872
}
1873
1874
/// \brief Takes a [16 x i16] vector and returns the vector element value
1875
/// indexed by the immediate constant operand.
1876
///
1877
/// \headerfile <x86intrin.h>
1878
///
1879
/// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
1880
/// EXTRACTF128+COMPOSITE instruction.
1881
///
1882
/// \param __a
1883
/// A 256-bit integer vector of [16 x i16].
1884
/// \param __imm
1885
/// An immediate integer operand with bits [3:0] determining which vector
1886
/// element is extracted and returned.
1887
/// \returns A 32-bit integer containing the extracted 16 bits of zero extended
1888
/// packed data.
1889
static __inline int __DEFAULT_FN_ATTRS
1890
_mm256_extract_epi16(__m256i __a, const int __imm)
1891
{
1892
__v16hi __b = (__v16hi)__a;
1893
return (unsigned short)__b[__imm & 15];
1894
}
1895
1896
/// \brief Takes a [32 x i8] vector and returns the vector element value
1897
/// indexed by the immediate constant operand.
1898
///
1899
/// \headerfile <x86intrin.h>
1900
///
1901
/// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
1902
/// EXTRACTF128+COMPOSITE instruction.
1903
///
1904
/// \param __a
1905
/// A 256-bit integer vector of [32 x i8].
1906
/// \param __imm
1907
/// An immediate integer operand with bits [4:0] determining which vector
1908
/// element is extracted and returned.
1909
/// \returns A 32-bit integer containing the extracted 8 bits of zero extended
1910
/// packed data.
1911
static __inline int __DEFAULT_FN_ATTRS
1912
_mm256_extract_epi8(__m256i __a, const int __imm)
1913
{
1914
__v32qi __b = (__v32qi)__a;
1915
return (unsigned char)__b[__imm & 31];
1916
}
1917
1918
#ifdef __x86_64__
1919
/// \brief Takes a [4 x i64] vector and returns the vector element value
1920
/// indexed by the immediate constant operand.
1921
///
1922
/// \headerfile <x86intrin.h>
1923
///
1924
/// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
1925
/// EXTRACTF128+COMPOSITE instruction.
1926
///
1927
/// \param __a
1928
/// A 256-bit integer vector of [4 x i64].
1929
/// \param __imm
1930
/// An immediate integer operand with bits [1:0] determining which vector
1931
/// element is extracted and returned.
1932
/// \returns A 64-bit integer containing the extracted 64 bits of extended
1933
/// packed data.
1934
static __inline long long __DEFAULT_FN_ATTRS
1935
_mm256_extract_epi64(__m256i __a, const int __imm)
1936
{
1937
__v4di __b = (__v4di)__a;
1938
return __b[__imm & 3];
1939
}
1940
#endif
1941
1942
/// \brief Takes a [8 x i32] vector and replaces the vector element value
1943
/// indexed by the immediate constant operand by a new value. Returns the
1944
/// modified vector.
1945
///
1946
/// \headerfile <x86intrin.h>
1947
///
1948
/// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
1949
/// INSERTF128+COMPOSITE instruction.
1950
///
1951
/// \param __a
1952
/// A vector of [8 x i32] to be used by the insert operation.
1953
/// \param __b
1954
/// An integer value. The replacement value for the insert operation.
1955
/// \param __imm
1956
/// An immediate integer specifying the index of the vector element to be
1957
/// replaced.
1958
/// \returns A copy of vector __a, after replacing its element indexed by __imm
1959
/// with __b.
1960
static __inline __m256i __DEFAULT_FN_ATTRS
1961
_mm256_insert_epi32(__m256i __a, int __b, int const __imm)
1962
{
1963
__v8si __c = (__v8si)__a;
1964
__c[__imm & 7] = __b;
1965
return (__m256i)__c;
1966
}
1967
1968
1969
/// \brief Takes a [16 x i16] vector and replaces the vector element value
1970
/// indexed by the immediate constant operand with a new value. Returns the
1971
/// modified vector.
1972
///
1973
/// \headerfile <x86intrin.h>
1974
///
1975
/// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
1976
/// INSERTF128+COMPOSITE instruction.
1977
///
1978
/// \param __a
1979
/// A vector of [16 x i16] to be used by the insert operation.
1980
/// \param __b
1981
/// An i16 integer value. The replacement value for the insert operation.
1982
/// \param __imm
1983
/// An immediate integer specifying the index of the vector element to be
1984
/// replaced.
1985
/// \returns A copy of vector __a, after replacing its element indexed by __imm
1986
/// with __b.
1987
static __inline __m256i __DEFAULT_FN_ATTRS
1988
_mm256_insert_epi16(__m256i __a, int __b, int const __imm)
1989
{
1990
__v16hi __c = (__v16hi)__a;
1991
__c[__imm & 15] = __b;
1992
return (__m256i)__c;
1993
}
1994
1995
/// \brief Takes a [32 x i8] vector and replaces the vector element value
1996
/// indexed by the immediate constant operand with a new value. Returns the
1997
/// modified vector.
1998
///
1999
/// \headerfile <x86intrin.h>
2000
///
2001
/// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
2002
/// INSERTF128+COMPOSITE instruction.
2003
///
2004
/// \param __a
2005
/// A vector of [32 x i8] to be used by the insert operation.
2006
/// \param __b
2007
/// An i8 integer value. The replacement value for the insert operation.
2008
/// \param __imm
2009
/// An immediate integer specifying the index of the vector element to be
2010
/// replaced.
2011
/// \returns A copy of vector __a, after replacing its element indexed by __imm
2012
/// with __b.
2013
static __inline __m256i __DEFAULT_FN_ATTRS
2014
_mm256_insert_epi8(__m256i __a, int __b, int const __imm)
2015
{
2016
__v32qi __c = (__v32qi)__a;
2017
__c[__imm & 31] = __b;
2018
return (__m256i)__c;
2019
}
2020
2021
#ifdef __x86_64__
2022
/// \brief Takes a [4 x i64] vector and replaces the vector element value
2023
/// indexed by the immediate constant operand with a new value. Returns the
2024
/// modified vector.
2025
///
2026
/// \headerfile <x86intrin.h>
2027
///
2028
/// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
2029
/// INSERTF128+COMPOSITE instruction.
2030
///
2031
/// \param __a
2032
/// A vector of [4 x i64] to be used by the insert operation.
2033
/// \param __b
2034
/// A 64-bit integer value. The replacement value for the insert operation.
2035
/// \param __imm
2036
/// An immediate integer specifying the index of the vector element to be
2037
/// replaced.
2038
/// \returns A copy of vector __a, after replacing its element indexed by __imm
2039
/// with __b.
2040
static __inline __m256i __DEFAULT_FN_ATTRS
2041
_mm256_insert_epi64(__m256i __a, long long __b, int const __imm)
2042
{
2043
__v4di __c = (__v4di)__a;
2044
__c[__imm & 3] = __b;
2045
return (__m256i)__c;
2046
}
2047
#endif
2048
2049
/* Conversion */
2050
/// \brief Converts a vector of [4 x i32] into a vector of [4 x double].
2051
///
2052
/// \headerfile <x86intrin.h>
2053
///
2054
/// This intrinsic corresponds to the \c VCVTDQ2PD / CVTDQ2PD instruction.
2055
///
2056
/// \param __a
2057
/// A 128-bit integer vector of [4 x i32].
2058
/// \returns A 256-bit vector of [4 x double] containing the converted values.
2059
static __inline __m256d __DEFAULT_FN_ATTRS
2060
_mm256_cvtepi32_pd(__m128i __a)
2061
{
2062
return (__m256d)__builtin_convertvector((__v4si)__a, __v4df);
2063
}
2064
2065
/// \brief Converts a vector of [8 x i32] into a vector of [8 x float].
2066
///
2067
/// \headerfile <x86intrin.h>
2068
///
2069
/// This intrinsic corresponds to the \c VCVTDQ2PS / CVTDQ2PS instruction.
2070
///
2071
/// \param __a
2072
/// A 256-bit integer vector.
2073
/// \returns A 256-bit vector of [8 x float] containing the converted values.
2074
static __inline __m256 __DEFAULT_FN_ATTRS
2075
_mm256_cvtepi32_ps(__m256i __a)
2076
{
2077
return (__m256)__builtin_ia32_cvtdq2ps256((__v8si) __a);
2078
}
2079
2080
/// \brief Converts a 256-bit vector of [4 x double] into a 128-bit vector of
2081
/// [4 x float].
2082
///
2083
/// \headerfile <x86intrin.h>
2084
///
2085
/// This intrinsic corresponds to the \c VCVTPD2PS / CVTPD2PS instruction.
2086
///
2087
/// \param __a
2088
/// A 256-bit vector of [4 x double].
2089
/// \returns A 128-bit vector of [4 x float] containing the converted values.
2090
static __inline __m128 __DEFAULT_FN_ATTRS
2091
_mm256_cvtpd_ps(__m256d __a)
2092
{
2093
return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a);
2094
}
2095
2096
/// \brief Converts a vector of [8 x float] into a vector of [8 x i32].
2097
///
2098
/// \headerfile <x86intrin.h>
2099
///
2100
/// This intrinsic corresponds to the \c VCVTPS2DQ / CVTPS2DQ instruction.
2101
///
2102
/// \param __a
2103
/// A 256-bit vector of [8 x float].
2104
/// \returns A 256-bit integer vector containing the converted values.
2105
static __inline __m256i __DEFAULT_FN_ATTRS
2106
_mm256_cvtps_epi32(__m256 __a)
2107
{
2108
return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a);
2109
}
2110
2111
static __inline __m256d __DEFAULT_FN_ATTRS
2112
_mm256_cvtps_pd(__m128 __a)
2113
{
2114
return (__m256d)__builtin_convertvector((__v4sf)__a, __v4df);
2115
}
2116
2117
static __inline __m128i __DEFAULT_FN_ATTRS
2118
_mm256_cvttpd_epi32(__m256d __a)
2119
{
2120
return (__m128i)__builtin_convertvector((__v4df) __a, __v4si);
2121
}
2122
2123
static __inline __m128i __DEFAULT_FN_ATTRS
2124
_mm256_cvtpd_epi32(__m256d __a)
2125
{
2126
return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a);
2127
}
2128
2129
static __inline __m256i __DEFAULT_FN_ATTRS
2130
_mm256_cvttps_epi32(__m256 __a)
2131
{
2132
return (__m256i)__builtin_convertvector((__v8sf) __a, __v8si);
2133
}
2134
2135
static __inline double __DEFAULT_FN_ATTRS
2136
_mm256_cvtsd_f64(__m256d __a)
2137
{
2138
return __a[0];
2139
}
2140
2141
static __inline int __DEFAULT_FN_ATTRS
2142
_mm256_cvtsi256_si32(__m256i __a)
2143
{
2144
__v8si __b = (__v8si)__a;
2145
return __b[0];
2146
}
2147
2148
static __inline float __DEFAULT_FN_ATTRS
2149
_mm256_cvtss_f32(__m256 __a)
2150
{
2151
return __a[0];
2152
}
2153
2154
/* Vector replicate */
2155
static __inline __m256 __DEFAULT_FN_ATTRS
2156
_mm256_movehdup_ps(__m256 __a)
2157
{
2158
return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 1, 1, 3, 3, 5, 5, 7, 7);
2159
}
2160
2161
static __inline __m256 __DEFAULT_FN_ATTRS
2162
_mm256_moveldup_ps(__m256 __a)
2163
{
2164
return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 0, 2, 2, 4, 4, 6, 6);
2165
}
2166
2167
static __inline __m256d __DEFAULT_FN_ATTRS
2168
_mm256_movedup_pd(__m256d __a)
2169
{
2170
return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 0, 2, 2);
2171
}
2172
2173
/* Unpack and Interleave */
2174
static __inline __m256d __DEFAULT_FN_ATTRS
2175
_mm256_unpackhi_pd(__m256d __a, __m256d __b)
2176
{
2177
return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 1, 5, 1+2, 5+2);
2178
}
2179
2180
static __inline __m256d __DEFAULT_FN_ATTRS
2181
_mm256_unpacklo_pd(__m256d __a, __m256d __b)
2182
{
2183
return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 0, 4, 0+2, 4+2);
2184
}
2185
2186
static __inline __m256 __DEFAULT_FN_ATTRS
2187
_mm256_unpackhi_ps(__m256 __a, __m256 __b)
2188
{
2189
return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
2190
}
2191
2192
static __inline __m256 __DEFAULT_FN_ATTRS
2193
_mm256_unpacklo_ps(__m256 __a, __m256 __b)
2194
{
2195
return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
2196
}
2197
2198
/* Bit Test */
2199
static __inline int __DEFAULT_FN_ATTRS
2200
_mm_testz_pd(__m128d __a, __m128d __b)
2201
{
2202
return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b);
2203
}
2204
2205
static __inline int __DEFAULT_FN_ATTRS
2206
_mm_testc_pd(__m128d __a, __m128d __b)
2207
{
2208
return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b);
2209
}
2210
2211
static __inline int __DEFAULT_FN_ATTRS
2212
_mm_testnzc_pd(__m128d __a, __m128d __b)
2213
{
2214
return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b);
2215
}
2216
2217
static __inline int __DEFAULT_FN_ATTRS
2218
_mm_testz_ps(__m128 __a, __m128 __b)
2219
{
2220
return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b);
2221
}
2222
2223
static __inline int __DEFAULT_FN_ATTRS
2224
_mm_testc_ps(__m128 __a, __m128 __b)
2225
{
2226
return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b);
2227
}
2228
2229
static __inline int __DEFAULT_FN_ATTRS
2230
_mm_testnzc_ps(__m128 __a, __m128 __b)
2231
{
2232
return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b);
2233
}
2234
2235
static __inline int __DEFAULT_FN_ATTRS
2236
_mm256_testz_pd(__m256d __a, __m256d __b)
2237
{
2238
return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b);
2239
}
2240
2241
static __inline int __DEFAULT_FN_ATTRS
2242
_mm256_testc_pd(__m256d __a, __m256d __b)
2243
{
2244
return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b);
2245
}
2246
2247
static __inline int __DEFAULT_FN_ATTRS
2248
_mm256_testnzc_pd(__m256d __a, __m256d __b)
2249
{
2250
return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b);
2251
}
2252
2253
static __inline int __DEFAULT_FN_ATTRS
2254
_mm256_testz_ps(__m256 __a, __m256 __b)
2255
{
2256
return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b);
2257
}
2258
2259
static __inline int __DEFAULT_FN_ATTRS
2260
_mm256_testc_ps(__m256 __a, __m256 __b)
2261
{
2262
return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b);
2263
}
2264
2265
static __inline int __DEFAULT_FN_ATTRS
2266
_mm256_testnzc_ps(__m256 __a, __m256 __b)
2267
{
2268
return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b);
2269
}
2270
2271
static __inline int __DEFAULT_FN_ATTRS
2272
_mm256_testz_si256(__m256i __a, __m256i __b)
2273
{
2274
return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b);
2275
}
2276
2277
static __inline int __DEFAULT_FN_ATTRS
2278
_mm256_testc_si256(__m256i __a, __m256i __b)
2279
{
2280
return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b);
2281
}
2282
2283
static __inline int __DEFAULT_FN_ATTRS
2284
_mm256_testnzc_si256(__m256i __a, __m256i __b)
2285
{
2286
return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b);
2287
}
2288
2289
/* Vector extract sign mask */
2290
static __inline int __DEFAULT_FN_ATTRS
2291
_mm256_movemask_pd(__m256d __a)
2292
{
2293
return __builtin_ia32_movmskpd256((__v4df)__a);
2294
}
2295
2296
static __inline int __DEFAULT_FN_ATTRS
2297
_mm256_movemask_ps(__m256 __a)
2298
{
2299
return __builtin_ia32_movmskps256((__v8sf)__a);
2300
}
2301
2302
/* Vector __zero */
2303
static __inline void __DEFAULT_FN_ATTRS
2304
_mm256_zeroall(void)
2305
{
2306
__builtin_ia32_vzeroall();
2307
}
2308
2309
static __inline void __DEFAULT_FN_ATTRS
2310
_mm256_zeroupper(void)
2311
{
2312
__builtin_ia32_vzeroupper();
2313
}
2314
2315
/* Vector load with broadcast */
2316
static __inline __m128 __DEFAULT_FN_ATTRS
2317
_mm_broadcast_ss(float const *__a)
2318
{
2319
float __f = *__a;
2320
return (__m128)(__v4sf){ __f, __f, __f, __f };
2321
}
2322
2323
static __inline __m256d __DEFAULT_FN_ATTRS
2324
_mm256_broadcast_sd(double const *__a)
2325
{
2326
double __d = *__a;
2327
return (__m256d)(__v4df){ __d, __d, __d, __d };
2328
}
2329
2330
static __inline __m256 __DEFAULT_FN_ATTRS
2331
_mm256_broadcast_ss(float const *__a)
2332
{
2333
float __f = *__a;
2334
return (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f };
2335
}
2336
2337
static __inline __m256d __DEFAULT_FN_ATTRS
2338
_mm256_broadcast_pd(__m128d const *__a)
2339
{
2340
return (__m256d)__builtin_ia32_vbroadcastf128_pd256((__v2df const *)__a);
2341
}
2342
2343
static __inline __m256 __DEFAULT_FN_ATTRS
2344
_mm256_broadcast_ps(__m128 const *__a)
2345
{
2346
return (__m256)__builtin_ia32_vbroadcastf128_ps256((__v4sf const *)__a);
2347
}
2348
2349
/* SIMD load ops */
2350
static __inline __m256d __DEFAULT_FN_ATTRS
2351
_mm256_load_pd(double const *__p)
2352
{
2353
return *(__m256d *)__p;
2354
}
2355
2356
static __inline __m256 __DEFAULT_FN_ATTRS
2357
_mm256_load_ps(float const *__p)
2358
{
2359
return *(__m256 *)__p;
2360
}
2361
2362
static __inline __m256d __DEFAULT_FN_ATTRS
2363
_mm256_loadu_pd(double const *__p)
2364
{
2365
struct __loadu_pd {
2366
__m256d __v;
2367
} __attribute__((__packed__, __may_alias__));
2368
return ((struct __loadu_pd*)__p)->__v;
2369
}
2370
2371
static __inline __m256 __DEFAULT_FN_ATTRS
2372
_mm256_loadu_ps(float const *__p)
2373
{
2374
struct __loadu_ps {
2375
__m256 __v;
2376
} __attribute__((__packed__, __may_alias__));
2377
return ((struct __loadu_ps*)__p)->__v;
2378
}
2379
2380
static __inline __m256i __DEFAULT_FN_ATTRS
2381
_mm256_load_si256(__m256i const *__p)
2382
{
2383
return *__p;
2384
}
2385
2386
static __inline __m256i __DEFAULT_FN_ATTRS
2387
_mm256_loadu_si256(__m256i const *__p)
2388
{
2389
struct __loadu_si256 {
2390
__m256i __v;
2391
} __attribute__((__packed__, __may_alias__));
2392
return ((struct __loadu_si256*)__p)->__v;
2393
}
2394
2395
static __inline __m256i __DEFAULT_FN_ATTRS
2396
_mm256_lddqu_si256(__m256i const *__p)
2397
{
2398
return (__m256i)__builtin_ia32_lddqu256((char const *)__p);
2399
}
2400
2401
/* SIMD store ops */
2402
static __inline void __DEFAULT_FN_ATTRS
2403
_mm256_store_pd(double *__p, __m256d __a)
2404
{
2405
*(__m256d *)__p = __a;
2406
}
2407
2408
static __inline void __DEFAULT_FN_ATTRS
2409
_mm256_store_ps(float *__p, __m256 __a)
2410
{
2411
*(__m256 *)__p = __a;
2412
}
2413
2414
static __inline void __DEFAULT_FN_ATTRS
2415
_mm256_storeu_pd(double *__p, __m256d __a)
2416
{
2417
struct __storeu_pd {
2418
__m256d __v;
2419
} __attribute__((__packed__, __may_alias__));
2420
((struct __storeu_pd*)__p)->__v = __a;
2421
}
2422
2423
static __inline void __DEFAULT_FN_ATTRS
2424
_mm256_storeu_ps(float *__p, __m256 __a)
2425
{
2426
struct __storeu_ps {
2427
__m256 __v;
2428
} __attribute__((__packed__, __may_alias__));
2429
((struct __storeu_ps*)__p)->__v = __a;
2430
}
2431
2432
static __inline void __DEFAULT_FN_ATTRS
2433
_mm256_store_si256(__m256i *__p, __m256i __a)
2434
{
2435
*__p = __a;
2436
}
2437
2438
static __inline void __DEFAULT_FN_ATTRS
2439
_mm256_storeu_si256(__m256i *__p, __m256i __a)
2440
{
2441
struct __storeu_si256 {
2442
__m256i __v;
2443
} __attribute__((__packed__, __may_alias__));
2444
((struct __storeu_si256*)__p)->__v = __a;
2445
}
2446
2447
/* Conditional load ops */
2448
static __inline __m128d __DEFAULT_FN_ATTRS
2449
_mm_maskload_pd(double const *__p, __m128i __m)
2450
{
2451
return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m);
2452
}
2453
2454
static __inline __m256d __DEFAULT_FN_ATTRS
2455
_mm256_maskload_pd(double const *__p, __m256i __m)
2456
{
2457
return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p,
2458
(__v4di)__m);
2459
}
2460
2461
static __inline __m128 __DEFAULT_FN_ATTRS
2462
_mm_maskload_ps(float const *__p, __m128i __m)
2463
{
2464
return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m);
2465
}
2466
2467
static __inline __m256 __DEFAULT_FN_ATTRS
2468
_mm256_maskload_ps(float const *__p, __m256i __m)
2469
{
2470
return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m);
2471
}
2472
2473
/* Conditional store ops */
2474
static __inline void __DEFAULT_FN_ATTRS
2475
_mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a)
2476
{
2477
__builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a);
2478
}
2479
2480
static __inline void __DEFAULT_FN_ATTRS
2481
_mm_maskstore_pd(double *__p, __m128i __m, __m128d __a)
2482
{
2483
__builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a);
2484
}
2485
2486
static __inline void __DEFAULT_FN_ATTRS
2487
_mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a)
2488
{
2489
__builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a);
2490
}
2491
2492
static __inline void __DEFAULT_FN_ATTRS
2493
_mm_maskstore_ps(float *__p, __m128i __m, __m128 __a)
2494
{
2495
__builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a);
2496
}
2497
2498
/* Cacheability support ops */
2499
static __inline void __DEFAULT_FN_ATTRS
2500
_mm256_stream_si256(__m256i *__a, __m256i __b)
2501
{
2502
__builtin_nontemporal_store((__v4di)__b, (__v4di*)__a);
2503
}
2504
2505
static __inline void __DEFAULT_FN_ATTRS
2506
_mm256_stream_pd(double *__a, __m256d __b)
2507
{
2508
__builtin_nontemporal_store((__v4df)__b, (__v4df*)__a);
2509
}
2510
2511
static __inline void __DEFAULT_FN_ATTRS
2512
_mm256_stream_ps(float *__p, __m256 __a)
2513
{
2514
__builtin_nontemporal_store((__v8sf)__a, (__v8sf*)__p);
2515
}
2516
2517
/* Create vectors */
2518
static __inline__ __m256d __DEFAULT_FN_ATTRS
2519
_mm256_undefined_pd(void)
2520
{
2521
return (__m256d)__builtin_ia32_undef256();
2522
}
2523
2524
static __inline__ __m256 __DEFAULT_FN_ATTRS
2525
_mm256_undefined_ps(void)
2526
{
2527
return (__m256)__builtin_ia32_undef256();
2528
}
2529
2530
static __inline__ __m256i __DEFAULT_FN_ATTRS
2531
_mm256_undefined_si256(void)
2532
{
2533
return (__m256i)__builtin_ia32_undef256();
2534
}
2535
2536
static __inline __m256d __DEFAULT_FN_ATTRS
2537
_mm256_set_pd(double __a, double __b, double __c, double __d)
2538
{
2539
return (__m256d){ __d, __c, __b, __a };
2540
}
2541
2542
static __inline __m256 __DEFAULT_FN_ATTRS
2543
_mm256_set_ps(float __a, float __b, float __c, float __d,
2544
float __e, float __f, float __g, float __h)
2545
{
2546
return (__m256){ __h, __g, __f, __e, __d, __c, __b, __a };
2547
}
2548
2549
static __inline __m256i __DEFAULT_FN_ATTRS
2550
_mm256_set_epi32(int __i0, int __i1, int __i2, int __i3,
2551
int __i4, int __i5, int __i6, int __i7)
2552
{
2553
return (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 };
2554
}
2555
2556
static __inline __m256i __DEFAULT_FN_ATTRS
2557
_mm256_set_epi16(short __w15, short __w14, short __w13, short __w12,
2558
short __w11, short __w10, short __w09, short __w08,
2559
short __w07, short __w06, short __w05, short __w04,
2560
short __w03, short __w02, short __w01, short __w00)
2561
{
2562
return (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06,
2563
__w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 };
2564
}
2565
2566
static __inline __m256i __DEFAULT_FN_ATTRS
2567
_mm256_set_epi8(char __b31, char __b30, char __b29, char __b28,
2568
char __b27, char __b26, char __b25, char __b24,
2569
char __b23, char __b22, char __b21, char __b20,
2570
char __b19, char __b18, char __b17, char __b16,
2571
char __b15, char __b14, char __b13, char __b12,
2572
char __b11, char __b10, char __b09, char __b08,
2573
char __b07, char __b06, char __b05, char __b04,
2574
char __b03, char __b02, char __b01, char __b00)
2575
{
2576
return (__m256i)(__v32qi){
2577
__b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
2578
__b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
2579
__b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
2580
__b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31
2581
};
2582
}
2583
2584
static __inline __m256i __DEFAULT_FN_ATTRS
2585
_mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d)
2586
{
2587
return (__m256i)(__v4di){ __d, __c, __b, __a };
2588
}
2589
2590
/* Create vectors with elements in reverse order */
2591
static __inline __m256d __DEFAULT_FN_ATTRS
2592
_mm256_setr_pd(double __a, double __b, double __c, double __d)
2593
{
2594
return (__m256d){ __a, __b, __c, __d };
2595
}
2596
2597
static __inline __m256 __DEFAULT_FN_ATTRS
2598
_mm256_setr_ps(float __a, float __b, float __c, float __d,
2599
float __e, float __f, float __g, float __h)
2600
{
2601
return (__m256){ __a, __b, __c, __d, __e, __f, __g, __h };
2602
}
2603
2604
static __inline __m256i __DEFAULT_FN_ATTRS
2605
_mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3,
2606
int __i4, int __i5, int __i6, int __i7)
2607
{
2608
return (__m256i)(__v8si){ __i0, __i1, __i2, __i3, __i4, __i5, __i6, __i7 };
2609
}
2610
2611
static __inline __m256i __DEFAULT_FN_ATTRS
2612
_mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12,
2613
short __w11, short __w10, short __w09, short __w08,
2614
short __w07, short __w06, short __w05, short __w04,
2615
short __w03, short __w02, short __w01, short __w00)
2616
{
2617
return (__m256i)(__v16hi){ __w15, __w14, __w13, __w12, __w11, __w10, __w09,
2618
__w08, __w07, __w06, __w05, __w04, __w03, __w02, __w01, __w00 };
2619
}
2620
2621
static __inline __m256i __DEFAULT_FN_ATTRS
2622
_mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28,
2623
char __b27, char __b26, char __b25, char __b24,
2624
char __b23, char __b22, char __b21, char __b20,
2625
char __b19, char __b18, char __b17, char __b16,
2626
char __b15, char __b14, char __b13, char __b12,
2627
char __b11, char __b10, char __b09, char __b08,
2628
char __b07, char __b06, char __b05, char __b04,
2629
char __b03, char __b02, char __b01, char __b00)
2630
{
2631
return (__m256i)(__v32qi){
2632
__b31, __b30, __b29, __b28, __b27, __b26, __b25, __b24,
2633
__b23, __b22, __b21, __b20, __b19, __b18, __b17, __b16,
2634
__b15, __b14, __b13, __b12, __b11, __b10, __b09, __b08,
2635
__b07, __b06, __b05, __b04, __b03, __b02, __b01, __b00 };
2636
}
2637
2638
static __inline __m256i __DEFAULT_FN_ATTRS
2639
_mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d)
2640
{
2641
return (__m256i)(__v4di){ __a, __b, __c, __d };
2642
}
2643
2644
/* Create vectors with repeated elements */
2645
static __inline __m256d __DEFAULT_FN_ATTRS
2646
_mm256_set1_pd(double __w)
2647
{
2648
return (__m256d){ __w, __w, __w, __w };
2649
}
2650
2651
static __inline __m256 __DEFAULT_FN_ATTRS
2652
_mm256_set1_ps(float __w)
2653
{
2654
return (__m256){ __w, __w, __w, __w, __w, __w, __w, __w };
2655
}
2656
2657
static __inline __m256i __DEFAULT_FN_ATTRS
2658
_mm256_set1_epi32(int __i)
2659
{
2660
return (__m256i)(__v8si){ __i, __i, __i, __i, __i, __i, __i, __i };
2661
}
2662
2663
static __inline __m256i __DEFAULT_FN_ATTRS
2664
_mm256_set1_epi16(short __w)
2665
{
2666
return (__m256i)(__v16hi){ __w, __w, __w, __w, __w, __w, __w, __w, __w, __w,
2667
__w, __w, __w, __w, __w, __w };
2668
}
2669
2670
static __inline __m256i __DEFAULT_FN_ATTRS
2671
_mm256_set1_epi8(char __b)
2672
{
2673
return (__m256i)(__v32qi){ __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
2674
__b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
2675
__b, __b, __b, __b, __b, __b, __b };
2676
}
2677
2678
static __inline __m256i __DEFAULT_FN_ATTRS
2679
_mm256_set1_epi64x(long long __q)
2680
{
2681
return (__m256i)(__v4di){ __q, __q, __q, __q };
2682
}
2683
2684
/* Create __zeroed vectors */
2685
static __inline __m256d __DEFAULT_FN_ATTRS
2686
_mm256_setzero_pd(void)
2687
{
2688
return (__m256d){ 0, 0, 0, 0 };
2689
}
2690
2691
static __inline __m256 __DEFAULT_FN_ATTRS
2692
_mm256_setzero_ps(void)
2693
{
2694
return (__m256){ 0, 0, 0, 0, 0, 0, 0, 0 };
2695
}
2696
2697
static __inline __m256i __DEFAULT_FN_ATTRS
2698
_mm256_setzero_si256(void)
2699
{
2700
return (__m256i){ 0LL, 0LL, 0LL, 0LL };
2701
}
2702
2703
/* Cast between vector types */
2704
static __inline __m256 __DEFAULT_FN_ATTRS
2705
_mm256_castpd_ps(__m256d __a)
2706
{
2707
return (__m256)__a;
2708
}
2709
2710
static __inline __m256i __DEFAULT_FN_ATTRS
2711
_mm256_castpd_si256(__m256d __a)
2712
{
2713
return (__m256i)__a;
2714
}
2715
2716
static __inline __m256d __DEFAULT_FN_ATTRS
2717
_mm256_castps_pd(__m256 __a)
2718
{
2719
return (__m256d)__a;
2720
}
2721
2722
static __inline __m256i __DEFAULT_FN_ATTRS
2723
_mm256_castps_si256(__m256 __a)
2724
{
2725
return (__m256i)__a;
2726
}
2727
2728
static __inline __m256 __DEFAULT_FN_ATTRS
2729
_mm256_castsi256_ps(__m256i __a)
2730
{
2731
return (__m256)__a;
2732
}
2733
2734
static __inline __m256d __DEFAULT_FN_ATTRS
2735
_mm256_castsi256_pd(__m256i __a)
2736
{
2737
return (__m256d)__a;
2738
}
2739
2740
static __inline __m128d __DEFAULT_FN_ATTRS
2741
_mm256_castpd256_pd128(__m256d __a)
2742
{
2743
return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 1);
2744
}
2745
2746
static __inline __m128 __DEFAULT_FN_ATTRS
2747
_mm256_castps256_ps128(__m256 __a)
2748
{
2749
return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 1, 2, 3);
2750
}
2751
2752
static __inline __m128i __DEFAULT_FN_ATTRS
2753
_mm256_castsi256_si128(__m256i __a)
2754
{
2755
return __builtin_shufflevector((__v4di)__a, (__v4di)__a, 0, 1);
2756
}
2757
2758
static __inline __m256d __DEFAULT_FN_ATTRS
2759
_mm256_castpd128_pd256(__m128d __a)
2760
{
2761
return __builtin_shufflevector((__v2df)__a, (__v2df)__a, 0, 1, -1, -1);
2762
}
2763
2764
static __inline __m256 __DEFAULT_FN_ATTRS
2765
_mm256_castps128_ps256(__m128 __a)
2766
{
2767
return __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 0, 1, 2, 3, -1, -1, -1, -1);
2768
}
2769
2770
static __inline __m256i __DEFAULT_FN_ATTRS
2771
_mm256_castsi128_si256(__m128i __a)
2772
{
2773
return __builtin_shufflevector((__v2di)__a, (__v2di)__a, 0, 1, -1, -1);
2774
}
2775
2776
/*
2777
Vector insert.
2778
We use macros rather than inlines because we only want to accept
2779
invocations where the immediate M is a constant expression.
2780
*/
2781
#define _mm256_insertf128_ps(V1, V2, M) __extension__ ({ \
2782
(__m256)__builtin_shufflevector( \
2783
(__v8sf)(__m256)(V1), \
2784
(__v8sf)_mm256_castps128_ps256((__m128)(V2)), \
2785
(((M) & 1) ? 0 : 8), \
2786
(((M) & 1) ? 1 : 9), \
2787
(((M) & 1) ? 2 : 10), \
2788
(((M) & 1) ? 3 : 11), \
2789
(((M) & 1) ? 8 : 4), \
2790
(((M) & 1) ? 9 : 5), \
2791
(((M) & 1) ? 10 : 6), \
2792
(((M) & 1) ? 11 : 7) );})
2793
2794
#define _mm256_insertf128_pd(V1, V2, M) __extension__ ({ \
2795
(__m256d)__builtin_shufflevector( \
2796
(__v4df)(__m256d)(V1), \
2797
(__v4df)_mm256_castpd128_pd256((__m128d)(V2)), \
2798
(((M) & 1) ? 0 : 4), \
2799
(((M) & 1) ? 1 : 5), \
2800
(((M) & 1) ? 4 : 2), \
2801
(((M) & 1) ? 5 : 3) );})
2802
2803
#define _mm256_insertf128_si256(V1, V2, M) __extension__ ({ \
2804
(__m256i)__builtin_shufflevector( \
2805
(__v4di)(__m256i)(V1), \
2806
(__v4di)_mm256_castsi128_si256((__m128i)(V2)), \
2807
(((M) & 1) ? 0 : 4), \
2808
(((M) & 1) ? 1 : 5), \
2809
(((M) & 1) ? 4 : 2), \
2810
(((M) & 1) ? 5 : 3) );})
2811
2812
/*
2813
Vector extract.
2814
We use macros rather than inlines because we only want to accept
2815
invocations where the immediate M is a constant expression.
2816
*/
2817
#define _mm256_extractf128_ps(V, M) __extension__ ({ \
2818
(__m128)__builtin_shufflevector( \
2819
(__v8sf)(__m256)(V), \
2820
(__v8sf)(_mm256_undefined_ps()), \
2821
(((M) & 1) ? 4 : 0), \
2822
(((M) & 1) ? 5 : 1), \
2823
(((M) & 1) ? 6 : 2), \
2824
(((M) & 1) ? 7 : 3) );})
2825
2826
#define _mm256_extractf128_pd(V, M) __extension__ ({ \
2827
(__m128d)__builtin_shufflevector( \
2828
(__v4df)(__m256d)(V), \
2829
(__v4df)(_mm256_undefined_pd()), \
2830
(((M) & 1) ? 2 : 0), \
2831
(((M) & 1) ? 3 : 1) );})
2832
2833
#define _mm256_extractf128_si256(V, M) __extension__ ({ \
2834
(__m128i)__builtin_shufflevector( \
2835
(__v4di)(__m256i)(V), \
2836
(__v4di)(_mm256_undefined_si256()), \
2837
(((M) & 1) ? 2 : 0), \
2838
(((M) & 1) ? 3 : 1) );})
2839
2840
/* SIMD load ops (unaligned) */
2841
static __inline __m256 __DEFAULT_FN_ATTRS
2842
_mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
2843
{
2844
__m256 __v256 = _mm256_castps128_ps256(_mm_loadu_ps(__addr_lo));
2845
return _mm256_insertf128_ps(__v256, _mm_loadu_ps(__addr_hi), 1);
2846
}
2847
2848
static __inline __m256d __DEFAULT_FN_ATTRS
2849
_mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo)
2850
{
2851
__m256d __v256 = _mm256_castpd128_pd256(_mm_loadu_pd(__addr_lo));
2852
return _mm256_insertf128_pd(__v256, _mm_loadu_pd(__addr_hi), 1);
2853
}
2854
2855
static __inline __m256i __DEFAULT_FN_ATTRS
2856
_mm256_loadu2_m128i(__m128i const *__addr_hi, __m128i const *__addr_lo)
2857
{
2858
__m256i __v256 = _mm256_castsi128_si256(_mm_loadu_si128(__addr_lo));
2859
return _mm256_insertf128_si256(__v256, _mm_loadu_si128(__addr_hi), 1);
2860
}
2861
2862
/* SIMD store ops (unaligned) */
2863
static __inline void __DEFAULT_FN_ATTRS
2864
_mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a)
2865
{
2866
__m128 __v128;
2867
2868
__v128 = _mm256_castps256_ps128(__a);
2869
_mm_storeu_ps(__addr_lo, __v128);
2870
__v128 = _mm256_extractf128_ps(__a, 1);
2871
_mm_storeu_ps(__addr_hi, __v128);
2872
}
2873
2874
static __inline void __DEFAULT_FN_ATTRS
2875
_mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a)
2876
{
2877
__m128d __v128;
2878
2879
__v128 = _mm256_castpd256_pd128(__a);
2880
_mm_storeu_pd(__addr_lo, __v128);
2881
__v128 = _mm256_extractf128_pd(__a, 1);
2882
_mm_storeu_pd(__addr_hi, __v128);
2883
}
2884
2885
static __inline void __DEFAULT_FN_ATTRS
2886
_mm256_storeu2_m128i(__m128i *__addr_hi, __m128i *__addr_lo, __m256i __a)
2887
{
2888
__m128i __v128;
2889
2890
__v128 = _mm256_castsi256_si128(__a);
2891
_mm_storeu_si128(__addr_lo, __v128);
2892
__v128 = _mm256_extractf128_si256(__a, 1);
2893
_mm_storeu_si128(__addr_hi, __v128);
2894
}
2895
2896
static __inline __m256 __DEFAULT_FN_ATTRS
2897
_mm256_set_m128 (__m128 __hi, __m128 __lo) {
2898
return (__m256) __builtin_shufflevector((__v4sf)__lo, (__v4sf)__hi, 0, 1, 2, 3, 4, 5, 6, 7);
2899
}
2900
2901
static __inline __m256d __DEFAULT_FN_ATTRS
2902
_mm256_set_m128d (__m128d __hi, __m128d __lo) {
2903
return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2904
}
2905
2906
static __inline __m256i __DEFAULT_FN_ATTRS
2907
_mm256_set_m128i (__m128i __hi, __m128i __lo) {
2908
return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2909
}
2910
2911
static __inline __m256 __DEFAULT_FN_ATTRS
2912
_mm256_setr_m128 (__m128 __lo, __m128 __hi) {
2913
return _mm256_set_m128(__hi, __lo);
2914
}
2915
2916
static __inline __m256d __DEFAULT_FN_ATTRS
2917
_mm256_setr_m128d (__m128d __lo, __m128d __hi) {
2918
return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2919
}
2920
2921
static __inline __m256i __DEFAULT_FN_ATTRS
2922
_mm256_setr_m128i (__m128i __lo, __m128i __hi) {
2923
return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2924
}
2925
2926
#undef __DEFAULT_FN_ATTRS
2927
2928
#endif /* __AVXINTRIN_H */
2929
2930