Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
script3r
GitHub Repository: script3r/os161
Path: blob/master/common/gcc-millicode/qdivrem.c
2093 views
1
/*-
2
* Copyright (c) 1992, 1993
3
* The Regents of the University of California. All rights reserved.
4
*
5
* This software was developed by the Computer Systems Engineering group
6
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7
* contributed to Berkeley.
8
*
9
* Redistribution and use in source and binary forms, with or without
10
* modification, are permitted provided that the following conditions
11
* are met:
12
* 1. Redistributions of source code must retain the above copyright
13
* notice, this list of conditions and the following disclaimer.
14
* 2. Redistributions in binary form must reproduce the above copyright
15
* notice, this list of conditions and the following disclaimer in the
16
* documentation and/or other materials provided with the distribution.
17
* 3. Neither the name of the University nor the names of its contributors
18
* may be used to endorse or promote products derived from this software
19
* without specific prior written permission.
20
*
21
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31
* SUCH DAMAGE.
32
*
33
* From:
34
* @(#)qdivrem.c 8.1 (Berkeley) 6/4/93
35
* NetBSD: qdivrem.c,v 1.1 2005/12/20 19:28:51 christos Exp
36
*/
37
38
/*
39
* Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed),
40
* section 4.3.1, pp. 257--259.
41
*/
42
43
#include "longlong.h"
44
45
#define B ((int)1 << HALF_BITS) /* digit base */
46
47
/* Combine two `digits' to make a single two-digit number. */
48
#define COMBINE(a, b) (((unsigned int)(a) << HALF_BITS) | (b))
49
50
/* select a type for digits in base B: use unsigned short if they fit */
51
#if UINT_MAX == 0xffffffffU && USHRT_MAX >= 0xffff
52
typedef unsigned short digit;
53
#else
54
typedef unsigned int digit;
55
#endif
56
57
static void shl(digit *p, int len, int sh);
58
59
/*
60
* __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
61
*
62
* We do this in base 2-sup-HALF_BITS, so that all intermediate
63
* products fit within unsigned int. As a consequence, the maximum
64
* length dividend and divisor are 4 `digits' in this base (they are
65
* shorter if they have leading zeros).
66
*/
67
unsigned long long
68
__qdivrem(unsigned long long ull, unsigned long long vll,
69
unsigned long long *arq)
70
{
71
union uu tmp;
72
digit *u, *v, *q;
73
digit v1, v2;
74
unsigned int qhat, rhat, t;
75
int m, n, d, j, i;
76
digit uspace[5], vspace[5], qspace[5];
77
78
/*
79
* Take care of special cases: divide by zero, and u < v.
80
*/
81
if (vll == 0) {
82
/* divide by zero. */
83
static volatile const unsigned int zero = 0;
84
85
tmp.ui[H] = tmp.ui[L] = 1 / zero;
86
if (arq)
87
*arq = ull;
88
return (tmp.ll);
89
}
90
if (ull < vll) {
91
if (arq)
92
*arq = ull;
93
return (0);
94
}
95
u = &uspace[0];
96
v = &vspace[0];
97
q = &qspace[0];
98
99
/*
100
* Break dividend and divisor into digits in base B, then
101
* count leading zeros to determine m and n. When done, we
102
* will have:
103
* u = (u[1]u[2]...u[m+n]) sub B
104
* v = (v[1]v[2]...v[n]) sub B
105
* v[1] != 0
106
* 1 < n <= 4 (if n = 1, we use a different division algorithm)
107
* m >= 0 (otherwise u < v, which we already checked)
108
* m + n = 4
109
* and thus
110
* m = 4 - n <= 2
111
*/
112
tmp.ull = ull;
113
u[0] = 0;
114
u[1] = (digit)HHALF(tmp.ui[H]);
115
u[2] = (digit)LHALF(tmp.ui[H]);
116
u[3] = (digit)HHALF(tmp.ui[L]);
117
u[4] = (digit)LHALF(tmp.ui[L]);
118
tmp.ull = vll;
119
v[1] = (digit)HHALF(tmp.ui[H]);
120
v[2] = (digit)LHALF(tmp.ui[H]);
121
v[3] = (digit)HHALF(tmp.ui[L]);
122
v[4] = (digit)LHALF(tmp.ui[L]);
123
for (n = 4; v[1] == 0; v++) {
124
if (--n == 1) {
125
unsigned int rbj; /* r*B+u[j] (not root boy jim) */
126
digit q1, q2, q3, q4;
127
128
/*
129
* Change of plan, per exercise 16.
130
* r = 0;
131
* for j = 1..4:
132
* q[j] = floor((r*B + u[j]) / v),
133
* r = (r*B + u[j]) % v;
134
* We unroll this completely here.
135
*/
136
t = v[2]; /* nonzero, by definition */
137
q1 = (digit)(u[1] / t);
138
rbj = COMBINE(u[1] % t, u[2]);
139
q2 = (digit)(rbj / t);
140
rbj = COMBINE(rbj % t, u[3]);
141
q3 = (digit)(rbj / t);
142
rbj = COMBINE(rbj % t, u[4]);
143
q4 = (digit)(rbj / t);
144
if (arq)
145
*arq = rbj % t;
146
tmp.ui[H] = COMBINE(q1, q2);
147
tmp.ui[L] = COMBINE(q3, q4);
148
return (tmp.ll);
149
}
150
}
151
152
/*
153
* By adjusting q once we determine m, we can guarantee that
154
* there is a complete four-digit quotient at &qspace[1] when
155
* we finally stop.
156
*/
157
for (m = 4 - n; u[1] == 0; u++)
158
m--;
159
for (i = 4 - m; --i >= 0;)
160
q[i] = 0;
161
q += 4 - m;
162
163
/*
164
* Here we run Program D, translated from MIX to C and acquiring
165
* a few minor changes.
166
*
167
* D1: choose multiplier 1 << d to ensure v[1] >= B/2.
168
*/
169
d = 0;
170
for (t = v[1]; t < B / 2; t <<= 1)
171
d++;
172
if (d > 0) {
173
shl(&u[0], m + n, d); /* u <<= d */
174
shl(&v[1], n - 1, d); /* v <<= d */
175
}
176
/*
177
* D2: j = 0.
178
*/
179
j = 0;
180
v1 = v[1]; /* for D3 -- note that v[1..n] are constant */
181
v2 = v[2]; /* for D3 */
182
do {
183
digit uj0, uj1, uj2;
184
185
/*
186
* D3: Calculate qhat (\^q, in TeX notation).
187
* Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
188
* let rhat = (u[j]*B + u[j+1]) mod v[1].
189
* While rhat < B and v[2]*qhat > rhat*B+u[j+2],
190
* decrement qhat and increase rhat correspondingly.
191
* Note that if rhat >= B, v[2]*qhat < rhat*B.
192
*/
193
uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */
194
uj1 = u[j + 1]; /* for D3 only */
195
uj2 = u[j + 2]; /* for D3 only */
196
if (uj0 == v1) {
197
qhat = B;
198
rhat = uj1;
199
goto qhat_too_big;
200
} else {
201
unsigned int nn = COMBINE(uj0, uj1);
202
qhat = nn / v1;
203
rhat = nn % v1;
204
}
205
while (v2 * qhat > COMBINE(rhat, uj2)) {
206
qhat_too_big:
207
qhat--;
208
if ((rhat += v1) >= B)
209
break;
210
}
211
/*
212
* D4: Multiply and subtract.
213
* The variable `t' holds any borrows across the loop.
214
* We split this up so that we do not require v[0] = 0,
215
* and to eliminate a final special case.
216
*/
217
for (t = 0, i = n; i > 0; i--) {
218
t = u[i + j] - v[i] * qhat - t;
219
u[i + j] = (digit)LHALF(t);
220
t = (B - HHALF(t)) & (B - 1);
221
}
222
t = u[j] - t;
223
u[j] = (digit)LHALF(t);
224
/*
225
* D5: test remainder.
226
* There is a borrow if and only if HHALF(t) is nonzero;
227
* in that (rare) case, qhat was too large (by exactly 1).
228
* Fix it by adding v[1..n] to u[j..j+n].
229
*/
230
if (HHALF(t)) {
231
qhat--;
232
for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
233
t += u[i + j] + v[i];
234
u[i + j] = (digit)LHALF(t);
235
t = HHALF(t);
236
}
237
u[j] = (digit)LHALF(u[j] + t);
238
}
239
q[j] = (digit)qhat;
240
} while (++j <= m); /* D7: loop on j. */
241
242
/*
243
* If caller wants the remainder, we have to calculate it as
244
* u[m..m+n] >> d (this is at most n digits and thus fits in
245
* u[m+1..m+n], but we may need more source digits).
246
*/
247
if (arq) {
248
if (d) {
249
for (i = m + n; i > m; --i)
250
u[i] = (digit)(((unsigned int)u[i] >> d) |
251
LHALF((unsigned int)u[i - 1] <<
252
(HALF_BITS - d)));
253
u[i] = 0;
254
}
255
tmp.ui[H] = COMBINE(uspace[1], uspace[2]);
256
tmp.ui[L] = COMBINE(uspace[3], uspace[4]);
257
*arq = tmp.ll;
258
}
259
260
tmp.ui[H] = COMBINE(qspace[1], qspace[2]);
261
tmp.ui[L] = COMBINE(qspace[3], qspace[4]);
262
return (tmp.ll);
263
}
264
265
/*
266
* Shift p[0]..p[len] left `sh' bits, ignoring any bits that
267
* `fall out' the left (there never will be any such anyway).
268
* We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS.
269
*/
270
static void
271
shl(digit *p, int len, int sh)
272
{
273
int i;
274
275
for (i = 0; i < len; i++)
276
p[i] = (digit)(LHALF((unsigned int)p[i] << sh) |
277
((unsigned int)p[i + 1] >> (HALF_BITS - sh)));
278
p[i] = (digit)(LHALF((unsigned int)p[i] << sh));
279
}
280
281