Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
shivamshrirao
GitHub Repository: shivamshrirao/diffusers
Path: blob/main/examples/community/clip_guided_stable_diffusion.py
1448 views
1
import inspect
2
from typing import List, Optional, Union
3
4
import torch
5
from torch import nn
6
from torch.nn import functional as F
7
from torchvision import transforms
8
from transformers import CLIPImageProcessor, CLIPModel, CLIPTextModel, CLIPTokenizer
9
10
from diffusers import (
11
AutoencoderKL,
12
DDIMScheduler,
13
DiffusionPipeline,
14
DPMSolverMultistepScheduler,
15
LMSDiscreteScheduler,
16
PNDMScheduler,
17
UNet2DConditionModel,
18
)
19
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
20
21
22
class MakeCutouts(nn.Module):
23
def __init__(self, cut_size, cut_power=1.0):
24
super().__init__()
25
26
self.cut_size = cut_size
27
self.cut_power = cut_power
28
29
def forward(self, pixel_values, num_cutouts):
30
sideY, sideX = pixel_values.shape[2:4]
31
max_size = min(sideX, sideY)
32
min_size = min(sideX, sideY, self.cut_size)
33
cutouts = []
34
for _ in range(num_cutouts):
35
size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size)
36
offsetx = torch.randint(0, sideX - size + 1, ())
37
offsety = torch.randint(0, sideY - size + 1, ())
38
cutout = pixel_values[:, :, offsety : offsety + size, offsetx : offsetx + size]
39
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
40
return torch.cat(cutouts)
41
42
43
def spherical_dist_loss(x, y):
44
x = F.normalize(x, dim=-1)
45
y = F.normalize(y, dim=-1)
46
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
47
48
49
def set_requires_grad(model, value):
50
for param in model.parameters():
51
param.requires_grad = value
52
53
54
class CLIPGuidedStableDiffusion(DiffusionPipeline):
55
"""CLIP guided stable diffusion based on the amazing repo by @crowsonkb and @Jack000
56
- https://github.com/Jack000/glid-3-xl
57
- https://github.dev/crowsonkb/k-diffusion
58
"""
59
60
def __init__(
61
self,
62
vae: AutoencoderKL,
63
text_encoder: CLIPTextModel,
64
clip_model: CLIPModel,
65
tokenizer: CLIPTokenizer,
66
unet: UNet2DConditionModel,
67
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
68
feature_extractor: CLIPImageProcessor,
69
):
70
super().__init__()
71
self.register_modules(
72
vae=vae,
73
text_encoder=text_encoder,
74
clip_model=clip_model,
75
tokenizer=tokenizer,
76
unet=unet,
77
scheduler=scheduler,
78
feature_extractor=feature_extractor,
79
)
80
81
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
82
self.cut_out_size = (
83
feature_extractor.size
84
if isinstance(feature_extractor.size, int)
85
else feature_extractor.size["shortest_edge"]
86
)
87
self.make_cutouts = MakeCutouts(self.cut_out_size)
88
89
set_requires_grad(self.text_encoder, False)
90
set_requires_grad(self.clip_model, False)
91
92
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
93
if slice_size == "auto":
94
# half the attention head size is usually a good trade-off between
95
# speed and memory
96
slice_size = self.unet.config.attention_head_dim // 2
97
self.unet.set_attention_slice(slice_size)
98
99
def disable_attention_slicing(self):
100
self.enable_attention_slicing(None)
101
102
def freeze_vae(self):
103
set_requires_grad(self.vae, False)
104
105
def unfreeze_vae(self):
106
set_requires_grad(self.vae, True)
107
108
def freeze_unet(self):
109
set_requires_grad(self.unet, False)
110
111
def unfreeze_unet(self):
112
set_requires_grad(self.unet, True)
113
114
@torch.enable_grad()
115
def cond_fn(
116
self,
117
latents,
118
timestep,
119
index,
120
text_embeddings,
121
noise_pred_original,
122
text_embeddings_clip,
123
clip_guidance_scale,
124
num_cutouts,
125
use_cutouts=True,
126
):
127
latents = latents.detach().requires_grad_()
128
129
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
130
131
# predict the noise residual
132
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
133
134
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)):
135
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
136
beta_prod_t = 1 - alpha_prod_t
137
# compute predicted original sample from predicted noise also called
138
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
139
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
140
141
fac = torch.sqrt(beta_prod_t)
142
sample = pred_original_sample * (fac) + latents * (1 - fac)
143
elif isinstance(self.scheduler, LMSDiscreteScheduler):
144
sigma = self.scheduler.sigmas[index]
145
sample = latents - sigma * noise_pred
146
else:
147
raise ValueError(f"scheduler type {type(self.scheduler)} not supported")
148
149
sample = 1 / self.vae.config.scaling_factor * sample
150
image = self.vae.decode(sample).sample
151
image = (image / 2 + 0.5).clamp(0, 1)
152
153
if use_cutouts:
154
image = self.make_cutouts(image, num_cutouts)
155
else:
156
image = transforms.Resize(self.cut_out_size)(image)
157
image = self.normalize(image).to(latents.dtype)
158
159
image_embeddings_clip = self.clip_model.get_image_features(image)
160
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
161
162
if use_cutouts:
163
dists = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip)
164
dists = dists.view([num_cutouts, sample.shape[0], -1])
165
loss = dists.sum(2).mean(0).sum() * clip_guidance_scale
166
else:
167
loss = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip).mean() * clip_guidance_scale
168
169
grads = -torch.autograd.grad(loss, latents)[0]
170
171
if isinstance(self.scheduler, LMSDiscreteScheduler):
172
latents = latents.detach() + grads * (sigma**2)
173
noise_pred = noise_pred_original
174
else:
175
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads
176
return noise_pred, latents
177
178
@torch.no_grad()
179
def __call__(
180
self,
181
prompt: Union[str, List[str]],
182
height: Optional[int] = 512,
183
width: Optional[int] = 512,
184
num_inference_steps: Optional[int] = 50,
185
guidance_scale: Optional[float] = 7.5,
186
num_images_per_prompt: Optional[int] = 1,
187
eta: float = 0.0,
188
clip_guidance_scale: Optional[float] = 100,
189
clip_prompt: Optional[Union[str, List[str]]] = None,
190
num_cutouts: Optional[int] = 4,
191
use_cutouts: Optional[bool] = True,
192
generator: Optional[torch.Generator] = None,
193
latents: Optional[torch.FloatTensor] = None,
194
output_type: Optional[str] = "pil",
195
return_dict: bool = True,
196
):
197
if isinstance(prompt, str):
198
batch_size = 1
199
elif isinstance(prompt, list):
200
batch_size = len(prompt)
201
else:
202
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
203
204
if height % 8 != 0 or width % 8 != 0:
205
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
206
207
# get prompt text embeddings
208
text_input = self.tokenizer(
209
prompt,
210
padding="max_length",
211
max_length=self.tokenizer.model_max_length,
212
truncation=True,
213
return_tensors="pt",
214
)
215
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
216
# duplicate text embeddings for each generation per prompt
217
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
218
219
if clip_guidance_scale > 0:
220
if clip_prompt is not None:
221
clip_text_input = self.tokenizer(
222
clip_prompt,
223
padding="max_length",
224
max_length=self.tokenizer.model_max_length,
225
truncation=True,
226
return_tensors="pt",
227
).input_ids.to(self.device)
228
else:
229
clip_text_input = text_input.input_ids.to(self.device)
230
text_embeddings_clip = self.clip_model.get_text_features(clip_text_input)
231
text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
232
# duplicate text embeddings clip for each generation per prompt
233
text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0)
234
235
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
236
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
237
# corresponds to doing no classifier free guidance.
238
do_classifier_free_guidance = guidance_scale > 1.0
239
# get unconditional embeddings for classifier free guidance
240
if do_classifier_free_guidance:
241
max_length = text_input.input_ids.shape[-1]
242
uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt")
243
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
244
# duplicate unconditional embeddings for each generation per prompt
245
uncond_embeddings = uncond_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
246
247
# For classifier free guidance, we need to do two forward passes.
248
# Here we concatenate the unconditional and text embeddings into a single batch
249
# to avoid doing two forward passes
250
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
251
252
# get the initial random noise unless the user supplied it
253
254
# Unlike in other pipelines, latents need to be generated in the target device
255
# for 1-to-1 results reproducibility with the CompVis implementation.
256
# However this currently doesn't work in `mps`.
257
latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8)
258
latents_dtype = text_embeddings.dtype
259
if latents is None:
260
if self.device.type == "mps":
261
# randn does not work reproducibly on mps
262
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
263
self.device
264
)
265
else:
266
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
267
else:
268
if latents.shape != latents_shape:
269
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
270
latents = latents.to(self.device)
271
272
# set timesteps
273
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
274
extra_set_kwargs = {}
275
if accepts_offset:
276
extra_set_kwargs["offset"] = 1
277
278
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
279
280
# Some schedulers like PNDM have timesteps as arrays
281
# It's more optimized to move all timesteps to correct device beforehand
282
timesteps_tensor = self.scheduler.timesteps.to(self.device)
283
284
# scale the initial noise by the standard deviation required by the scheduler
285
latents = latents * self.scheduler.init_noise_sigma
286
287
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
288
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
289
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
290
# and should be between [0, 1]
291
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
292
extra_step_kwargs = {}
293
if accepts_eta:
294
extra_step_kwargs["eta"] = eta
295
296
# check if the scheduler accepts generator
297
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
298
if accepts_generator:
299
extra_step_kwargs["generator"] = generator
300
301
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
302
# expand the latents if we are doing classifier free guidance
303
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
304
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
305
306
# predict the noise residual
307
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
308
309
# perform classifier free guidance
310
if do_classifier_free_guidance:
311
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
312
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
313
314
# perform clip guidance
315
if clip_guidance_scale > 0:
316
text_embeddings_for_guidance = (
317
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings
318
)
319
noise_pred, latents = self.cond_fn(
320
latents,
321
t,
322
i,
323
text_embeddings_for_guidance,
324
noise_pred,
325
text_embeddings_clip,
326
clip_guidance_scale,
327
num_cutouts,
328
use_cutouts,
329
)
330
331
# compute the previous noisy sample x_t -> x_t-1
332
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
333
334
# scale and decode the image latents with vae
335
latents = 1 / self.vae.config.scaling_factor * latents
336
image = self.vae.decode(latents).sample
337
338
image = (image / 2 + 0.5).clamp(0, 1)
339
image = image.cpu().permute(0, 2, 3, 1).numpy()
340
341
if output_type == "pil":
342
image = self.numpy_to_pil(image)
343
344
if not return_dict:
345
return (image, None)
346
347
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
348
349