Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
shivamshrirao
GitHub Repository: shivamshrirao/diffusers
Path: blob/main/examples/community/ddim_noise_comparative_analysis.py
1448 views
1
# Copyright 2022 The HuggingFace Team. All rights reserved.
2
#
3
# Licensed under the Apache License, Version 2.0 (the "License");
4
# you may not use this file except in compliance with the License.
5
# You may obtain a copy of the License at
6
#
7
# http://www.apache.org/licenses/LICENSE-2.0
8
#
9
# Unless required by applicable law or agreed to in writing, software
10
# distributed under the License is distributed on an "AS IS" BASIS,
11
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
# See the License for the specific language governing permissions and
13
# limitations under the License.
14
15
from typing import List, Optional, Tuple, Union
16
17
import PIL
18
import torch
19
from torchvision import transforms
20
21
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
22
from diffusers.schedulers import DDIMScheduler
23
from diffusers.utils import randn_tensor
24
25
26
trans = transforms.Compose(
27
[
28
transforms.Resize((256, 256)),
29
transforms.ToTensor(),
30
transforms.Normalize([0.5], [0.5]),
31
]
32
)
33
34
35
def preprocess(image):
36
if isinstance(image, torch.Tensor):
37
return image
38
elif isinstance(image, PIL.Image.Image):
39
image = [image]
40
41
image = [trans(img.convert("RGB")) for img in image]
42
image = torch.stack(image)
43
return image
44
45
46
class DDIMNoiseComparativeAnalysisPipeline(DiffusionPipeline):
47
r"""
48
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
49
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
50
51
Parameters:
52
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
53
scheduler ([`SchedulerMixin`]):
54
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
55
[`DDPMScheduler`], or [`DDIMScheduler`].
56
"""
57
58
def __init__(self, unet, scheduler):
59
super().__init__()
60
61
# make sure scheduler can always be converted to DDIM
62
scheduler = DDIMScheduler.from_config(scheduler.config)
63
64
self.register_modules(unet=unet, scheduler=scheduler)
65
66
def check_inputs(self, strength):
67
if strength < 0 or strength > 1:
68
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
69
70
def get_timesteps(self, num_inference_steps, strength, device):
71
# get the original timestep using init_timestep
72
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
73
74
t_start = max(num_inference_steps - init_timestep, 0)
75
timesteps = self.scheduler.timesteps[t_start:]
76
77
return timesteps, num_inference_steps - t_start
78
79
def prepare_latents(self, image, timestep, batch_size, dtype, device, generator=None):
80
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
81
raise ValueError(
82
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
83
)
84
85
init_latents = image.to(device=device, dtype=dtype)
86
87
if isinstance(generator, list) and len(generator) != batch_size:
88
raise ValueError(
89
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
90
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
91
)
92
93
shape = init_latents.shape
94
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
95
96
# get latents
97
print("add noise to latents at timestep", timestep)
98
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
99
latents = init_latents
100
101
return latents
102
103
@torch.no_grad()
104
def __call__(
105
self,
106
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
107
strength: float = 0.8,
108
batch_size: int = 1,
109
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
110
eta: float = 0.0,
111
num_inference_steps: int = 50,
112
use_clipped_model_output: Optional[bool] = None,
113
output_type: Optional[str] = "pil",
114
return_dict: bool = True,
115
) -> Union[ImagePipelineOutput, Tuple]:
116
r"""
117
Args:
118
image (`torch.FloatTensor` or `PIL.Image.Image`):
119
`Image`, or tensor representing an image batch, that will be used as the starting point for the
120
process.
121
strength (`float`, *optional*, defaults to 0.8):
122
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
123
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
124
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
125
be maximum and the denoising process will run for the full number of iterations specified in
126
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
127
batch_size (`int`, *optional*, defaults to 1):
128
The number of images to generate.
129
generator (`torch.Generator`, *optional*):
130
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
131
to make generation deterministic.
132
eta (`float`, *optional*, defaults to 0.0):
133
The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
134
num_inference_steps (`int`, *optional*, defaults to 50):
135
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
136
expense of slower inference.
137
use_clipped_model_output (`bool`, *optional*, defaults to `None`):
138
if `True` or `False`, see documentation for `DDIMScheduler.step`. If `None`, nothing is passed
139
downstream to the scheduler. So use `None` for schedulers which don't support this argument.
140
output_type (`str`, *optional*, defaults to `"pil"`):
141
The output format of the generate image. Choose between
142
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
143
return_dict (`bool`, *optional*, defaults to `True`):
144
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
145
146
Returns:
147
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is
148
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
149
"""
150
# 1. Check inputs. Raise error if not correct
151
self.check_inputs(strength)
152
153
# 2. Preprocess image
154
image = preprocess(image)
155
156
# 3. set timesteps
157
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
158
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, self.device)
159
latent_timestep = timesteps[:1].repeat(batch_size)
160
161
# 4. Prepare latent variables
162
latents = self.prepare_latents(image, latent_timestep, batch_size, self.unet.dtype, self.device, generator)
163
image = latents
164
165
# 5. Denoising loop
166
for t in self.progress_bar(timesteps):
167
# 1. predict noise model_output
168
model_output = self.unet(image, t).sample
169
170
# 2. predict previous mean of image x_t-1 and add variance depending on eta
171
# eta corresponds to η in paper and should be between [0, 1]
172
# do x_t -> x_t-1
173
image = self.scheduler.step(
174
model_output,
175
t,
176
image,
177
eta=eta,
178
use_clipped_model_output=use_clipped_model_output,
179
generator=generator,
180
).prev_sample
181
182
image = (image / 2 + 0.5).clamp(0, 1)
183
image = image.cpu().permute(0, 2, 3, 1).numpy()
184
if output_type == "pil":
185
image = self.numpy_to_pil(image)
186
187
if not return_dict:
188
return (image, latent_timestep.item())
189
190
return ImagePipelineOutput(images=image)
191
192