Path: blob/main/examples/community/stable_unclip.py
1448 views
import types1from typing import List, Optional, Tuple, Union23import torch4from transformers import CLIPTextModelWithProjection, CLIPTokenizer5from transformers.models.clip.modeling_clip import CLIPTextModelOutput67from diffusers.models import PriorTransformer8from diffusers.pipelines import DiffusionPipeline, StableDiffusionImageVariationPipeline9from diffusers.schedulers import UnCLIPScheduler10from diffusers.utils import logging, randn_tensor111213logger = logging.get_logger(__name__) # pylint: disable=invalid-name141516def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance):17image = image.to(device=device)18image_embeddings = image # take image as image_embeddings19image_embeddings = image_embeddings.unsqueeze(1)2021# duplicate image embeddings for each generation per prompt, using mps friendly method22bs_embed, seq_len, _ = image_embeddings.shape23image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1)24image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)2526if do_classifier_free_guidance:27uncond_embeddings = torch.zeros_like(image_embeddings)2829# For classifier free guidance, we need to do two forward passes.30# Here we concatenate the unconditional and text embeddings into a single batch31# to avoid doing two forward passes32image_embeddings = torch.cat([uncond_embeddings, image_embeddings])3334return image_embeddings353637class StableUnCLIPPipeline(DiffusionPipeline):38def __init__(39self,40prior: PriorTransformer,41tokenizer: CLIPTokenizer,42text_encoder: CLIPTextModelWithProjection,43prior_scheduler: UnCLIPScheduler,44decoder_pipe_kwargs: Optional[dict] = None,45):46super().__init__()4748decoder_pipe_kwargs = dict(image_encoder=None) if decoder_pipe_kwargs is None else decoder_pipe_kwargs4950decoder_pipe_kwargs["torch_dtype"] = decoder_pipe_kwargs.get("torch_dtype", None) or prior.dtype5152self.decoder_pipe = StableDiffusionImageVariationPipeline.from_pretrained(53"lambdalabs/sd-image-variations-diffusers", **decoder_pipe_kwargs54)5556# replace `_encode_image` method57self.decoder_pipe._encode_image = types.MethodType(_encode_image, self.decoder_pipe)5859self.register_modules(60prior=prior,61tokenizer=tokenizer,62text_encoder=text_encoder,63prior_scheduler=prior_scheduler,64)6566def _encode_prompt(67self,68prompt,69device,70num_images_per_prompt,71do_classifier_free_guidance,72text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,73text_attention_mask: Optional[torch.Tensor] = None,74):75if text_model_output is None:76batch_size = len(prompt) if isinstance(prompt, list) else 177# get prompt text embeddings78text_inputs = self.tokenizer(79prompt,80padding="max_length",81max_length=self.tokenizer.model_max_length,82return_tensors="pt",83)84text_input_ids = text_inputs.input_ids85text_mask = text_inputs.attention_mask.bool().to(device)8687if text_input_ids.shape[-1] > self.tokenizer.model_max_length:88removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])89logger.warning(90"The following part of your input was truncated because CLIP can only handle sequences up to"91f" {self.tokenizer.model_max_length} tokens: {removed_text}"92)93text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]9495text_encoder_output = self.text_encoder(text_input_ids.to(device))9697text_embeddings = text_encoder_output.text_embeds98text_encoder_hidden_states = text_encoder_output.last_hidden_state99100else:101batch_size = text_model_output[0].shape[0]102text_embeddings, text_encoder_hidden_states = text_model_output[0], text_model_output[1]103text_mask = text_attention_mask104105text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)106text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)107text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)108109if do_classifier_free_guidance:110uncond_tokens = [""] * batch_size111112uncond_input = self.tokenizer(113uncond_tokens,114padding="max_length",115max_length=self.tokenizer.model_max_length,116truncation=True,117return_tensors="pt",118)119uncond_text_mask = uncond_input.attention_mask.bool().to(device)120uncond_embeddings_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device))121122uncond_embeddings = uncond_embeddings_text_encoder_output.text_embeds123uncond_text_encoder_hidden_states = uncond_embeddings_text_encoder_output.last_hidden_state124125# duplicate unconditional embeddings for each generation per prompt, using mps friendly method126127seq_len = uncond_embeddings.shape[1]128uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt)129uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len)130131seq_len = uncond_text_encoder_hidden_states.shape[1]132uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)133uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(134batch_size * num_images_per_prompt, seq_len, -1135)136uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)137138# done duplicates139140# For classifier free guidance, we need to do two forward passes.141# Here we concatenate the unconditional and text embeddings into a single batch142# to avoid doing two forward passes143text_embeddings = torch.cat([uncond_embeddings, text_embeddings])144text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])145146text_mask = torch.cat([uncond_text_mask, text_mask])147148return text_embeddings, text_encoder_hidden_states, text_mask149150@property151def _execution_device(self):152r"""153Returns the device on which the pipeline's models will be executed. After calling154`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module155hooks.156"""157if self.device != torch.device("meta") or not hasattr(self.prior, "_hf_hook"):158return self.device159for module in self.prior.modules():160if (161hasattr(module, "_hf_hook")162and hasattr(module._hf_hook, "execution_device")163and module._hf_hook.execution_device is not None164):165return torch.device(module._hf_hook.execution_device)166return self.device167168def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):169if latents is None:170latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)171else:172if latents.shape != shape:173raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")174latents = latents.to(device)175176latents = latents * scheduler.init_noise_sigma177return latents178179def to(self, torch_device: Optional[Union[str, torch.device]] = None):180self.decoder_pipe.to(torch_device)181super().to(torch_device)182183@torch.no_grad()184def __call__(185self,186prompt: Optional[Union[str, List[str]]] = None,187height: Optional[int] = None,188width: Optional[int] = None,189num_images_per_prompt: int = 1,190prior_num_inference_steps: int = 25,191generator: Optional[torch.Generator] = None,192prior_latents: Optional[torch.FloatTensor] = None,193text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,194text_attention_mask: Optional[torch.Tensor] = None,195prior_guidance_scale: float = 4.0,196decoder_guidance_scale: float = 8.0,197decoder_num_inference_steps: int = 50,198decoder_num_images_per_prompt: Optional[int] = 1,199decoder_eta: float = 0.0,200output_type: Optional[str] = "pil",201return_dict: bool = True,202):203if prompt is not None:204if isinstance(prompt, str):205batch_size = 1206elif isinstance(prompt, list):207batch_size = len(prompt)208else:209raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")210else:211batch_size = text_model_output[0].shape[0]212213device = self._execution_device214215batch_size = batch_size * num_images_per_prompt216217do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0218219text_embeddings, text_encoder_hidden_states, text_mask = self._encode_prompt(220prompt, device, num_images_per_prompt, do_classifier_free_guidance, text_model_output, text_attention_mask221)222223# prior224225self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device)226prior_timesteps_tensor = self.prior_scheduler.timesteps227228embedding_dim = self.prior.config.embedding_dim229230prior_latents = self.prepare_latents(231(batch_size, embedding_dim),232text_embeddings.dtype,233device,234generator,235prior_latents,236self.prior_scheduler,237)238239for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)):240# expand the latents if we are doing classifier free guidance241latent_model_input = torch.cat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents242243predicted_image_embedding = self.prior(244latent_model_input,245timestep=t,246proj_embedding=text_embeddings,247encoder_hidden_states=text_encoder_hidden_states,248attention_mask=text_mask,249).predicted_image_embedding250251if do_classifier_free_guidance:252predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2)253predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * (254predicted_image_embedding_text - predicted_image_embedding_uncond255)256257if i + 1 == prior_timesteps_tensor.shape[0]:258prev_timestep = None259else:260prev_timestep = prior_timesteps_tensor[i + 1]261262prior_latents = self.prior_scheduler.step(263predicted_image_embedding,264timestep=t,265sample=prior_latents,266generator=generator,267prev_timestep=prev_timestep,268).prev_sample269270prior_latents = self.prior.post_process_latents(prior_latents)271272image_embeddings = prior_latents273274output = self.decoder_pipe(275image=image_embeddings,276height=height,277width=width,278num_inference_steps=decoder_num_inference_steps,279guidance_scale=decoder_guidance_scale,280generator=generator,281output_type=output_type,282return_dict=return_dict,283num_images_per_prompt=decoder_num_images_per_prompt,284eta=decoder_eta,285)286return output287288289