Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
shivamshrirao
GitHub Repository: shivamshrirao/diffusers
Path: blob/main/examples/controlnet/README.md
1448 views

ControlNet training example

Adding Conditional Control to Text-to-Image Diffusion Models by Lvmin Zhang and Maneesh Agrawala.

This example is based on the training example in the original ControlNet repository. It trains a ControlNet to fill circles using a small synthetic dataset.

Installing the dependencies

Before running the scripts, make sure to install the library's training dependencies:

Important

To make sure you can successfully run the latest versions of the example scripts, we highly recommend installing from source and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:

git clone https://github.com/huggingface/diffusers cd diffusers pip install -e .

Then cd in the example folder and run

pip install -r requirements.txt

And initialize an 🤗Accelerate environment with:

accelerate config

Or for a default accelerate configuration without answering questions about your environment

accelerate config default

Or if your environment doesn't support an interactive shell e.g. a notebook

from accelerate.utils import write_basic_config write_basic_config()

Circle filling dataset

The original dataset is hosted in the ControlNet repo. We re-uploaded it to be compatible with datasets here. Note that datasets handles dataloading within the training script.

Our training examples use Stable Diffusion 1.5 as the original set of ControlNet models were trained from it. However, ControlNet can be trained to augment any Stable Diffusion compatible model (such as CompVis/stable-diffusion-v1-4) or stabilityai/stable-diffusion-2-1.

Training

Our training examples use two test conditioning images. They can be downloaded by running

wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_1.png wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_2.png
export MODEL_DIR="runwayml/stable-diffusion-v1-5" export OUTPUT_DIR="path to save model" accelerate launch train_controlnet.py \ --pretrained_model_name_or_path=$MODEL_DIR \ --output_dir=$OUTPUT_DIR \ --dataset_name=fusing/fill50k \ --resolution=512 \ --learning_rate=1e-5 \ --validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \ --validation_prompt "red circle with blue background" "cyan circle with brown floral background" \ --train_batch_size=4

This default configuration requires ~38GB VRAM.

By default, the training script logs outputs to tensorboard. Pass --report_to wandb to use weights and biases.

Gradient accumulation with a smaller batch size can be used to reduce training requirements to ~20 GB VRAM.

export MODEL_DIR="runwayml/stable-diffusion-v1-5" export OUTPUT_DIR="path to save model" accelerate launch train_controlnet.py \ --pretrained_model_name_or_path=$MODEL_DIR \ --output_dir=$OUTPUT_DIR \ --dataset_name=fusing/fill50k \ --resolution=512 \ --learning_rate=1e-5 \ --validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \ --validation_prompt "red circle with blue background" "cyan circle with brown floral background" \ --train_batch_size=1 \ --gradient_accumulation_steps=4

Example results

After 300 steps with batch size 8

| | | |-------------------|:-------------------------😐 | | red circle with blue background | conditioning image | red circle with blue background | | | cyan circle with brown floral background | conditioning image | cyan circle with brown floral background |

After 6000 steps with batch size 8:

| | | |-------------------|:-------------------------😐 | | red circle with blue background | conditioning image | red circle with blue background | | | cyan circle with brown floral background | conditioning image | cyan circle with brown floral background |

Training on a 16 GB GPU

Optimizations:

  • Gradient checkpointing

  • bitsandbyte's 8-bit optimizer

bitandbytes install instructions.

export MODEL_DIR="runwayml/stable-diffusion-v1-5" export OUTPUT_DIR="path to save model" accelerate launch train_controlnet.py \ --pretrained_model_name_or_path=$MODEL_DIR \ --output_dir=$OUTPUT_DIR \ --dataset_name=fusing/fill50k \ --resolution=512 \ --learning_rate=1e-5 \ --validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \ --validation_prompt "red circle with blue background" "cyan circle with brown floral background" \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --use_8bit_adam

Training on a 12 GB GPU

Optimizations:

  • Gradient checkpointing

  • bitsandbyte's 8-bit optimizer

  • xformers

  • set grads to none

export MODEL_DIR="runwayml/stable-diffusion-v1-5" export OUTPUT_DIR="path to save model" accelerate launch train_controlnet.py \ --pretrained_model_name_or_path=$MODEL_DIR \ --output_dir=$OUTPUT_DIR \ --dataset_name=fusing/fill50k \ --resolution=512 \ --learning_rate=1e-5 \ --validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \ --validation_prompt "red circle with blue background" "cyan circle with brown floral background" \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --use_8bit_adam \ --enable_xformers_memory_efficient_attention \ --set_grads_to_none

When using enable_xformers_memory_efficient_attention, please make sure to install xformers by pip install xformers.

Training on an 8 GB GPU

We have not exhaustively tested DeepSpeed support for ControlNet. While the configuration does save memory, we have not confirmed the configuration to train successfully. You will very likely have to make changes to the config to have a successful training run.

Optimizations:

  • Gradient checkpointing

  • xformers

  • set grads to none

  • DeepSpeed stage 2 with parameter and optimizer offloading

  • fp16 mixed precision

DeepSpeed can offload tensors from VRAM to either CPU or NVME. This requires significantly more RAM (about 25 GB).

Use accelerate config to enable DeepSpeed stage 2.

The relevant parts of the resulting accelerate config file are

compute_environment: LOCAL_MACHINE deepspeed_config: gradient_accumulation_steps: 4 offload_optimizer_device: cpu offload_param_device: cpu zero3_init_flag: false zero_stage: 2 distributed_type: DEEPSPEED

See documentation for more DeepSpeed configuration options.

Changing the default Adam optimizer to DeepSpeed's Adam deepspeed.ops.adam.DeepSpeedCPUAdam gives a substantial speedup but it requires CUDA toolchain with the same version as pytorch. 8-bit optimizer does not seem to be compatible with DeepSpeed at the moment.

export MODEL_DIR="runwayml/stable-diffusion-v1-5" export OUTPUT_DIR="path to save model" accelerate launch train_controlnet.py \ --pretrained_model_name_or_path=$MODEL_DIR \ --output_dir=$OUTPUT_DIR \ --dataset_name=fusing/fill50k \ --resolution=512 \ --validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \ --validation_prompt "red circle with blue background" "cyan circle with brown floral background" \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --enable_xformers_memory_efficient_attention \ --set_grads_to_none \ --mixed_precision fp16

Performing inference with the trained ControlNet

The trained model can be run the same as the original ControlNet pipeline with the newly trained ControlNet. Set base_model_path and controlnet_path to the values --pretrained_model_name_or_path and --output_dir were respectively set to in the training script.

from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler from diffusers.utils import load_image import torch base_model_path = "path to model" controlnet_path = "path to controlnet" controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( base_model_path, controlnet=controlnet, torch_dtype=torch.float16 ) # speed up diffusion process with faster scheduler and memory optimization pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) # remove following line if xformers is not installed pipe.enable_xformers_memory_efficient_attention() pipe.enable_model_cpu_offload() control_image = load_image("./conditioning_image_1.png") prompt = "pale golden rod circle with old lace background" # generate image generator = torch.manual_seed(0) image = pipe( prompt, num_inference_steps=20, generator=generator, image=control_image ).images[0] image.save("./output.png")