Path: blob/main/examples/controlnet/train_controlnet.py
1448 views
#!/usr/bin/env python1# coding=utf-82# Copyright 2023 The HuggingFace Inc. team. All rights reserved.3#4# Licensed under the Apache License, Version 2.0 (the "License");5# you may not use this file except in compliance with the License.6# You may obtain a copy of the License at7#8# http://www.apache.org/licenses/LICENSE-2.09#10# Unless required by applicable law or agreed to in writing, software11# distributed under the License is distributed on an "AS IS" BASIS,12# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.13# See the License for the specific language governing permissions and1415import argparse16import logging17import math18import os19import random20from pathlib import Path21from typing import Optional2223import accelerate24import numpy as np25import torch26import torch.nn.functional as F27import torch.utils.checkpoint28import transformers29from accelerate import Accelerator30from accelerate.logging import get_logger31from accelerate.utils import ProjectConfiguration, set_seed32from datasets import load_dataset33from huggingface_hub import HfFolder, Repository, create_repo, whoami34from packaging import version35from PIL import Image36from torchvision import transforms37from tqdm.auto import tqdm38from transformers import AutoTokenizer, PretrainedConfig3940import diffusers41from diffusers import (42AutoencoderKL,43ControlNetModel,44DDPMScheduler,45StableDiffusionControlNetPipeline,46UNet2DConditionModel,47UniPCMultistepScheduler,48)49from diffusers.optimization import get_scheduler50from diffusers.utils import check_min_version, is_wandb_available51from diffusers.utils.import_utils import is_xformers_available525354if is_wandb_available():55import wandb5657# Will error if the minimal version of diffusers is not installed. Remove at your own risks.58check_min_version("0.15.0.dev0")5960logger = get_logger(__name__)616263def log_validation(vae, text_encoder, tokenizer, unet, controlnet, args, accelerator, weight_dtype, step):64logger.info("Running validation... ")6566controlnet = accelerator.unwrap_model(controlnet)6768pipeline = StableDiffusionControlNetPipeline.from_pretrained(69args.pretrained_model_name_or_path,70vae=vae,71text_encoder=text_encoder,72tokenizer=tokenizer,73unet=unet,74controlnet=controlnet,75safety_checker=None,76revision=args.revision,77torch_dtype=weight_dtype,78)79pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)80pipeline = pipeline.to(accelerator.device)81pipeline.set_progress_bar_config(disable=True)8283if args.enable_xformers_memory_efficient_attention:84pipeline.enable_xformers_memory_efficient_attention()8586if args.seed is None:87generator = None88else:89generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)9091if len(args.validation_image) == len(args.validation_prompt):92validation_images = args.validation_image93validation_prompts = args.validation_prompt94elif len(args.validation_image) == 1:95validation_images = args.validation_image * len(args.validation_prompt)96validation_prompts = args.validation_prompt97elif len(args.validation_prompt) == 1:98validation_images = args.validation_image99validation_prompts = args.validation_prompt * len(args.validation_image)100else:101raise ValueError(102"number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`"103)104105image_logs = []106107for validation_prompt, validation_image in zip(validation_prompts, validation_images):108validation_image = Image.open(validation_image)109110images = []111112for _ in range(args.num_validation_images):113with torch.autocast("cuda"):114image = pipeline(115validation_prompt, validation_image, num_inference_steps=20, generator=generator116).images[0]117118images.append(image)119120image_logs.append(121{"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt}122)123124for tracker in accelerator.trackers:125if tracker.name == "tensorboard":126for log in image_logs:127images = log["images"]128validation_prompt = log["validation_prompt"]129validation_image = log["validation_image"]130131formatted_images = []132133formatted_images.append(np.asarray(validation_image))134135for image in images:136formatted_images.append(np.asarray(image))137138formatted_images = np.stack(formatted_images)139140tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC")141elif tracker.name == "wandb":142formatted_images = []143144for log in image_logs:145images = log["images"]146validation_prompt = log["validation_prompt"]147validation_image = log["validation_image"]148149formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning"))150151for image in images:152image = wandb.Image(image, caption=validation_prompt)153formatted_images.append(image)154155tracker.log({"validation": formatted_images})156else:157logger.warn(f"image logging not implemented for {tracker.name}")158159160def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):161text_encoder_config = PretrainedConfig.from_pretrained(162pretrained_model_name_or_path,163subfolder="text_encoder",164revision=revision,165)166model_class = text_encoder_config.architectures[0]167168if model_class == "CLIPTextModel":169from transformers import CLIPTextModel170171return CLIPTextModel172elif model_class == "RobertaSeriesModelWithTransformation":173from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation174175return RobertaSeriesModelWithTransformation176else:177raise ValueError(f"{model_class} is not supported.")178179180def parse_args(input_args=None):181parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.")182parser.add_argument(183"--pretrained_model_name_or_path",184type=str,185default=None,186required=True,187help="Path to pretrained model or model identifier from huggingface.co/models.",188)189parser.add_argument(190"--controlnet_model_name_or_path",191type=str,192default=None,193help="Path to pretrained controlnet model or model identifier from huggingface.co/models."194" If not specified controlnet weights are initialized from unet.",195)196parser.add_argument(197"--revision",198type=str,199default=None,200required=False,201help=(202"Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be"203" float32 precision."204),205)206parser.add_argument(207"--tokenizer_name",208type=str,209default=None,210help="Pretrained tokenizer name or path if not the same as model_name",211)212parser.add_argument(213"--output_dir",214type=str,215default="controlnet-model",216help="The output directory where the model predictions and checkpoints will be written.",217)218parser.add_argument(219"--cache_dir",220type=str,221default=None,222help="The directory where the downloaded models and datasets will be stored.",223)224parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")225parser.add_argument(226"--resolution",227type=int,228default=512,229help=(230"The resolution for input images, all the images in the train/validation dataset will be resized to this"231" resolution"232),233)234parser.add_argument(235"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."236)237parser.add_argument("--num_train_epochs", type=int, default=1)238parser.add_argument(239"--max_train_steps",240type=int,241default=None,242help="Total number of training steps to perform. If provided, overrides num_train_epochs.",243)244parser.add_argument(245"--checkpointing_steps",246type=int,247default=500,248help=(249"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "250"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."251"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."252"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"253"instructions."254),255)256parser.add_argument(257"--checkpoints_total_limit",258type=int,259default=None,260help=(261"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."262" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"263" for more details"264),265)266parser.add_argument(267"--resume_from_checkpoint",268type=str,269default=None,270help=(271"Whether training should be resumed from a previous checkpoint. Use a path saved by"272' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'273),274)275parser.add_argument(276"--gradient_accumulation_steps",277type=int,278default=1,279help="Number of updates steps to accumulate before performing a backward/update pass.",280)281parser.add_argument(282"--gradient_checkpointing",283action="store_true",284help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",285)286parser.add_argument(287"--learning_rate",288type=float,289default=5e-6,290help="Initial learning rate (after the potential warmup period) to use.",291)292parser.add_argument(293"--scale_lr",294action="store_true",295default=False,296help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",297)298parser.add_argument(299"--lr_scheduler",300type=str,301default="constant",302help=(303'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'304' "constant", "constant_with_warmup"]'305),306)307parser.add_argument(308"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."309)310parser.add_argument(311"--lr_num_cycles",312type=int,313default=1,314help="Number of hard resets of the lr in cosine_with_restarts scheduler.",315)316parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")317parser.add_argument(318"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."319)320parser.add_argument(321"--dataloader_num_workers",322type=int,323default=0,324help=(325"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."326),327)328parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")329parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")330parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")331parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")332parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")333parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")334parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")335parser.add_argument(336"--hub_model_id",337type=str,338default=None,339help="The name of the repository to keep in sync with the local `output_dir`.",340)341parser.add_argument(342"--logging_dir",343type=str,344default="logs",345help=(346"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"347" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."348),349)350parser.add_argument(351"--allow_tf32",352action="store_true",353help=(354"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"355" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"356),357)358parser.add_argument(359"--report_to",360type=str,361default="tensorboard",362help=(363'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'364' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'365),366)367parser.add_argument(368"--mixed_precision",369type=str,370default=None,371choices=["no", "fp16", "bf16"],372help=(373"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="374" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"375" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."376),377)378parser.add_argument(379"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."380)381parser.add_argument(382"--set_grads_to_none",383action="store_true",384help=(385"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"386" behaviors, so disable this argument if it causes any problems. More info:"387" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"388),389)390parser.add_argument(391"--dataset_name",392type=str,393default=None,394help=(395"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"396" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"397" or to a folder containing files that 🤗 Datasets can understand."398),399)400parser.add_argument(401"--dataset_config_name",402type=str,403default=None,404help="The config of the Dataset, leave as None if there's only one config.",405)406parser.add_argument(407"--train_data_dir",408type=str,409default=None,410help=(411"A folder containing the training data. Folder contents must follow the structure described in"412" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"413" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."414),415)416parser.add_argument(417"--image_column", type=str, default="image", help="The column of the dataset containing the target image."418)419parser.add_argument(420"--conditioning_image_column",421type=str,422default="conditioning_image",423help="The column of the dataset containing the controlnet conditioning image.",424)425parser.add_argument(426"--caption_column",427type=str,428default="text",429help="The column of the dataset containing a caption or a list of captions.",430)431parser.add_argument(432"--max_train_samples",433type=int,434default=None,435help=(436"For debugging purposes or quicker training, truncate the number of training examples to this "437"value if set."438),439)440parser.add_argument(441"--proportion_empty_prompts",442type=float,443default=0,444help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).",445)446parser.add_argument(447"--validation_prompt",448type=str,449default=None,450nargs="+",451help=(452"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`."453" Provide either a matching number of `--validation_image`s, a single `--validation_image`"454" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s."455),456)457parser.add_argument(458"--validation_image",459type=str,460default=None,461nargs="+",462help=(463"A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`"464" and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a"465" a single `--validation_prompt` to be used with all `--validation_image`s, or a single"466" `--validation_image` that will be used with all `--validation_prompt`s."467),468)469parser.add_argument(470"--num_validation_images",471type=int,472default=4,473help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair",474)475parser.add_argument(476"--validation_steps",477type=int,478default=100,479help=(480"Run validation every X steps. Validation consists of running the prompt"481" `args.validation_prompt` multiple times: `args.num_validation_images`"482" and logging the images."483),484)485parser.add_argument(486"--tracker_project_name",487type=str,488default="train_controlnet",489required=True,490help=(491"The `project_name` argument passed to Accelerator.init_trackers for"492" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"493),494)495496if input_args is not None:497args = parser.parse_args(input_args)498else:499args = parser.parse_args()500501if args.dataset_name is None and args.train_data_dir is None:502raise ValueError("Specify either `--dataset_name` or `--train_data_dir`")503504if args.dataset_name is not None and args.train_data_dir is not None:505raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`")506507if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1:508raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].")509510if args.validation_prompt is not None and args.validation_image is None:511raise ValueError("`--validation_image` must be set if `--validation_prompt` is set")512513if args.validation_prompt is None and args.validation_image is not None:514raise ValueError("`--validation_prompt` must be set if `--validation_image` is set")515516if (517args.validation_image is not None518and args.validation_prompt is not None519and len(args.validation_image) != 1520and len(args.validation_prompt) != 1521and len(args.validation_image) != len(args.validation_prompt)522):523raise ValueError(524"Must provide either 1 `--validation_image`, 1 `--validation_prompt`,"525" or the same number of `--validation_prompt`s and `--validation_image`s"526)527528return args529530531def make_train_dataset(args, tokenizer, accelerator):532# Get the datasets: you can either provide your own training and evaluation files (see below)533# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).534535# In distributed training, the load_dataset function guarantees that only one local process can concurrently536# download the dataset.537if args.dataset_name is not None:538# Downloading and loading a dataset from the hub.539dataset = load_dataset(540args.dataset_name,541args.dataset_config_name,542cache_dir=args.cache_dir,543)544else:545data_files = {}546if args.train_data_dir is not None:547data_files["train"] = os.path.join(args.train_data_dir, "**")548dataset = load_dataset(549"imagefolder",550data_files=data_files,551cache_dir=args.cache_dir,552)553# See more about loading custom images at554# https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder555556# Preprocessing the datasets.557# We need to tokenize inputs and targets.558column_names = dataset["train"].column_names559560# 6. Get the column names for input/target.561if args.image_column is None:562image_column = column_names[0]563logger.info(f"image column defaulting to {image_column}")564else:565image_column = args.image_column566if image_column not in column_names:567raise ValueError(568f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"569)570571if args.caption_column is None:572caption_column = column_names[1]573logger.info(f"caption column defaulting to {caption_column}")574else:575caption_column = args.caption_column576if caption_column not in column_names:577raise ValueError(578f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"579)580581if args.conditioning_image_column is None:582conditioning_image_column = column_names[2]583logger.info(f"conditioning image column defaulting to {caption_column}")584else:585conditioning_image_column = args.conditioning_image_column586if conditioning_image_column not in column_names:587raise ValueError(588f"`--conditioning_image_column` value '{args.conditioning_image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"589)590591def tokenize_captions(examples, is_train=True):592captions = []593for caption in examples[caption_column]:594if random.random() < args.proportion_empty_prompts:595captions.append("")596elif isinstance(caption, str):597captions.append(caption)598elif isinstance(caption, (list, np.ndarray)):599# take a random caption if there are multiple600captions.append(random.choice(caption) if is_train else caption[0])601else:602raise ValueError(603f"Caption column `{caption_column}` should contain either strings or lists of strings."604)605inputs = tokenizer(606captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"607)608return inputs.input_ids609610image_transforms = transforms.Compose(611[612transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),613transforms.ToTensor(),614transforms.Normalize([0.5], [0.5]),615]616)617618conditioning_image_transforms = transforms.Compose(619[620transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),621transforms.ToTensor(),622]623)624625def preprocess_train(examples):626images = [image.convert("RGB") for image in examples[image_column]]627images = [image_transforms(image) for image in images]628629conditioning_images = [image.convert("RGB") for image in examples[conditioning_image_column]]630conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images]631632examples["pixel_values"] = images633examples["conditioning_pixel_values"] = conditioning_images634examples["input_ids"] = tokenize_captions(examples)635636return examples637638with accelerator.main_process_first():639if args.max_train_samples is not None:640dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))641# Set the training transforms642train_dataset = dataset["train"].with_transform(preprocess_train)643644return train_dataset645646647def collate_fn(examples):648pixel_values = torch.stack([example["pixel_values"] for example in examples])649pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()650651conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples])652conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float()653654input_ids = torch.stack([example["input_ids"] for example in examples])655656return {657"pixel_values": pixel_values,658"conditioning_pixel_values": conditioning_pixel_values,659"input_ids": input_ids,660}661662663def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):664if token is None:665token = HfFolder.get_token()666if organization is None:667username = whoami(token)["name"]668return f"{username}/{model_id}"669else:670return f"{organization}/{model_id}"671672673def main(args):674logging_dir = Path(args.output_dir, args.logging_dir)675676accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit)677678accelerator = Accelerator(679gradient_accumulation_steps=args.gradient_accumulation_steps,680mixed_precision=args.mixed_precision,681log_with=args.report_to,682logging_dir=logging_dir,683project_config=accelerator_project_config,684)685686# Make one log on every process with the configuration for debugging.687logging.basicConfig(688format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",689datefmt="%m/%d/%Y %H:%M:%S",690level=logging.INFO,691)692logger.info(accelerator.state, main_process_only=False)693if accelerator.is_local_main_process:694transformers.utils.logging.set_verbosity_warning()695diffusers.utils.logging.set_verbosity_info()696else:697transformers.utils.logging.set_verbosity_error()698diffusers.utils.logging.set_verbosity_error()699700# If passed along, set the training seed now.701if args.seed is not None:702set_seed(args.seed)703704# Handle the repository creation705if accelerator.is_main_process:706if args.push_to_hub:707if args.hub_model_id is None:708repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)709else:710repo_name = args.hub_model_id711create_repo(repo_name, exist_ok=True, token=args.hub_token)712repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)713714with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:715if "step_*" not in gitignore:716gitignore.write("step_*\n")717if "epoch_*" not in gitignore:718gitignore.write("epoch_*\n")719elif args.output_dir is not None:720os.makedirs(args.output_dir, exist_ok=True)721722# Load the tokenizer723if args.tokenizer_name:724tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)725elif args.pretrained_model_name_or_path:726tokenizer = AutoTokenizer.from_pretrained(727args.pretrained_model_name_or_path,728subfolder="tokenizer",729revision=args.revision,730use_fast=False,731)732733# import correct text encoder class734text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)735736# Load scheduler and models737noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")738text_encoder = text_encoder_cls.from_pretrained(739args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision740)741vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)742unet = UNet2DConditionModel.from_pretrained(743args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision744)745746if args.controlnet_model_name_or_path:747logger.info("Loading existing controlnet weights")748controlnet = ControlNetModel.from_pretrained(args.controlnet_model_name_or_path)749else:750logger.info("Initializing controlnet weights from unet")751controlnet = ControlNetModel.from_unet(unet)752753# `accelerate` 0.16.0 will have better support for customized saving754if version.parse(accelerate.__version__) >= version.parse("0.16.0"):755# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format756def save_model_hook(models, weights, output_dir):757i = len(weights) - 1758759while len(weights) > 0:760weights.pop()761model = models[i]762763sub_dir = "controlnet"764model.save_pretrained(os.path.join(output_dir, sub_dir))765766i -= 1767768def load_model_hook(models, input_dir):769while len(models) > 0:770# pop models so that they are not loaded again771model = models.pop()772773# load diffusers style into model774load_model = ControlNetModel.from_pretrained(input_dir, subfolder="controlnet")775model.register_to_config(**load_model.config)776777model.load_state_dict(load_model.state_dict())778del load_model779780accelerator.register_save_state_pre_hook(save_model_hook)781accelerator.register_load_state_pre_hook(load_model_hook)782783vae.requires_grad_(False)784unet.requires_grad_(False)785text_encoder.requires_grad_(False)786controlnet.train()787788if args.enable_xformers_memory_efficient_attention:789if is_xformers_available():790import xformers791792xformers_version = version.parse(xformers.__version__)793if xformers_version == version.parse("0.0.16"):794logger.warn(795"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."796)797unet.enable_xformers_memory_efficient_attention()798controlnet.enable_xformers_memory_efficient_attention()799else:800raise ValueError("xformers is not available. Make sure it is installed correctly")801802if args.gradient_checkpointing:803controlnet.enable_gradient_checkpointing()804805# Check that all trainable models are in full precision806low_precision_error_string = (807" Please make sure to always have all model weights in full float32 precision when starting training - even if"808" doing mixed precision training, copy of the weights should still be float32."809)810811if accelerator.unwrap_model(controlnet).dtype != torch.float32:812raise ValueError(813f"Controlnet loaded as datatype {accelerator.unwrap_model(controlnet).dtype}. {low_precision_error_string}"814)815816# Enable TF32 for faster training on Ampere GPUs,817# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices818if args.allow_tf32:819torch.backends.cuda.matmul.allow_tf32 = True820821if args.scale_lr:822args.learning_rate = (823args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes824)825826# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs827if args.use_8bit_adam:828try:829import bitsandbytes as bnb830except ImportError:831raise ImportError(832"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."833)834835optimizer_class = bnb.optim.AdamW8bit836else:837optimizer_class = torch.optim.AdamW838839# Optimizer creation840params_to_optimize = controlnet.parameters()841optimizer = optimizer_class(842params_to_optimize,843lr=args.learning_rate,844betas=(args.adam_beta1, args.adam_beta2),845weight_decay=args.adam_weight_decay,846eps=args.adam_epsilon,847)848849train_dataset = make_train_dataset(args, tokenizer, accelerator)850851train_dataloader = torch.utils.data.DataLoader(852train_dataset,853shuffle=True,854collate_fn=collate_fn,855batch_size=args.train_batch_size,856num_workers=args.dataloader_num_workers,857)858859# Scheduler and math around the number of training steps.860overrode_max_train_steps = False861num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)862if args.max_train_steps is None:863args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch864overrode_max_train_steps = True865866lr_scheduler = get_scheduler(867args.lr_scheduler,868optimizer=optimizer,869num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,870num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,871num_cycles=args.lr_num_cycles,872power=args.lr_power,873)874875# Prepare everything with our `accelerator`.876controlnet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(877controlnet, optimizer, train_dataloader, lr_scheduler878)879880# For mixed precision training we cast the text_encoder and vae weights to half-precision881# as these models are only used for inference, keeping weights in full precision is not required.882weight_dtype = torch.float32883if accelerator.mixed_precision == "fp16":884weight_dtype = torch.float16885elif accelerator.mixed_precision == "bf16":886weight_dtype = torch.bfloat16887888# Move vae, unet and text_encoder to device and cast to weight_dtype889vae.to(accelerator.device, dtype=weight_dtype)890unet.to(accelerator.device, dtype=weight_dtype)891text_encoder.to(accelerator.device, dtype=weight_dtype)892893# We need to recalculate our total training steps as the size of the training dataloader may have changed.894num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)895if overrode_max_train_steps:896args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch897# Afterwards we recalculate our number of training epochs898args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)899900# We need to initialize the trackers we use, and also store our configuration.901# The trackers initializes automatically on the main process.902if accelerator.is_main_process:903tracker_config = dict(vars(args))904905# tensorboard cannot handle list types for config906tracker_config.pop("validation_prompt")907tracker_config.pop("validation_image")908909accelerator.init_trackers(args.tracker_project_name, config=tracker_config)910911# Train!912total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps913914logger.info("***** Running training *****")915logger.info(f" Num examples = {len(train_dataset)}")916logger.info(f" Num batches each epoch = {len(train_dataloader)}")917logger.info(f" Num Epochs = {args.num_train_epochs}")918logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")919logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")920logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")921logger.info(f" Total optimization steps = {args.max_train_steps}")922global_step = 0923first_epoch = 0924925# Potentially load in the weights and states from a previous save926if args.resume_from_checkpoint:927if args.resume_from_checkpoint != "latest":928path = os.path.basename(args.resume_from_checkpoint)929else:930# Get the most recent checkpoint931dirs = os.listdir(args.output_dir)932dirs = [d for d in dirs if d.startswith("checkpoint")]933dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))934path = dirs[-1] if len(dirs) > 0 else None935936if path is None:937accelerator.print(938f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."939)940args.resume_from_checkpoint = None941initial_global_step = 0942else:943accelerator.print(f"Resuming from checkpoint {path}")944accelerator.load_state(os.path.join(args.output_dir, path))945global_step = int(path.split("-")[1])946947initial_global_step = global_step * args.gradient_accumulation_steps948first_epoch = global_step // num_update_steps_per_epoch949else:950initial_global_step = 0951952progress_bar = tqdm(953range(0, args.max_train_steps),954initial=initial_global_step,955desc="Steps",956# Only show the progress bar once on each machine.957disable=not accelerator.is_local_main_process,958)959960for epoch in range(first_epoch, args.num_train_epochs):961for step, batch in enumerate(train_dataloader):962with accelerator.accumulate(controlnet):963# Convert images to latent space964latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()965latents = latents * vae.config.scaling_factor966967# Sample noise that we'll add to the latents968noise = torch.randn_like(latents)969bsz = latents.shape[0]970# Sample a random timestep for each image971timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)972timesteps = timesteps.long()973974# Add noise to the latents according to the noise magnitude at each timestep975# (this is the forward diffusion process)976noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)977978# Get the text embedding for conditioning979encoder_hidden_states = text_encoder(batch["input_ids"])[0]980981controlnet_image = batch["conditioning_pixel_values"].to(dtype=weight_dtype)982983down_block_res_samples, mid_block_res_sample = controlnet(984noisy_latents,985timesteps,986encoder_hidden_states=encoder_hidden_states,987controlnet_cond=controlnet_image,988return_dict=False,989)990991# Predict the noise residual992model_pred = unet(993noisy_latents,994timesteps,995encoder_hidden_states=encoder_hidden_states,996down_block_additional_residuals=down_block_res_samples,997mid_block_additional_residual=mid_block_res_sample,998).sample9991000# Get the target for loss depending on the prediction type1001if noise_scheduler.config.prediction_type == "epsilon":1002target = noise1003elif noise_scheduler.config.prediction_type == "v_prediction":1004target = noise_scheduler.get_velocity(latents, noise, timesteps)1005else:1006raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")1007loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")10081009accelerator.backward(loss)1010if accelerator.sync_gradients:1011params_to_clip = controlnet.parameters()1012accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)1013optimizer.step()1014lr_scheduler.step()1015optimizer.zero_grad(set_to_none=args.set_grads_to_none)10161017# Checks if the accelerator has performed an optimization step behind the scenes1018if accelerator.sync_gradients:1019progress_bar.update(1)1020global_step += 110211022if accelerator.is_main_process:1023if global_step % args.checkpointing_steps == 0:1024save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")1025accelerator.save_state(save_path)1026logger.info(f"Saved state to {save_path}")10271028if args.validation_prompt is not None and global_step % args.validation_steps == 0:1029log_validation(1030vae,1031text_encoder,1032tokenizer,1033unet,1034controlnet,1035args,1036accelerator,1037weight_dtype,1038global_step,1039)10401041logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}1042progress_bar.set_postfix(**logs)1043accelerator.log(logs, step=global_step)10441045if global_step >= args.max_train_steps:1046break10471048# Create the pipeline using using the trained modules and save it.1049accelerator.wait_for_everyone()1050if accelerator.is_main_process:1051controlnet = accelerator.unwrap_model(controlnet)1052controlnet.save_pretrained(args.output_dir)10531054if args.push_to_hub:1055repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)10561057accelerator.end_training()105810591060if __name__ == "__main__":1061args = parse_args()1062main(args)106310641065