Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
shivamshrirao
GitHub Repository: shivamshrirao/diffusers
Path: blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
1440 views
1
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
2
# *Only* converts the UNet, VAE, and Text Encoder.
3
# Does not convert optimizer state or any other thing.
4
5
import argparse
6
import os.path as osp
7
import re
8
9
import torch
10
from safetensors.torch import load_file, save_file
11
12
13
# =================#
14
# UNet Conversion #
15
# =================#
16
17
unet_conversion_map = [
18
# (stable-diffusion, HF Diffusers)
19
("time_embed.0.weight", "time_embedding.linear_1.weight"),
20
("time_embed.0.bias", "time_embedding.linear_1.bias"),
21
("time_embed.2.weight", "time_embedding.linear_2.weight"),
22
("time_embed.2.bias", "time_embedding.linear_2.bias"),
23
("input_blocks.0.0.weight", "conv_in.weight"),
24
("input_blocks.0.0.bias", "conv_in.bias"),
25
("out.0.weight", "conv_norm_out.weight"),
26
("out.0.bias", "conv_norm_out.bias"),
27
("out.2.weight", "conv_out.weight"),
28
("out.2.bias", "conv_out.bias"),
29
]
30
31
unet_conversion_map_resnet = [
32
# (stable-diffusion, HF Diffusers)
33
("in_layers.0", "norm1"),
34
("in_layers.2", "conv1"),
35
("out_layers.0", "norm2"),
36
("out_layers.3", "conv2"),
37
("emb_layers.1", "time_emb_proj"),
38
("skip_connection", "conv_shortcut"),
39
]
40
41
unet_conversion_map_layer = []
42
# hardcoded number of downblocks and resnets/attentions...
43
# would need smarter logic for other networks.
44
for i in range(4):
45
# loop over downblocks/upblocks
46
47
for j in range(2):
48
# loop over resnets/attentions for downblocks
49
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
50
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
51
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
52
53
if i < 3:
54
# no attention layers in down_blocks.3
55
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
56
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
57
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
58
59
for j in range(3):
60
# loop over resnets/attentions for upblocks
61
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
62
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
63
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
64
65
if i > 0:
66
# no attention layers in up_blocks.0
67
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
68
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
69
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
70
71
if i < 3:
72
# no downsample in down_blocks.3
73
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
74
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
75
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
76
77
# no upsample in up_blocks.3
78
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
79
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
80
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
81
82
hf_mid_atn_prefix = "mid_block.attentions.0."
83
sd_mid_atn_prefix = "middle_block.1."
84
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
85
86
for j in range(2):
87
hf_mid_res_prefix = f"mid_block.resnets.{j}."
88
sd_mid_res_prefix = f"middle_block.{2*j}."
89
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
90
91
92
def convert_unet_state_dict(unet_state_dict):
93
# buyer beware: this is a *brittle* function,
94
# and correct output requires that all of these pieces interact in
95
# the exact order in which I have arranged them.
96
mapping = {k: k for k in unet_state_dict.keys()}
97
for sd_name, hf_name in unet_conversion_map:
98
mapping[hf_name] = sd_name
99
for k, v in mapping.items():
100
if "resnets" in k:
101
for sd_part, hf_part in unet_conversion_map_resnet:
102
v = v.replace(hf_part, sd_part)
103
mapping[k] = v
104
for k, v in mapping.items():
105
for sd_part, hf_part in unet_conversion_map_layer:
106
v = v.replace(hf_part, sd_part)
107
mapping[k] = v
108
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
109
return new_state_dict
110
111
112
# ================#
113
# VAE Conversion #
114
# ================#
115
116
vae_conversion_map = [
117
# (stable-diffusion, HF Diffusers)
118
("nin_shortcut", "conv_shortcut"),
119
("norm_out", "conv_norm_out"),
120
("mid.attn_1.", "mid_block.attentions.0."),
121
]
122
123
for i in range(4):
124
# down_blocks have two resnets
125
for j in range(2):
126
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
127
sd_down_prefix = f"encoder.down.{i}.block.{j}."
128
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
129
130
if i < 3:
131
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
132
sd_downsample_prefix = f"down.{i}.downsample."
133
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
134
135
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
136
sd_upsample_prefix = f"up.{3-i}.upsample."
137
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
138
139
# up_blocks have three resnets
140
# also, up blocks in hf are numbered in reverse from sd
141
for j in range(3):
142
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
143
sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
144
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
145
146
# this part accounts for mid blocks in both the encoder and the decoder
147
for i in range(2):
148
hf_mid_res_prefix = f"mid_block.resnets.{i}."
149
sd_mid_res_prefix = f"mid.block_{i+1}."
150
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
151
152
153
vae_conversion_map_attn = [
154
# (stable-diffusion, HF Diffusers)
155
("norm.", "group_norm."),
156
("q.", "query."),
157
("k.", "key."),
158
("v.", "value."),
159
("proj_out.", "proj_attn."),
160
]
161
162
163
def reshape_weight_for_sd(w):
164
# convert HF linear weights to SD conv2d weights
165
return w.reshape(*w.shape, 1, 1)
166
167
168
def convert_vae_state_dict(vae_state_dict):
169
mapping = {k: k for k in vae_state_dict.keys()}
170
for k, v in mapping.items():
171
for sd_part, hf_part in vae_conversion_map:
172
v = v.replace(hf_part, sd_part)
173
mapping[k] = v
174
for k, v in mapping.items():
175
if "attentions" in k:
176
for sd_part, hf_part in vae_conversion_map_attn:
177
v = v.replace(hf_part, sd_part)
178
mapping[k] = v
179
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
180
weights_to_convert = ["q", "k", "v", "proj_out"]
181
for k, v in new_state_dict.items():
182
for weight_name in weights_to_convert:
183
if f"mid.attn_1.{weight_name}.weight" in k:
184
print(f"Reshaping {k} for SD format")
185
new_state_dict[k] = reshape_weight_for_sd(v)
186
return new_state_dict
187
188
189
# =========================#
190
# Text Encoder Conversion #
191
# =========================#
192
193
194
textenc_conversion_lst = [
195
# (stable-diffusion, HF Diffusers)
196
("resblocks.", "text_model.encoder.layers."),
197
("ln_1", "layer_norm1"),
198
("ln_2", "layer_norm2"),
199
(".c_fc.", ".fc1."),
200
(".c_proj.", ".fc2."),
201
(".attn", ".self_attn"),
202
("ln_final.", "transformer.text_model.final_layer_norm."),
203
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
204
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
205
]
206
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
207
textenc_pattern = re.compile("|".join(protected.keys()))
208
209
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
210
code2idx = {"q": 0, "k": 1, "v": 2}
211
212
213
def convert_text_enc_state_dict_v20(text_enc_dict):
214
new_state_dict = {}
215
capture_qkv_weight = {}
216
capture_qkv_bias = {}
217
for k, v in text_enc_dict.items():
218
if (
219
k.endswith(".self_attn.q_proj.weight")
220
or k.endswith(".self_attn.k_proj.weight")
221
or k.endswith(".self_attn.v_proj.weight")
222
):
223
k_pre = k[: -len(".q_proj.weight")]
224
k_code = k[-len("q_proj.weight")]
225
if k_pre not in capture_qkv_weight:
226
capture_qkv_weight[k_pre] = [None, None, None]
227
capture_qkv_weight[k_pre][code2idx[k_code]] = v
228
continue
229
230
if (
231
k.endswith(".self_attn.q_proj.bias")
232
or k.endswith(".self_attn.k_proj.bias")
233
or k.endswith(".self_attn.v_proj.bias")
234
):
235
k_pre = k[: -len(".q_proj.bias")]
236
k_code = k[-len("q_proj.bias")]
237
if k_pre not in capture_qkv_bias:
238
capture_qkv_bias[k_pre] = [None, None, None]
239
capture_qkv_bias[k_pre][code2idx[k_code]] = v
240
continue
241
242
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
243
new_state_dict[relabelled_key] = v
244
245
for k_pre, tensors in capture_qkv_weight.items():
246
if None in tensors:
247
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
248
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
249
new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
250
251
for k_pre, tensors in capture_qkv_bias.items():
252
if None in tensors:
253
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
254
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
255
new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
256
257
return new_state_dict
258
259
260
def convert_text_enc_state_dict(text_enc_dict):
261
return text_enc_dict
262
263
264
if __name__ == "__main__":
265
parser = argparse.ArgumentParser()
266
267
parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.")
268
parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.")
269
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
270
parser.add_argument(
271
"--use_safetensors", action="store_true", help="Save weights use safetensors, default is ckpt."
272
)
273
274
args = parser.parse_args()
275
276
assert args.model_path is not None, "Must provide a model path!"
277
278
assert args.checkpoint_path is not None, "Must provide a checkpoint path!"
279
280
# Path for safetensors
281
unet_path = osp.join(args.model_path, "unet", "diffusion_pytorch_model.safetensors")
282
vae_path = osp.join(args.model_path, "vae", "diffusion_pytorch_model.safetensors")
283
text_enc_path = osp.join(args.model_path, "text_encoder", "model.safetensors")
284
285
# Load models from safetensors if it exists, if it doesn't pytorch
286
if osp.exists(unet_path):
287
unet_state_dict = load_file(unet_path, device="cpu")
288
else:
289
unet_path = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin")
290
unet_state_dict = torch.load(unet_path, map_location="cpu")
291
292
if osp.exists(vae_path):
293
vae_state_dict = load_file(vae_path, device="cpu")
294
else:
295
vae_path = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin")
296
vae_state_dict = torch.load(vae_path, map_location="cpu")
297
298
if osp.exists(text_enc_path):
299
text_enc_dict = load_file(text_enc_path, device="cpu")
300
else:
301
text_enc_path = osp.join(args.model_path, "text_encoder", "pytorch_model.bin")
302
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
303
304
# Convert the UNet model
305
unet_state_dict = convert_unet_state_dict(unet_state_dict)
306
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
307
308
# Convert the VAE model
309
vae_state_dict = convert_vae_state_dict(vae_state_dict)
310
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
311
312
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
313
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
314
315
if is_v20_model:
316
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
317
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
318
text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict)
319
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
320
else:
321
text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
322
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
323
324
# Put together new checkpoint
325
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
326
if args.half:
327
state_dict = {k: v.half() for k, v in state_dict.items()}
328
329
if args.use_safetensors:
330
save_file(state_dict, args.checkpoint_path)
331
else:
332
state_dict = {"state_dict": state_dict}
333
torch.save(state_dict, args.checkpoint_path)
334
335