Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
shivamshrirao
GitHub Repository: shivamshrirao/diffusers
Path: blob/main/tests/pipelines/audioldm/test_audioldm.py
1448 views
1
# coding=utf-8
2
# Copyright 2023 HuggingFace Inc.
3
#
4
# Licensed under the Apache License, Version 2.0 (the "License");
5
# you may not use this file except in compliance with the License.
6
# You may obtain a copy of the License at
7
#
8
# http://www.apache.org/licenses/LICENSE-2.0
9
#
10
# Unless required by applicable law or agreed to in writing, software
11
# distributed under the License is distributed on an "AS IS" BASIS,
12
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
# See the License for the specific language governing permissions and
14
# limitations under the License.
15
16
17
import gc
18
import unittest
19
20
import numpy as np
21
import torch
22
import torch.nn.functional as F
23
from transformers import (
24
ClapTextConfig,
25
ClapTextModelWithProjection,
26
RobertaTokenizer,
27
SpeechT5HifiGan,
28
SpeechT5HifiGanConfig,
29
)
30
31
from diffusers import (
32
AudioLDMPipeline,
33
AutoencoderKL,
34
DDIMScheduler,
35
LMSDiscreteScheduler,
36
PNDMScheduler,
37
UNet2DConditionModel,
38
)
39
from diffusers.utils import slow, torch_device
40
41
from ...pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
42
from ...test_pipelines_common import PipelineTesterMixin
43
44
45
class AudioLDMPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
46
pipeline_class = AudioLDMPipeline
47
params = TEXT_TO_AUDIO_PARAMS
48
batch_params = TEXT_TO_AUDIO_BATCH_PARAMS
49
required_optional_params = frozenset(
50
[
51
"num_inference_steps",
52
"num_waveforms_per_prompt",
53
"generator",
54
"latents",
55
"output_type",
56
"return_dict",
57
"callback",
58
"callback_steps",
59
]
60
)
61
62
def get_dummy_components(self):
63
torch.manual_seed(0)
64
unet = UNet2DConditionModel(
65
block_out_channels=(32, 64),
66
layers_per_block=2,
67
sample_size=32,
68
in_channels=4,
69
out_channels=4,
70
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
71
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
72
cross_attention_dim=(32, 64),
73
class_embed_type="simple_projection",
74
projection_class_embeddings_input_dim=32,
75
class_embeddings_concat=True,
76
)
77
scheduler = DDIMScheduler(
78
beta_start=0.00085,
79
beta_end=0.012,
80
beta_schedule="scaled_linear",
81
clip_sample=False,
82
set_alpha_to_one=False,
83
)
84
torch.manual_seed(0)
85
vae = AutoencoderKL(
86
block_out_channels=[32, 64],
87
in_channels=1,
88
out_channels=1,
89
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
90
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
91
latent_channels=4,
92
)
93
torch.manual_seed(0)
94
text_encoder_config = ClapTextConfig(
95
bos_token_id=0,
96
eos_token_id=2,
97
hidden_size=32,
98
intermediate_size=37,
99
layer_norm_eps=1e-05,
100
num_attention_heads=4,
101
num_hidden_layers=5,
102
pad_token_id=1,
103
vocab_size=1000,
104
projection_dim=32,
105
)
106
text_encoder = ClapTextModelWithProjection(text_encoder_config)
107
tokenizer = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta", model_max_length=77)
108
109
vocoder_config = SpeechT5HifiGanConfig(
110
model_in_dim=8,
111
sampling_rate=16000,
112
upsample_initial_channel=16,
113
upsample_rates=[2, 2],
114
upsample_kernel_sizes=[4, 4],
115
resblock_kernel_sizes=[3, 7],
116
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]],
117
normalize_before=False,
118
)
119
120
vocoder = SpeechT5HifiGan(vocoder_config)
121
122
components = {
123
"unet": unet,
124
"scheduler": scheduler,
125
"vae": vae,
126
"text_encoder": text_encoder,
127
"tokenizer": tokenizer,
128
"vocoder": vocoder,
129
}
130
return components
131
132
def get_dummy_inputs(self, device, seed=0):
133
if str(device).startswith("mps"):
134
generator = torch.manual_seed(seed)
135
else:
136
generator = torch.Generator(device=device).manual_seed(seed)
137
inputs = {
138
"prompt": "A hammer hitting a wooden surface",
139
"generator": generator,
140
"num_inference_steps": 2,
141
"guidance_scale": 6.0,
142
}
143
return inputs
144
145
def test_audioldm_ddim(self):
146
device = "cpu" # ensure determinism for the device-dependent torch.Generator
147
148
components = self.get_dummy_components()
149
audioldm_pipe = AudioLDMPipeline(**components)
150
audioldm_pipe = audioldm_pipe.to(torch_device)
151
audioldm_pipe.set_progress_bar_config(disable=None)
152
153
inputs = self.get_dummy_inputs(device)
154
output = audioldm_pipe(**inputs)
155
audio = output.audios[0]
156
157
assert audio.ndim == 1
158
assert len(audio) == 256
159
160
audio_slice = audio[:10]
161
expected_slice = np.array(
162
[-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033]
163
)
164
165
assert np.abs(audio_slice - expected_slice).max() < 1e-2
166
167
def test_audioldm_prompt_embeds(self):
168
components = self.get_dummy_components()
169
audioldm_pipe = AudioLDMPipeline(**components)
170
audioldm_pipe = audioldm_pipe.to(torch_device)
171
audioldm_pipe = audioldm_pipe.to(torch_device)
172
audioldm_pipe.set_progress_bar_config(disable=None)
173
174
inputs = self.get_dummy_inputs(torch_device)
175
inputs["prompt"] = 3 * [inputs["prompt"]]
176
177
# forward
178
output = audioldm_pipe(**inputs)
179
audio_1 = output.audios[0]
180
181
inputs = self.get_dummy_inputs(torch_device)
182
prompt = 3 * [inputs.pop("prompt")]
183
184
text_inputs = audioldm_pipe.tokenizer(
185
prompt,
186
padding="max_length",
187
max_length=audioldm_pipe.tokenizer.model_max_length,
188
truncation=True,
189
return_tensors="pt",
190
)
191
text_inputs = text_inputs["input_ids"].to(torch_device)
192
193
prompt_embeds = audioldm_pipe.text_encoder(
194
text_inputs,
195
)
196
prompt_embeds = prompt_embeds.text_embeds
197
# additional L_2 normalization over each hidden-state
198
prompt_embeds = F.normalize(prompt_embeds, dim=-1)
199
200
inputs["prompt_embeds"] = prompt_embeds
201
202
# forward
203
output = audioldm_pipe(**inputs)
204
audio_2 = output.audios[0]
205
206
assert np.abs(audio_1 - audio_2).max() < 1e-2
207
208
def test_audioldm_negative_prompt_embeds(self):
209
components = self.get_dummy_components()
210
audioldm_pipe = AudioLDMPipeline(**components)
211
audioldm_pipe = audioldm_pipe.to(torch_device)
212
audioldm_pipe = audioldm_pipe.to(torch_device)
213
audioldm_pipe.set_progress_bar_config(disable=None)
214
215
inputs = self.get_dummy_inputs(torch_device)
216
negative_prompt = 3 * ["this is a negative prompt"]
217
inputs["negative_prompt"] = negative_prompt
218
inputs["prompt"] = 3 * [inputs["prompt"]]
219
220
# forward
221
output = audioldm_pipe(**inputs)
222
audio_1 = output.audios[0]
223
224
inputs = self.get_dummy_inputs(torch_device)
225
prompt = 3 * [inputs.pop("prompt")]
226
227
embeds = []
228
for p in [prompt, negative_prompt]:
229
text_inputs = audioldm_pipe.tokenizer(
230
p,
231
padding="max_length",
232
max_length=audioldm_pipe.tokenizer.model_max_length,
233
truncation=True,
234
return_tensors="pt",
235
)
236
text_inputs = text_inputs["input_ids"].to(torch_device)
237
238
text_embeds = audioldm_pipe.text_encoder(
239
text_inputs,
240
)
241
text_embeds = text_embeds.text_embeds
242
# additional L_2 normalization over each hidden-state
243
text_embeds = F.normalize(text_embeds, dim=-1)
244
245
embeds.append(text_embeds)
246
247
inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds
248
249
# forward
250
output = audioldm_pipe(**inputs)
251
audio_2 = output.audios[0]
252
253
assert np.abs(audio_1 - audio_2).max() < 1e-2
254
255
def test_audioldm_negative_prompt(self):
256
device = "cpu" # ensure determinism for the device-dependent torch.Generator
257
components = self.get_dummy_components()
258
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
259
audioldm_pipe = AudioLDMPipeline(**components)
260
audioldm_pipe = audioldm_pipe.to(device)
261
audioldm_pipe.set_progress_bar_config(disable=None)
262
263
inputs = self.get_dummy_inputs(device)
264
negative_prompt = "egg cracking"
265
output = audioldm_pipe(**inputs, negative_prompt=negative_prompt)
266
audio = output.audios[0]
267
268
assert audio.ndim == 1
269
assert len(audio) == 256
270
271
audio_slice = audio[:10]
272
expected_slice = np.array(
273
[-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032]
274
)
275
276
assert np.abs(audio_slice - expected_slice).max() < 1e-2
277
278
def test_audioldm_num_waveforms_per_prompt(self):
279
device = "cpu" # ensure determinism for the device-dependent torch.Generator
280
components = self.get_dummy_components()
281
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
282
audioldm_pipe = AudioLDMPipeline(**components)
283
audioldm_pipe = audioldm_pipe.to(device)
284
audioldm_pipe.set_progress_bar_config(disable=None)
285
286
prompt = "A hammer hitting a wooden surface"
287
288
# test num_waveforms_per_prompt=1 (default)
289
audios = audioldm_pipe(prompt, num_inference_steps=2).audios
290
291
assert audios.shape == (1, 256)
292
293
# test num_waveforms_per_prompt=1 (default) for batch of prompts
294
batch_size = 2
295
audios = audioldm_pipe([prompt] * batch_size, num_inference_steps=2).audios
296
297
assert audios.shape == (batch_size, 256)
298
299
# test num_waveforms_per_prompt for single prompt
300
num_waveforms_per_prompt = 2
301
audios = audioldm_pipe(prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt).audios
302
303
assert audios.shape == (num_waveforms_per_prompt, 256)
304
305
# test num_waveforms_per_prompt for batch of prompts
306
batch_size = 2
307
audios = audioldm_pipe(
308
[prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt
309
).audios
310
311
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
312
313
def test_audioldm_audio_length_in_s(self):
314
device = "cpu" # ensure determinism for the device-dependent torch.Generator
315
components = self.get_dummy_components()
316
audioldm_pipe = AudioLDMPipeline(**components)
317
audioldm_pipe = audioldm_pipe.to(torch_device)
318
audioldm_pipe.set_progress_bar_config(disable=None)
319
vocoder_sampling_rate = audioldm_pipe.vocoder.config.sampling_rate
320
321
inputs = self.get_dummy_inputs(device)
322
output = audioldm_pipe(audio_length_in_s=0.016, **inputs)
323
audio = output.audios[0]
324
325
assert audio.ndim == 1
326
assert len(audio) / vocoder_sampling_rate == 0.016
327
328
output = audioldm_pipe(audio_length_in_s=0.032, **inputs)
329
audio = output.audios[0]
330
331
assert audio.ndim == 1
332
assert len(audio) / vocoder_sampling_rate == 0.032
333
334
def test_audioldm_vocoder_model_in_dim(self):
335
components = self.get_dummy_components()
336
audioldm_pipe = AudioLDMPipeline(**components)
337
audioldm_pipe = audioldm_pipe.to(torch_device)
338
audioldm_pipe.set_progress_bar_config(disable=None)
339
340
prompt = ["hey"]
341
342
output = audioldm_pipe(prompt, num_inference_steps=1)
343
audio_shape = output.audios.shape
344
assert audio_shape == (1, 256)
345
346
config = audioldm_pipe.vocoder.config
347
config.model_in_dim *= 2
348
audioldm_pipe.vocoder = SpeechT5HifiGan(config).to(torch_device)
349
output = audioldm_pipe(prompt, num_inference_steps=1)
350
audio_shape = output.audios.shape
351
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
352
assert audio_shape == (1, 256)
353
354
def test_attention_slicing_forward_pass(self):
355
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False)
356
357
def test_inference_batch_single_identical(self):
358
self._test_inference_batch_single_identical(test_mean_pixel_difference=False)
359
360
361
@slow
362
# @require_torch_gpu
363
class AudioLDMPipelineSlowTests(unittest.TestCase):
364
def tearDown(self):
365
super().tearDown()
366
gc.collect()
367
torch.cuda.empty_cache()
368
369
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
370
generator = torch.Generator(device=generator_device).manual_seed(seed)
371
latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16))
372
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
373
inputs = {
374
"prompt": "A hammer hitting a wooden surface",
375
"latents": latents,
376
"generator": generator,
377
"num_inference_steps": 3,
378
"guidance_scale": 2.5,
379
}
380
return inputs
381
382
def test_audioldm(self):
383
audioldm_pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm")
384
audioldm_pipe = audioldm_pipe.to(torch_device)
385
audioldm_pipe.set_progress_bar_config(disable=None)
386
387
inputs = self.get_inputs(torch_device)
388
inputs["num_inference_steps"] = 25
389
audio = audioldm_pipe(**inputs).audios[0]
390
391
assert audio.ndim == 1
392
assert len(audio) == 81920
393
394
audio_slice = audio[77230:77240]
395
expected_slice = np.array(
396
[-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315]
397
)
398
max_diff = np.abs(expected_slice - audio_slice).max()
399
assert max_diff < 1e-2
400
401
def test_audioldm_lms(self):
402
audioldm_pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm")
403
audioldm_pipe.scheduler = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config)
404
audioldm_pipe = audioldm_pipe.to(torch_device)
405
audioldm_pipe.set_progress_bar_config(disable=None)
406
407
inputs = self.get_inputs(torch_device)
408
audio = audioldm_pipe(**inputs).audios[0]
409
410
assert audio.ndim == 1
411
assert len(audio) == 81920
412
413
audio_slice = audio[27780:27790]
414
expected_slice = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212])
415
max_diff = np.abs(expected_slice - audio_slice).max()
416
assert max_diff < 1e-2
417
418