Path: blob/main/tests/pipelines/versatile_diffusion/test_versatile_diffusion_mega.py
1448 views
# coding=utf-81# Copyright 2023 HuggingFace Inc.2#3# Licensed under the Apache License, Version 2.0 (the "License");4# you may not use this file except in compliance with the License.5# You may obtain a copy of the License at6#7# http://www.apache.org/licenses/LICENSE-2.08#9# Unless required by applicable law or agreed to in writing, software10# distributed under the License is distributed on an "AS IS" BASIS,11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.12# See the License for the specific language governing permissions and13# limitations under the License.1415import gc16import tempfile17import unittest1819import numpy as np20import torch2122from diffusers import VersatileDiffusionPipeline23from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device242526torch.backends.cuda.matmul.allow_tf32 = False272829class VersatileDiffusionMegaPipelineFastTests(unittest.TestCase):30pass313233@nightly34@require_torch_gpu35class VersatileDiffusionMegaPipelineIntegrationTests(unittest.TestCase):36def tearDown(self):37# clean up the VRAM after each test38super().tearDown()39gc.collect()40torch.cuda.empty_cache()4142def test_from_save_pretrained(self):43pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)44pipe.to(torch_device)45pipe.set_progress_bar_config(disable=None)4647prompt_image = load_image(48"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg"49)5051generator = torch.manual_seed(0)52image = pipe.dual_guided(53prompt="first prompt",54image=prompt_image,55text_to_image_strength=0.75,56generator=generator,57guidance_scale=7.5,58num_inference_steps=2,59output_type="numpy",60).images6162with tempfile.TemporaryDirectory() as tmpdirname:63pipe.save_pretrained(tmpdirname)64pipe = VersatileDiffusionPipeline.from_pretrained(tmpdirname, torch_dtype=torch.float16)65pipe.to(torch_device)66pipe.set_progress_bar_config(disable=None)6768generator = generator.manual_seed(0)69new_image = pipe.dual_guided(70prompt="first prompt",71image=prompt_image,72text_to_image_strength=0.75,73generator=generator,74guidance_scale=7.5,75num_inference_steps=2,76output_type="numpy",77).images7879assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass"8081def test_inference_dual_guided_then_text_to_image(self):82pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)83pipe.to(torch_device)84pipe.set_progress_bar_config(disable=None)8586prompt = "cyberpunk 2077"87init_image = load_image(88"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg"89)90generator = torch.manual_seed(0)91image = pipe.dual_guided(92prompt=prompt,93image=init_image,94text_to_image_strength=0.75,95generator=generator,96guidance_scale=7.5,97num_inference_steps=50,98output_type="numpy",99).images100101image_slice = image[0, 253:256, 253:256, -1]102103assert image.shape == (1, 512, 512, 3)104expected_slice = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001])105106assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1107108prompt = "A painting of a squirrel eating a burger "109generator = torch.manual_seed(0)110image = pipe.text_to_image(111prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy"112).images113114image_slice = image[0, 253:256, 253:256, -1]115116assert image.shape == (1, 512, 512, 3)117expected_slice = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778])118119assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1120121image = pipe.image_variation(init_image, generator=generator, output_type="numpy").images122123image_slice = image[0, 253:256, 253:256, -1]124125assert image.shape == (1, 512, 512, 3)126expected_slice = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456])127128assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1129130131