Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
shivamshrirao
GitHub Repository: shivamshrirao/diffusers
Path: blob/main/tests/schedulers/test_scheduler_ddim.py
1448 views
1
import torch
2
3
from diffusers import DDIMScheduler
4
5
from .test_schedulers import SchedulerCommonTest
6
7
8
class DDIMSchedulerTest(SchedulerCommonTest):
9
scheduler_classes = (DDIMScheduler,)
10
forward_default_kwargs = (("eta", 0.0), ("num_inference_steps", 50))
11
12
def get_scheduler_config(self, **kwargs):
13
config = {
14
"num_train_timesteps": 1000,
15
"beta_start": 0.0001,
16
"beta_end": 0.02,
17
"beta_schedule": "linear",
18
"clip_sample": True,
19
}
20
21
config.update(**kwargs)
22
return config
23
24
def full_loop(self, **config):
25
scheduler_class = self.scheduler_classes[0]
26
scheduler_config = self.get_scheduler_config(**config)
27
scheduler = scheduler_class(**scheduler_config)
28
29
num_inference_steps, eta = 10, 0.0
30
31
model = self.dummy_model()
32
sample = self.dummy_sample_deter
33
34
scheduler.set_timesteps(num_inference_steps)
35
36
for t in scheduler.timesteps:
37
residual = model(sample, t)
38
sample = scheduler.step(residual, t, sample, eta).prev_sample
39
40
return sample
41
42
def test_timesteps(self):
43
for timesteps in [100, 500, 1000]:
44
self.check_over_configs(num_train_timesteps=timesteps)
45
46
def test_steps_offset(self):
47
for steps_offset in [0, 1]:
48
self.check_over_configs(steps_offset=steps_offset)
49
50
scheduler_class = self.scheduler_classes[0]
51
scheduler_config = self.get_scheduler_config(steps_offset=1)
52
scheduler = scheduler_class(**scheduler_config)
53
scheduler.set_timesteps(5)
54
assert torch.equal(scheduler.timesteps, torch.LongTensor([801, 601, 401, 201, 1]))
55
56
def test_betas(self):
57
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
58
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
59
60
def test_schedules(self):
61
for schedule in ["linear", "squaredcos_cap_v2"]:
62
self.check_over_configs(beta_schedule=schedule)
63
64
def test_prediction_type(self):
65
for prediction_type in ["epsilon", "v_prediction"]:
66
self.check_over_configs(prediction_type=prediction_type)
67
68
def test_clip_sample(self):
69
for clip_sample in [True, False]:
70
self.check_over_configs(clip_sample=clip_sample)
71
72
def test_thresholding(self):
73
self.check_over_configs(thresholding=False)
74
for threshold in [0.5, 1.0, 2.0]:
75
for prediction_type in ["epsilon", "v_prediction"]:
76
self.check_over_configs(
77
thresholding=True,
78
prediction_type=prediction_type,
79
sample_max_value=threshold,
80
)
81
82
def test_time_indices(self):
83
for t in [1, 10, 49]:
84
self.check_over_forward(time_step=t)
85
86
def test_inference_steps(self):
87
for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]):
88
self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)
89
90
def test_eta(self):
91
for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]):
92
self.check_over_forward(time_step=t, eta=eta)
93
94
def test_variance(self):
95
scheduler_class = self.scheduler_classes[0]
96
scheduler_config = self.get_scheduler_config()
97
scheduler = scheduler_class(**scheduler_config)
98
99
assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
100
assert torch.sum(torch.abs(scheduler._get_variance(420, 400) - 0.14771)) < 1e-5
101
assert torch.sum(torch.abs(scheduler._get_variance(980, 960) - 0.32460)) < 1e-5
102
assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
103
assert torch.sum(torch.abs(scheduler._get_variance(487, 486) - 0.00979)) < 1e-5
104
assert torch.sum(torch.abs(scheduler._get_variance(999, 998) - 0.02)) < 1e-5
105
106
def test_full_loop_no_noise(self):
107
sample = self.full_loop()
108
109
result_sum = torch.sum(torch.abs(sample))
110
result_mean = torch.mean(torch.abs(sample))
111
112
assert abs(result_sum.item() - 172.0067) < 1e-2
113
assert abs(result_mean.item() - 0.223967) < 1e-3
114
115
def test_full_loop_with_v_prediction(self):
116
sample = self.full_loop(prediction_type="v_prediction")
117
118
result_sum = torch.sum(torch.abs(sample))
119
result_mean = torch.mean(torch.abs(sample))
120
121
assert abs(result_sum.item() - 52.5302) < 1e-2
122
assert abs(result_mean.item() - 0.0684) < 1e-3
123
124
def test_full_loop_with_set_alpha_to_one(self):
125
# We specify different beta, so that the first alpha is 0.99
126
sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01)
127
result_sum = torch.sum(torch.abs(sample))
128
result_mean = torch.mean(torch.abs(sample))
129
130
assert abs(result_sum.item() - 149.8295) < 1e-2
131
assert abs(result_mean.item() - 0.1951) < 1e-3
132
133
def test_full_loop_with_no_set_alpha_to_one(self):
134
# We specify different beta, so that the first alpha is 0.99
135
sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01)
136
result_sum = torch.sum(torch.abs(sample))
137
result_mean = torch.mean(torch.abs(sample))
138
139
assert abs(result_sum.item() - 149.0784) < 1e-2
140
assert abs(result_mean.item() - 0.1941) < 1e-3
141
142