Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
shivamshrirao
GitHub Repository: shivamshrirao/diffusers
Path: blob/main/tests/schedulers/test_scheduler_dpm_multi.py
1448 views
1
import tempfile
2
3
import torch
4
5
from diffusers import (
6
DEISMultistepScheduler,
7
DPMSolverMultistepScheduler,
8
DPMSolverSinglestepScheduler,
9
UniPCMultistepScheduler,
10
)
11
12
from .test_schedulers import SchedulerCommonTest
13
14
15
class DPMSolverMultistepSchedulerTest(SchedulerCommonTest):
16
scheduler_classes = (DPMSolverMultistepScheduler,)
17
forward_default_kwargs = (("num_inference_steps", 25),)
18
19
def get_scheduler_config(self, **kwargs):
20
config = {
21
"num_train_timesteps": 1000,
22
"beta_start": 0.0001,
23
"beta_end": 0.02,
24
"beta_schedule": "linear",
25
"solver_order": 2,
26
"prediction_type": "epsilon",
27
"thresholding": False,
28
"sample_max_value": 1.0,
29
"algorithm_type": "dpmsolver++",
30
"solver_type": "midpoint",
31
"lower_order_final": False,
32
}
33
34
config.update(**kwargs)
35
return config
36
37
def check_over_configs(self, time_step=0, **config):
38
kwargs = dict(self.forward_default_kwargs)
39
num_inference_steps = kwargs.pop("num_inference_steps", None)
40
sample = self.dummy_sample
41
residual = 0.1 * sample
42
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]
43
44
for scheduler_class in self.scheduler_classes:
45
scheduler_config = self.get_scheduler_config(**config)
46
scheduler = scheduler_class(**scheduler_config)
47
scheduler.set_timesteps(num_inference_steps)
48
# copy over dummy past residuals
49
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]
50
51
with tempfile.TemporaryDirectory() as tmpdirname:
52
scheduler.save_config(tmpdirname)
53
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
54
new_scheduler.set_timesteps(num_inference_steps)
55
# copy over dummy past residuals
56
new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]
57
58
output, new_output = sample, sample
59
for t in range(time_step, time_step + scheduler.config.solver_order + 1):
60
output = scheduler.step(residual, t, output, **kwargs).prev_sample
61
new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample
62
63
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
64
65
def test_from_save_pretrained(self):
66
pass
67
68
def check_over_forward(self, time_step=0, **forward_kwargs):
69
kwargs = dict(self.forward_default_kwargs)
70
num_inference_steps = kwargs.pop("num_inference_steps", None)
71
sample = self.dummy_sample
72
residual = 0.1 * sample
73
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]
74
75
for scheduler_class in self.scheduler_classes:
76
scheduler_config = self.get_scheduler_config()
77
scheduler = scheduler_class(**scheduler_config)
78
scheduler.set_timesteps(num_inference_steps)
79
80
# copy over dummy past residuals (must be after setting timesteps)
81
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]
82
83
with tempfile.TemporaryDirectory() as tmpdirname:
84
scheduler.save_config(tmpdirname)
85
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
86
# copy over dummy past residuals
87
new_scheduler.set_timesteps(num_inference_steps)
88
89
# copy over dummy past residual (must be after setting timesteps)
90
new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]
91
92
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
93
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
94
95
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
96
97
def full_loop(self, scheduler=None, **config):
98
if scheduler is None:
99
scheduler_class = self.scheduler_classes[0]
100
scheduler_config = self.get_scheduler_config(**config)
101
scheduler = scheduler_class(**scheduler_config)
102
103
num_inference_steps = 10
104
model = self.dummy_model()
105
sample = self.dummy_sample_deter
106
scheduler.set_timesteps(num_inference_steps)
107
108
for i, t in enumerate(scheduler.timesteps):
109
residual = model(sample, t)
110
sample = scheduler.step(residual, t, sample).prev_sample
111
112
return sample
113
114
def test_step_shape(self):
115
kwargs = dict(self.forward_default_kwargs)
116
117
num_inference_steps = kwargs.pop("num_inference_steps", None)
118
119
for scheduler_class in self.scheduler_classes:
120
scheduler_config = self.get_scheduler_config()
121
scheduler = scheduler_class(**scheduler_config)
122
123
sample = self.dummy_sample
124
residual = 0.1 * sample
125
126
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
127
scheduler.set_timesteps(num_inference_steps)
128
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
129
kwargs["num_inference_steps"] = num_inference_steps
130
131
# copy over dummy past residuals (must be done after set_timesteps)
132
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]
133
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]
134
135
time_step_0 = scheduler.timesteps[5]
136
time_step_1 = scheduler.timesteps[6]
137
138
output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample
139
output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample
140
141
self.assertEqual(output_0.shape, sample.shape)
142
self.assertEqual(output_0.shape, output_1.shape)
143
144
def test_timesteps(self):
145
for timesteps in [25, 50, 100, 999, 1000]:
146
self.check_over_configs(num_train_timesteps=timesteps)
147
148
def test_thresholding(self):
149
self.check_over_configs(thresholding=False)
150
for order in [1, 2, 3]:
151
for solver_type in ["midpoint", "heun"]:
152
for threshold in [0.5, 1.0, 2.0]:
153
for prediction_type in ["epsilon", "sample"]:
154
self.check_over_configs(
155
thresholding=True,
156
prediction_type=prediction_type,
157
sample_max_value=threshold,
158
algorithm_type="dpmsolver++",
159
solver_order=order,
160
solver_type=solver_type,
161
)
162
163
def test_prediction_type(self):
164
for prediction_type in ["epsilon", "v_prediction"]:
165
self.check_over_configs(prediction_type=prediction_type)
166
167
def test_solver_order_and_type(self):
168
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
169
for solver_type in ["midpoint", "heun"]:
170
for order in [1, 2, 3]:
171
for prediction_type in ["epsilon", "sample"]:
172
self.check_over_configs(
173
solver_order=order,
174
solver_type=solver_type,
175
prediction_type=prediction_type,
176
algorithm_type=algorithm_type,
177
)
178
sample = self.full_loop(
179
solver_order=order,
180
solver_type=solver_type,
181
prediction_type=prediction_type,
182
algorithm_type=algorithm_type,
183
)
184
assert not torch.isnan(sample).any(), "Samples have nan numbers"
185
186
def test_lower_order_final(self):
187
self.check_over_configs(lower_order_final=True)
188
self.check_over_configs(lower_order_final=False)
189
190
def test_inference_steps(self):
191
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
192
self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0)
193
194
def test_full_loop_no_noise(self):
195
sample = self.full_loop()
196
result_mean = torch.mean(torch.abs(sample))
197
198
assert abs(result_mean.item() - 0.3301) < 1e-3
199
200
def test_full_loop_no_noise_thres(self):
201
sample = self.full_loop(thresholding=True, dynamic_thresholding_ratio=0.87, sample_max_value=0.5)
202
result_mean = torch.mean(torch.abs(sample))
203
204
assert abs(result_mean.item() - 0.6405) < 1e-3
205
206
def test_full_loop_with_v_prediction(self):
207
sample = self.full_loop(prediction_type="v_prediction")
208
result_mean = torch.mean(torch.abs(sample))
209
210
assert abs(result_mean.item() - 0.2251) < 1e-3
211
212
def test_switch(self):
213
# make sure that iterating over schedulers with same config names gives same results
214
# for defaults
215
scheduler = DPMSolverMultistepScheduler(**self.get_scheduler_config())
216
sample = self.full_loop(scheduler=scheduler)
217
result_mean = torch.mean(torch.abs(sample))
218
219
assert abs(result_mean.item() - 0.3301) < 1e-3
220
221
scheduler = DPMSolverSinglestepScheduler.from_config(scheduler.config)
222
scheduler = UniPCMultistepScheduler.from_config(scheduler.config)
223
scheduler = DEISMultistepScheduler.from_config(scheduler.config)
224
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
225
226
sample = self.full_loop(scheduler=scheduler)
227
result_mean = torch.mean(torch.abs(sample))
228
229
assert abs(result_mean.item() - 0.3301) < 1e-3
230
231
def test_fp16_support(self):
232
scheduler_class = self.scheduler_classes[0]
233
scheduler_config = self.get_scheduler_config(thresholding=True, dynamic_thresholding_ratio=0)
234
scheduler = scheduler_class(**scheduler_config)
235
236
num_inference_steps = 10
237
model = self.dummy_model()
238
sample = self.dummy_sample_deter.half()
239
scheduler.set_timesteps(num_inference_steps)
240
241
for i, t in enumerate(scheduler.timesteps):
242
residual = model(sample, t)
243
sample = scheduler.step(residual, t, sample).prev_sample
244
245
assert sample.dtype == torch.float16
246
247